ai-content-maker/.venv/Lib/site-packages/sympy/polys/domains/gmpyrationalfield.py

101 lines
3.1 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
"""Implementation of :class:`GMPYRationalField` class. """
from sympy.polys.domains.groundtypes import (
GMPYRational, SymPyRational,
gmpy_numer, gmpy_denom, factorial as gmpy_factorial,
)
from sympy.polys.domains.rationalfield import RationalField
from sympy.polys.polyerrors import CoercionFailed
from sympy.utilities import public
@public
class GMPYRationalField(RationalField):
"""Rational field based on GMPY's ``mpq`` type.
This will be the implementation of :ref:`QQ` if ``gmpy`` or ``gmpy2`` is
installed. Elements will be of type ``gmpy.mpq``.
"""
dtype = GMPYRational
zero = dtype(0)
one = dtype(1)
tp = type(one)
alias = 'QQ_gmpy'
def __init__(self):
pass
def get_ring(self):
"""Returns ring associated with ``self``. """
from sympy.polys.domains import GMPYIntegerRing
return GMPYIntegerRing()
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
return SymPyRational(int(gmpy_numer(a)),
int(gmpy_denom(a)))
def from_sympy(self, a):
"""Convert SymPy's Integer to ``dtype``. """
if a.is_Rational:
return GMPYRational(a.p, a.q)
elif a.is_Float:
from sympy.polys.domains import RR
return GMPYRational(*map(int, RR.to_rational(a)))
else:
raise CoercionFailed("expected ``Rational`` object, got %s" % a)
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return GMPYRational(a)
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return GMPYRational(a.numerator, a.denominator)
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return GMPYRational(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return a
def from_GaussianRationalField(K1, a, K0):
"""Convert a ``GaussianElement`` object to ``dtype``. """
if a.y == 0:
return GMPYRational(a.x)
def from_RealField(K1, a, K0):
"""Convert a mpmath ``mpf`` object to ``dtype``. """
return GMPYRational(*map(int, K0.to_rational(a)))
def exquo(self, a, b):
"""Exact quotient of ``a`` and ``b``, implies ``__truediv__``. """
return GMPYRational(a) / GMPYRational(b)
def quo(self, a, b):
"""Quotient of ``a`` and ``b``, implies ``__truediv__``. """
return GMPYRational(a) / GMPYRational(b)
def rem(self, a, b):
"""Remainder of ``a`` and ``b``, implies nothing. """
return self.zero
def div(self, a, b):
"""Division of ``a`` and ``b``, implies ``__truediv__``. """
return GMPYRational(a) / GMPYRational(b), self.zero
def numer(self, a):
"""Returns numerator of ``a``. """
return a.numerator
def denom(self, a):
"""Returns denominator of ``a``. """
return a.denominator
def factorial(self, a):
"""Returns factorial of ``a``. """
return GMPYRational(gmpy_factorial(int(a)))