30 lines
1.1 KiB
Python
30 lines
1.1 KiB
Python
|
"""Tests for piab.py"""
|
||
|
|
||
|
from sympy.core.numbers import pi
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.trigonometric import sin
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.functions.special.tensor_functions import KroneckerDelta
|
||
|
from sympy.physics.quantum import L2, qapply, hbar, represent
|
||
|
from sympy.physics.quantum.piab import PIABHamiltonian, PIABKet, PIABBra, m, L
|
||
|
|
||
|
i, j, n, x = symbols('i j n x')
|
||
|
|
||
|
|
||
|
def test_H():
|
||
|
assert PIABHamiltonian('H').hilbert_space == \
|
||
|
L2(Interval(S.NegativeInfinity, S.Infinity))
|
||
|
assert qapply(PIABHamiltonian('H')*PIABKet(n)) == \
|
||
|
(n**2*pi**2*hbar**2)/(2*m*L**2)*PIABKet(n)
|
||
|
|
||
|
|
||
|
def test_states():
|
||
|
assert PIABKet(n).dual_class() == PIABBra
|
||
|
assert PIABKet(n).hilbert_space == \
|
||
|
L2(Interval(S.NegativeInfinity, S.Infinity))
|
||
|
assert represent(PIABKet(n)) == sqrt(2/L)*sin(n*pi*x/L)
|
||
|
assert (PIABBra(i)*PIABKet(j)).doit() == KroneckerDelta(i, j)
|
||
|
assert PIABBra(n).dual_class() == PIABKet
|