85 lines
2.9 KiB
Python
85 lines
2.9 KiB
Python
|
from sympy.physics.matrices import msigma, mgamma, minkowski_tensor, pat_matrix, mdft
|
||
|
from sympy.core.numbers import (I, Rational)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.matrices.dense import (Matrix, eye, zeros)
|
||
|
from sympy.testing.pytest import warns_deprecated_sympy
|
||
|
|
||
|
|
||
|
def test_parallel_axis_theorem():
|
||
|
# This tests the parallel axis theorem matrix by comparing to test
|
||
|
# matrices.
|
||
|
|
||
|
# First case, 1 in all directions.
|
||
|
mat1 = Matrix(((2, -1, -1), (-1, 2, -1), (-1, -1, 2)))
|
||
|
assert pat_matrix(1, 1, 1, 1) == mat1
|
||
|
assert pat_matrix(2, 1, 1, 1) == 2*mat1
|
||
|
|
||
|
# Second case, 1 in x, 0 in all others
|
||
|
mat2 = Matrix(((0, 0, 0), (0, 1, 0), (0, 0, 1)))
|
||
|
assert pat_matrix(1, 1, 0, 0) == mat2
|
||
|
assert pat_matrix(2, 1, 0, 0) == 2*mat2
|
||
|
|
||
|
# Third case, 1 in y, 0 in all others
|
||
|
mat3 = Matrix(((1, 0, 0), (0, 0, 0), (0, 0, 1)))
|
||
|
assert pat_matrix(1, 0, 1, 0) == mat3
|
||
|
assert pat_matrix(2, 0, 1, 0) == 2*mat3
|
||
|
|
||
|
# Fourth case, 1 in z, 0 in all others
|
||
|
mat4 = Matrix(((1, 0, 0), (0, 1, 0), (0, 0, 0)))
|
||
|
assert pat_matrix(1, 0, 0, 1) == mat4
|
||
|
assert pat_matrix(2, 0, 0, 1) == 2*mat4
|
||
|
|
||
|
|
||
|
def test_Pauli():
|
||
|
#this and the following test are testing both Pauli and Dirac matrices
|
||
|
#and also that the general Matrix class works correctly in a real world
|
||
|
#situation
|
||
|
sigma1 = msigma(1)
|
||
|
sigma2 = msigma(2)
|
||
|
sigma3 = msigma(3)
|
||
|
|
||
|
assert sigma1 == sigma1
|
||
|
assert sigma1 != sigma2
|
||
|
|
||
|
# sigma*I -> I*sigma (see #354)
|
||
|
assert sigma1*sigma2 == sigma3*I
|
||
|
assert sigma3*sigma1 == sigma2*I
|
||
|
assert sigma2*sigma3 == sigma1*I
|
||
|
|
||
|
assert sigma1*sigma1 == eye(2)
|
||
|
assert sigma2*sigma2 == eye(2)
|
||
|
assert sigma3*sigma3 == eye(2)
|
||
|
|
||
|
assert sigma1*2*sigma1 == 2*eye(2)
|
||
|
assert sigma1*sigma3*sigma1 == -sigma3
|
||
|
|
||
|
|
||
|
def test_Dirac():
|
||
|
gamma0 = mgamma(0)
|
||
|
gamma1 = mgamma(1)
|
||
|
gamma2 = mgamma(2)
|
||
|
gamma3 = mgamma(3)
|
||
|
gamma5 = mgamma(5)
|
||
|
|
||
|
# gamma*I -> I*gamma (see #354)
|
||
|
assert gamma5 == gamma0 * gamma1 * gamma2 * gamma3 * I
|
||
|
assert gamma1 * gamma2 + gamma2 * gamma1 == zeros(4)
|
||
|
assert gamma0 * gamma0 == eye(4) * minkowski_tensor[0, 0]
|
||
|
assert gamma2 * gamma2 != eye(4) * minkowski_tensor[0, 0]
|
||
|
assert gamma2 * gamma2 == eye(4) * minkowski_tensor[2, 2]
|
||
|
|
||
|
assert mgamma(5, True) == \
|
||
|
mgamma(0, True)*mgamma(1, True)*mgamma(2, True)*mgamma(3, True)*I
|
||
|
|
||
|
def test_mdft():
|
||
|
with warns_deprecated_sympy():
|
||
|
assert mdft(1) == Matrix([[1]])
|
||
|
with warns_deprecated_sympy():
|
||
|
assert mdft(2) == 1/sqrt(2)*Matrix([[1,1],[1,-1]])
|
||
|
with warns_deprecated_sympy():
|
||
|
assert mdft(4) == Matrix([[S.Half, S.Half, S.Half, S.Half],
|
||
|
[S.Half, -I/2, Rational(-1,2), I/2],
|
||
|
[S.Half, Rational(-1,2), S.Half, Rational(-1,2)],
|
||
|
[S.Half, I/2, Rational(-1,2), -I/2]])
|