ai-content-maker/.venv/Lib/site-packages/sympy/polys/constructor.py

388 lines
11 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""Tools for constructing domains for expressions. """
from math import prod
from sympy.core import sympify
from sympy.core.evalf import pure_complex
from sympy.core.sorting import ordered
from sympy.polys.domains import ZZ, QQ, ZZ_I, QQ_I, EX
from sympy.polys.domains.complexfield import ComplexField
from sympy.polys.domains.realfield import RealField
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import parallel_dict_from_basic
from sympy.utilities import public
def _construct_simple(coeffs, opt):
"""Handle simple domains, e.g.: ZZ, QQ, RR and algebraic domains. """
rationals = floats = complexes = algebraics = False
float_numbers = []
if opt.extension is True:
is_algebraic = lambda coeff: coeff.is_number and coeff.is_algebraic
else:
is_algebraic = lambda coeff: False
for coeff in coeffs:
if coeff.is_Rational:
if not coeff.is_Integer:
rationals = True
elif coeff.is_Float:
if algebraics:
# there are both reals and algebraics -> EX
return False
else:
floats = True
float_numbers.append(coeff)
else:
is_complex = pure_complex(coeff)
if is_complex:
complexes = True
x, y = is_complex
if x.is_Rational and y.is_Rational:
if not (x.is_Integer and y.is_Integer):
rationals = True
continue
else:
floats = True
if x.is_Float:
float_numbers.append(x)
if y.is_Float:
float_numbers.append(y)
elif is_algebraic(coeff):
if floats:
# there are both algebraics and reals -> EX
return False
algebraics = True
else:
# this is a composite domain, e.g. ZZ[X], EX
return None
# Use the maximum precision of all coefficients for the RR or CC
# precision
max_prec = max(c._prec for c in float_numbers) if float_numbers else 53
if algebraics:
domain, result = _construct_algebraic(coeffs, opt)
else:
if floats and complexes:
domain = ComplexField(prec=max_prec)
elif floats:
domain = RealField(prec=max_prec)
elif rationals or opt.field:
domain = QQ_I if complexes else QQ
else:
domain = ZZ_I if complexes else ZZ
result = [domain.from_sympy(coeff) for coeff in coeffs]
return domain, result
def _construct_algebraic(coeffs, opt):
"""We know that coefficients are algebraic so construct the extension. """
from sympy.polys.numberfields import primitive_element
exts = set()
def build_trees(args):
trees = []
for a in args:
if a.is_Rational:
tree = ('Q', QQ.from_sympy(a))
elif a.is_Add:
tree = ('+', build_trees(a.args))
elif a.is_Mul:
tree = ('*', build_trees(a.args))
else:
tree = ('e', a)
exts.add(a)
trees.append(tree)
return trees
trees = build_trees(coeffs)
exts = list(ordered(exts))
g, span, H = primitive_element(exts, ex=True, polys=True)
root = sum([ s*ext for s, ext in zip(span, exts) ])
domain, g = QQ.algebraic_field((g, root)), g.rep.rep
exts_dom = [domain.dtype.from_list(h, g, QQ) for h in H]
exts_map = dict(zip(exts, exts_dom))
def convert_tree(tree):
op, args = tree
if op == 'Q':
return domain.dtype.from_list([args], g, QQ)
elif op == '+':
return sum((convert_tree(a) for a in args), domain.zero)
elif op == '*':
return prod(convert_tree(a) for a in args)
elif op == 'e':
return exts_map[args]
else:
raise RuntimeError
result = [convert_tree(tree) for tree in trees]
return domain, result
def _construct_composite(coeffs, opt):
"""Handle composite domains, e.g.: ZZ[X], QQ[X], ZZ(X), QQ(X). """
numers, denoms = [], []
for coeff in coeffs:
numer, denom = coeff.as_numer_denom()
numers.append(numer)
denoms.append(denom)
polys, gens = parallel_dict_from_basic(numers + denoms) # XXX: sorting
if not gens:
return None
if opt.composite is None:
if any(gen.is_number and gen.is_algebraic for gen in gens):
return None # generators are number-like so lets better use EX
all_symbols = set()
for gen in gens:
symbols = gen.free_symbols
if all_symbols & symbols:
return None # there could be algebraic relations between generators
else:
all_symbols |= symbols
n = len(gens)
k = len(polys)//2
numers = polys[:k]
denoms = polys[k:]
if opt.field:
fractions = True
else:
fractions, zeros = False, (0,)*n
for denom in denoms:
if len(denom) > 1 or zeros not in denom:
fractions = True
break
coeffs = set()
if not fractions:
for numer, denom in zip(numers, denoms):
denom = denom[zeros]
for monom, coeff in numer.items():
coeff /= denom
coeffs.add(coeff)
numer[monom] = coeff
else:
for numer, denom in zip(numers, denoms):
coeffs.update(list(numer.values()))
coeffs.update(list(denom.values()))
rationals = floats = complexes = False
float_numbers = []
for coeff in coeffs:
if coeff.is_Rational:
if not coeff.is_Integer:
rationals = True
elif coeff.is_Float:
floats = True
float_numbers.append(coeff)
else:
is_complex = pure_complex(coeff)
if is_complex is not None:
complexes = True
x, y = is_complex
if x.is_Rational and y.is_Rational:
if not (x.is_Integer and y.is_Integer):
rationals = True
else:
floats = True
if x.is_Float:
float_numbers.append(x)
if y.is_Float:
float_numbers.append(y)
max_prec = max(c._prec for c in float_numbers) if float_numbers else 53
if floats and complexes:
ground = ComplexField(prec=max_prec)
elif floats:
ground = RealField(prec=max_prec)
elif complexes:
if rationals:
ground = QQ_I
else:
ground = ZZ_I
elif rationals:
ground = QQ
else:
ground = ZZ
result = []
if not fractions:
domain = ground.poly_ring(*gens)
for numer in numers:
for monom, coeff in numer.items():
numer[monom] = ground.from_sympy(coeff)
result.append(domain(numer))
else:
domain = ground.frac_field(*gens)
for numer, denom in zip(numers, denoms):
for monom, coeff in numer.items():
numer[monom] = ground.from_sympy(coeff)
for monom, coeff in denom.items():
denom[monom] = ground.from_sympy(coeff)
result.append(domain((numer, denom)))
return domain, result
def _construct_expression(coeffs, opt):
"""The last resort case, i.e. use the expression domain. """
domain, result = EX, []
for coeff in coeffs:
result.append(domain.from_sympy(coeff))
return domain, result
@public
def construct_domain(obj, **args):
"""Construct a minimal domain for a list of expressions.
Explanation
===========
Given a list of normal SymPy expressions (of type :py:class:`~.Expr`)
``construct_domain`` will find a minimal :py:class:`~.Domain` that can
represent those expressions. The expressions will be converted to elements
of the domain and both the domain and the domain elements are returned.
Parameters
==========
obj: list or dict
The expressions to build a domain for.
**args: keyword arguments
Options that affect the choice of domain.
Returns
=======
(K, elements): Domain and list of domain elements
The domain K that can represent the expressions and the list or dict
of domain elements representing the same expressions as elements of K.
Examples
========
Given a list of :py:class:`~.Integer` ``construct_domain`` will return the
domain :ref:`ZZ` and a list of integers as elements of :ref:`ZZ`.
>>> from sympy import construct_domain, S
>>> expressions = [S(2), S(3), S(4)]
>>> K, elements = construct_domain(expressions)
>>> K
ZZ
>>> elements
[2, 3, 4]
>>> type(elements[0]) # doctest: +SKIP
<class 'int'>
>>> type(expressions[0])
<class 'sympy.core.numbers.Integer'>
If there are any :py:class:`~.Rational` then :ref:`QQ` is returned
instead.
>>> construct_domain([S(1)/2, S(3)/4])
(QQ, [1/2, 3/4])
If there are symbols then a polynomial ring :ref:`K[x]` is returned.
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> construct_domain([2*x + 1, S(3)/4])
(QQ[x], [2*x + 1, 3/4])
>>> construct_domain([2*x + 1, y])
(ZZ[x,y], [2*x + 1, y])
If any symbols appear with negative powers then a rational function field
:ref:`K(x)` will be returned.
>>> construct_domain([y/x, x/(1 - y)])
(ZZ(x,y), [y/x, -x/(y - 1)])
Irrational algebraic numbers will result in the :ref:`EX` domain by
default. The keyword argument ``extension=True`` leads to the construction
of an algebraic number field :ref:`QQ(a)`.
>>> from sympy import sqrt
>>> construct_domain([sqrt(2)])
(EX, [EX(sqrt(2))])
>>> construct_domain([sqrt(2)], extension=True) # doctest: +SKIP
(QQ<sqrt(2)>, [ANP([1, 0], [1, 0, -2], QQ)])
See also
========
Domain
Expr
"""
opt = build_options(args)
if hasattr(obj, '__iter__'):
if isinstance(obj, dict):
if not obj:
monoms, coeffs = [], []
else:
monoms, coeffs = list(zip(*list(obj.items())))
else:
coeffs = obj
else:
coeffs = [obj]
coeffs = list(map(sympify, coeffs))
result = _construct_simple(coeffs, opt)
if result is not None:
if result is not False:
domain, coeffs = result
else:
domain, coeffs = _construct_expression(coeffs, opt)
else:
if opt.composite is False:
result = None
else:
result = _construct_composite(coeffs, opt)
if result is not None:
domain, coeffs = result
else:
domain, coeffs = _construct_expression(coeffs, opt)
if hasattr(obj, '__iter__'):
if isinstance(obj, dict):
return domain, dict(list(zip(monoms, coeffs)))
else:
return domain, coeffs
else:
return domain, coeffs[0]