190 lines
5.0 KiB
Python
190 lines
5.0 KiB
Python
|
from sympy.core.numbers import (Float, I, Integer)
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
from sympy.external import import_module
|
||
|
from sympy.testing.pytest import skip
|
||
|
|
||
|
from sympy.physics.quantum.dagger import Dagger
|
||
|
from sympy.physics.quantum.represent import (represent, rep_innerproduct,
|
||
|
rep_expectation, enumerate_states)
|
||
|
from sympy.physics.quantum.state import Bra, Ket
|
||
|
from sympy.physics.quantum.operator import Operator, OuterProduct
|
||
|
from sympy.physics.quantum.tensorproduct import TensorProduct
|
||
|
from sympy.physics.quantum.tensorproduct import matrix_tensor_product
|
||
|
from sympy.physics.quantum.commutator import Commutator
|
||
|
from sympy.physics.quantum.anticommutator import AntiCommutator
|
||
|
from sympy.physics.quantum.innerproduct import InnerProduct
|
||
|
from sympy.physics.quantum.matrixutils import (numpy_ndarray,
|
||
|
scipy_sparse_matrix, to_numpy,
|
||
|
to_scipy_sparse, to_sympy)
|
||
|
from sympy.physics.quantum.cartesian import XKet, XOp, XBra
|
||
|
from sympy.physics.quantum.qapply import qapply
|
||
|
from sympy.physics.quantum.operatorset import operators_to_state
|
||
|
|
||
|
Amat = Matrix([[1, I], [-I, 1]])
|
||
|
Bmat = Matrix([[1, 2], [3, 4]])
|
||
|
Avec = Matrix([[1], [I]])
|
||
|
|
||
|
|
||
|
class AKet(Ket):
|
||
|
|
||
|
@classmethod
|
||
|
def dual_class(self):
|
||
|
return ABra
|
||
|
|
||
|
def _represent_default_basis(self, **options):
|
||
|
return self._represent_AOp(None, **options)
|
||
|
|
||
|
def _represent_AOp(self, basis, **options):
|
||
|
return Avec
|
||
|
|
||
|
|
||
|
class ABra(Bra):
|
||
|
|
||
|
@classmethod
|
||
|
def dual_class(self):
|
||
|
return AKet
|
||
|
|
||
|
|
||
|
class AOp(Operator):
|
||
|
|
||
|
def _represent_default_basis(self, **options):
|
||
|
return self._represent_AOp(None, **options)
|
||
|
|
||
|
def _represent_AOp(self, basis, **options):
|
||
|
return Amat
|
||
|
|
||
|
|
||
|
class BOp(Operator):
|
||
|
|
||
|
def _represent_default_basis(self, **options):
|
||
|
return self._represent_AOp(None, **options)
|
||
|
|
||
|
def _represent_AOp(self, basis, **options):
|
||
|
return Bmat
|
||
|
|
||
|
|
||
|
k = AKet('a')
|
||
|
b = ABra('a')
|
||
|
A = AOp('A')
|
||
|
B = BOp('B')
|
||
|
|
||
|
_tests = [
|
||
|
# Bra
|
||
|
(b, Dagger(Avec)),
|
||
|
(Dagger(b), Avec),
|
||
|
# Ket
|
||
|
(k, Avec),
|
||
|
(Dagger(k), Dagger(Avec)),
|
||
|
# Operator
|
||
|
(A, Amat),
|
||
|
(Dagger(A), Dagger(Amat)),
|
||
|
# OuterProduct
|
||
|
(OuterProduct(k, b), Avec*Avec.H),
|
||
|
# TensorProduct
|
||
|
(TensorProduct(A, B), matrix_tensor_product(Amat, Bmat)),
|
||
|
# Pow
|
||
|
(A**2, Amat**2),
|
||
|
# Add/Mul
|
||
|
(A*B + 2*A, Amat*Bmat + 2*Amat),
|
||
|
# Commutator
|
||
|
(Commutator(A, B), Amat*Bmat - Bmat*Amat),
|
||
|
# AntiCommutator
|
||
|
(AntiCommutator(A, B), Amat*Bmat + Bmat*Amat),
|
||
|
# InnerProduct
|
||
|
(InnerProduct(b, k), (Avec.H*Avec)[0])
|
||
|
]
|
||
|
|
||
|
|
||
|
def test_format_sympy():
|
||
|
for test in _tests:
|
||
|
lhs = represent(test[0], basis=A, format='sympy')
|
||
|
rhs = to_sympy(test[1])
|
||
|
assert lhs == rhs
|
||
|
|
||
|
|
||
|
def test_scalar_sympy():
|
||
|
assert represent(Integer(1)) == Integer(1)
|
||
|
assert represent(Float(1.0)) == Float(1.0)
|
||
|
assert represent(1.0 + I) == 1.0 + I
|
||
|
|
||
|
|
||
|
np = import_module('numpy')
|
||
|
|
||
|
|
||
|
def test_format_numpy():
|
||
|
if not np:
|
||
|
skip("numpy not installed.")
|
||
|
|
||
|
for test in _tests:
|
||
|
lhs = represent(test[0], basis=A, format='numpy')
|
||
|
rhs = to_numpy(test[1])
|
||
|
if isinstance(lhs, numpy_ndarray):
|
||
|
assert (lhs == rhs).all()
|
||
|
else:
|
||
|
assert lhs == rhs
|
||
|
|
||
|
|
||
|
def test_scalar_numpy():
|
||
|
if not np:
|
||
|
skip("numpy not installed.")
|
||
|
|
||
|
assert represent(Integer(1), format='numpy') == 1
|
||
|
assert represent(Float(1.0), format='numpy') == 1.0
|
||
|
assert represent(1.0 + I, format='numpy') == 1.0 + 1.0j
|
||
|
|
||
|
|
||
|
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
|
||
|
|
||
|
|
||
|
def test_format_scipy_sparse():
|
||
|
if not np:
|
||
|
skip("numpy not installed.")
|
||
|
if not scipy:
|
||
|
skip("scipy not installed.")
|
||
|
|
||
|
for test in _tests:
|
||
|
lhs = represent(test[0], basis=A, format='scipy.sparse')
|
||
|
rhs = to_scipy_sparse(test[1])
|
||
|
if isinstance(lhs, scipy_sparse_matrix):
|
||
|
assert np.linalg.norm((lhs - rhs).todense()) == 0.0
|
||
|
else:
|
||
|
assert lhs == rhs
|
||
|
|
||
|
|
||
|
def test_scalar_scipy_sparse():
|
||
|
if not np:
|
||
|
skip("numpy not installed.")
|
||
|
if not scipy:
|
||
|
skip("scipy not installed.")
|
||
|
|
||
|
assert represent(Integer(1), format='scipy.sparse') == 1
|
||
|
assert represent(Float(1.0), format='scipy.sparse') == 1.0
|
||
|
assert represent(1.0 + I, format='scipy.sparse') == 1.0 + 1.0j
|
||
|
|
||
|
x_ket = XKet('x')
|
||
|
x_bra = XBra('x')
|
||
|
x_op = XOp('X')
|
||
|
|
||
|
|
||
|
def test_innerprod_represent():
|
||
|
assert rep_innerproduct(x_ket) == InnerProduct(XBra("x_1"), x_ket).doit()
|
||
|
assert rep_innerproduct(x_bra) == InnerProduct(x_bra, XKet("x_1")).doit()
|
||
|
|
||
|
try:
|
||
|
rep_innerproduct(x_op)
|
||
|
except TypeError:
|
||
|
return True
|
||
|
|
||
|
|
||
|
def test_operator_represent():
|
||
|
basis_kets = enumerate_states(operators_to_state(x_op), 1, 2)
|
||
|
assert rep_expectation(
|
||
|
x_op) == qapply(basis_kets[1].dual*x_op*basis_kets[0])
|
||
|
|
||
|
|
||
|
def test_enumerate_states():
|
||
|
test = XKet("foo")
|
||
|
assert enumerate_states(test, 1, 1) == [XKet("foo_1")]
|
||
|
assert enumerate_states(
|
||
|
test, [1, 2, 4]) == [XKet("foo_1"), XKet("foo_2"), XKet("foo_4")]
|