753 lines
22 KiB
Python
753 lines
22 KiB
Python
|
from sympy.abc import x, zeta
|
||
|
from sympy.polys import Poly, cyclotomic_poly
|
||
|
from sympy.polys.domains import FF, QQ, ZZ
|
||
|
from sympy.polys.matrices import DomainMatrix, DM
|
||
|
from sympy.polys.numberfields.exceptions import (
|
||
|
ClosureFailure, MissingUnityError, StructureError
|
||
|
)
|
||
|
from sympy.polys.numberfields.modules import (
|
||
|
Module, ModuleElement, ModuleEndomorphism, PowerBasis, PowerBasisElement,
|
||
|
find_min_poly, is_sq_maxrank_HNF, make_mod_elt, to_col,
|
||
|
)
|
||
|
from sympy.polys.numberfields.utilities import is_int
|
||
|
from sympy.polys.polyerrors import UnificationFailed
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
|
||
|
def test_to_col():
|
||
|
c = [1, 2, 3, 4]
|
||
|
m = to_col(c)
|
||
|
assert m.domain.is_ZZ
|
||
|
assert m.shape == (4, 1)
|
||
|
assert m.flat() == c
|
||
|
|
||
|
|
||
|
def test_Module_NotImplemented():
|
||
|
M = Module()
|
||
|
raises(NotImplementedError, lambda: M.n)
|
||
|
raises(NotImplementedError, lambda: M.mult_tab())
|
||
|
raises(NotImplementedError, lambda: M.represent(None))
|
||
|
raises(NotImplementedError, lambda: M.starts_with_unity())
|
||
|
raises(NotImplementedError, lambda: M.element_from_rational(QQ(2, 3)))
|
||
|
|
||
|
|
||
|
def test_Module_ancestors():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
|
||
|
assert C.ancestors(include_self=True) == [A, B, C]
|
||
|
assert D.ancestors(include_self=True) == [A, B, D]
|
||
|
assert C.power_basis_ancestor() == A
|
||
|
assert C.nearest_common_ancestor(D) == B
|
||
|
M = Module()
|
||
|
assert M.power_basis_ancestor() is None
|
||
|
|
||
|
|
||
|
def test_Module_compat_col():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
col = to_col([1, 2, 3, 4])
|
||
|
row = col.transpose()
|
||
|
assert A.is_compat_col(col) is True
|
||
|
assert A.is_compat_col(row) is False
|
||
|
assert A.is_compat_col(1) is False
|
||
|
assert A.is_compat_col(DomainMatrix.eye(3, ZZ)[:, 0]) is False
|
||
|
assert A.is_compat_col(DomainMatrix.eye(4, QQ)[:, 0]) is False
|
||
|
assert A.is_compat_col(DomainMatrix.eye(4, ZZ)[:, 0]) is True
|
||
|
|
||
|
|
||
|
def test_Module_call():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
B = PowerBasis(T)
|
||
|
assert B(0).col.flat() == [1, 0, 0, 0]
|
||
|
assert B(1).col.flat() == [0, 1, 0, 0]
|
||
|
col = DomainMatrix.eye(4, ZZ)[:, 2]
|
||
|
assert B(col).col == col
|
||
|
raises(ValueError, lambda: B(-1))
|
||
|
|
||
|
|
||
|
def test_Module_starts_with_unity():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
assert A.starts_with_unity() is True
|
||
|
assert B.starts_with_unity() is False
|
||
|
|
||
|
|
||
|
def test_Module_basis_elements():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
basis = B.basis_elements()
|
||
|
bp = B.basis_element_pullbacks()
|
||
|
for i, (e, p) in enumerate(zip(basis, bp)):
|
||
|
c = [0] * 4
|
||
|
assert e.module == B
|
||
|
assert p.module == A
|
||
|
c[i] = 1
|
||
|
assert e == B(to_col(c))
|
||
|
c[i] = 2
|
||
|
assert p == A(to_col(c))
|
||
|
|
||
|
|
||
|
def test_Module_zero():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
assert A.zero().col.flat() == [0, 0, 0, 0]
|
||
|
assert A.zero().module == A
|
||
|
assert B.zero().col.flat() == [0, 0, 0, 0]
|
||
|
assert B.zero().module == B
|
||
|
|
||
|
|
||
|
def test_Module_one():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
assert A.one().col.flat() == [1, 0, 0, 0]
|
||
|
assert A.one().module == A
|
||
|
assert B.one().col.flat() == [1, 0, 0, 0]
|
||
|
assert B.one().module == A
|
||
|
|
||
|
|
||
|
def test_Module_element_from_rational():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
rA = A.element_from_rational(QQ(22, 7))
|
||
|
rB = B.element_from_rational(QQ(22, 7))
|
||
|
assert rA.coeffs == [22, 0, 0, 0]
|
||
|
assert rA.denom == 7
|
||
|
assert rA.module == A
|
||
|
assert rB.coeffs == [22, 0, 0, 0]
|
||
|
assert rB.denom == 7
|
||
|
assert rB.module == A
|
||
|
|
||
|
|
||
|
def test_Module_submodule_from_gens():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
gens = [2*A(0), 2*A(1), 6*A(0), 6*A(1)]
|
||
|
B = A.submodule_from_gens(gens)
|
||
|
# Because the 3rd and 4th generators do not add anything new, we expect
|
||
|
# the cols of the matrix of B to just reproduce the first two gens:
|
||
|
M = gens[0].column().hstack(gens[1].column())
|
||
|
assert B.matrix == M
|
||
|
# At least one generator must be provided:
|
||
|
raises(ValueError, lambda: A.submodule_from_gens([]))
|
||
|
# All generators must belong to A:
|
||
|
raises(ValueError, lambda: A.submodule_from_gens([3*A(0), B(0)]))
|
||
|
|
||
|
|
||
|
def test_Module_submodule_from_matrix():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
e = B(to_col([1, 2, 3, 4]))
|
||
|
f = e.to_parent()
|
||
|
assert f.col.flat() == [2, 4, 6, 8]
|
||
|
# Matrix must be over ZZ:
|
||
|
raises(ValueError, lambda: A.submodule_from_matrix(DomainMatrix.eye(4, QQ)))
|
||
|
# Number of rows of matrix must equal number of generators of module A:
|
||
|
raises(ValueError, lambda: A.submodule_from_matrix(2 * DomainMatrix.eye(5, ZZ)))
|
||
|
|
||
|
|
||
|
def test_Module_whole_submodule():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.whole_submodule()
|
||
|
e = B(to_col([1, 2, 3, 4]))
|
||
|
f = e.to_parent()
|
||
|
assert f.col.flat() == [1, 2, 3, 4]
|
||
|
e0, e1, e2, e3 = B(0), B(1), B(2), B(3)
|
||
|
assert e2 * e3 == e0
|
||
|
assert e3 ** 2 == e1
|
||
|
|
||
|
|
||
|
def test_PowerBasis_repr():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
assert repr(A) == 'PowerBasis(x**4 + x**3 + x**2 + x + 1)'
|
||
|
|
||
|
|
||
|
def test_PowerBasis_eq():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = PowerBasis(T)
|
||
|
assert A == B
|
||
|
|
||
|
|
||
|
def test_PowerBasis_mult_tab():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
M = A.mult_tab()
|
||
|
exp = {0: {0: [1, 0, 0, 0], 1: [0, 1, 0, 0], 2: [0, 0, 1, 0], 3: [0, 0, 0, 1]},
|
||
|
1: {1: [0, 0, 1, 0], 2: [0, 0, 0, 1], 3: [-1, -1, -1, -1]},
|
||
|
2: {2: [-1, -1, -1, -1], 3: [1, 0, 0, 0]},
|
||
|
3: {3: [0, 1, 0, 0]}}
|
||
|
# We get the table we expect:
|
||
|
assert M == exp
|
||
|
# And all entries are of expected type:
|
||
|
assert all(is_int(c) for u in M for v in M[u] for c in M[u][v])
|
||
|
|
||
|
|
||
|
def test_PowerBasis_represent():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
col = to_col([1, 2, 3, 4])
|
||
|
a = A(col)
|
||
|
assert A.represent(a) == col
|
||
|
b = A(col, denom=2)
|
||
|
raises(ClosureFailure, lambda: A.represent(b))
|
||
|
|
||
|
|
||
|
def test_PowerBasis_element_from_poly():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
f = Poly(1 + 2*x)
|
||
|
g = Poly(x**4)
|
||
|
h = Poly(0, x)
|
||
|
assert A.element_from_poly(f).coeffs == [1, 2, 0, 0]
|
||
|
assert A.element_from_poly(g).coeffs == [-1, -1, -1, -1]
|
||
|
assert A.element_from_poly(h).coeffs == [0, 0, 0, 0]
|
||
|
|
||
|
|
||
|
def test_PowerBasis_element__conversions():
|
||
|
k = QQ.cyclotomic_field(5)
|
||
|
L = QQ.cyclotomic_field(7)
|
||
|
B = PowerBasis(k)
|
||
|
|
||
|
# ANP --> PowerBasisElement
|
||
|
a = k([QQ(1, 2), QQ(1, 3), 5, 7])
|
||
|
e = B.element_from_ANP(a)
|
||
|
assert e.coeffs == [42, 30, 2, 3]
|
||
|
assert e.denom == 6
|
||
|
|
||
|
# PowerBasisElement --> ANP
|
||
|
assert e.to_ANP() == a
|
||
|
|
||
|
# Cannot convert ANP from different field
|
||
|
d = L([QQ(1, 2), QQ(1, 3), 5, 7])
|
||
|
raises(UnificationFailed, lambda: B.element_from_ANP(d))
|
||
|
|
||
|
# AlgebraicNumber --> PowerBasisElement
|
||
|
alpha = k.to_alg_num(a)
|
||
|
eps = B.element_from_alg_num(alpha)
|
||
|
assert eps.coeffs == [42, 30, 2, 3]
|
||
|
assert eps.denom == 6
|
||
|
|
||
|
# PowerBasisElement --> AlgebraicNumber
|
||
|
assert eps.to_alg_num() == alpha
|
||
|
|
||
|
# Cannot convert AlgebraicNumber from different field
|
||
|
delta = L.to_alg_num(d)
|
||
|
raises(UnificationFailed, lambda: B.element_from_alg_num(delta))
|
||
|
|
||
|
# When we don't know the field:
|
||
|
C = PowerBasis(k.ext.minpoly)
|
||
|
# Can convert from AlgebraicNumber:
|
||
|
eps = C.element_from_alg_num(alpha)
|
||
|
assert eps.coeffs == [42, 30, 2, 3]
|
||
|
assert eps.denom == 6
|
||
|
# But can't convert back:
|
||
|
raises(StructureError, lambda: eps.to_alg_num())
|
||
|
|
||
|
|
||
|
def test_Submodule_repr():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ), denom=3)
|
||
|
assert repr(B) == 'Submodule[[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]/3'
|
||
|
|
||
|
|
||
|
def test_Submodule_reduced():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
|
||
|
D = C.reduced()
|
||
|
assert D.denom == 1 and D == C == B
|
||
|
|
||
|
|
||
|
def test_Submodule_discard_before():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
B.compute_mult_tab()
|
||
|
C = B.discard_before(2)
|
||
|
assert C.parent == B.parent
|
||
|
assert B.is_sq_maxrank_HNF() and not C.is_sq_maxrank_HNF()
|
||
|
assert C.matrix == B.matrix[:, 2:]
|
||
|
assert C.mult_tab() == {0: {0: [-2, -2], 1: [0, 0]}, 1: {1: [0, 0]}}
|
||
|
|
||
|
|
||
|
def test_Submodule_QQ_matrix():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
|
||
|
assert C.QQ_matrix == B.QQ_matrix
|
||
|
|
||
|
|
||
|
def test_Submodule_represent():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
a0 = A(to_col([6, 12, 18, 24]))
|
||
|
a1 = A(to_col([2, 4, 6, 8]))
|
||
|
a2 = A(to_col([1, 3, 5, 7]))
|
||
|
|
||
|
b1 = B.represent(a1)
|
||
|
assert b1.flat() == [1, 2, 3, 4]
|
||
|
|
||
|
c0 = C.represent(a0)
|
||
|
assert c0.flat() == [1, 2, 3, 4]
|
||
|
|
||
|
Y = A.submodule_from_matrix(DomainMatrix([
|
||
|
[1, 0, 0, 0],
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 1, 0],
|
||
|
], (3, 4), ZZ).transpose())
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
z0 = Z(to_col([1, 2, 3, 4, 5, 6]))
|
||
|
|
||
|
raises(ClosureFailure, lambda: Y.represent(A(3)))
|
||
|
raises(ClosureFailure, lambda: B.represent(a2))
|
||
|
raises(ClosureFailure, lambda: B.represent(z0))
|
||
|
|
||
|
|
||
|
def test_Submodule_is_compat_submodule():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
|
||
|
assert B.is_compat_submodule(C) is True
|
||
|
assert B.is_compat_submodule(A) is False
|
||
|
assert B.is_compat_submodule(D) is False
|
||
|
|
||
|
|
||
|
def test_Submodule_eq():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = A.submodule_from_matrix(6 * DomainMatrix.eye(4, ZZ), denom=3)
|
||
|
assert C == B
|
||
|
|
||
|
|
||
|
def test_Submodule_add():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(DomainMatrix([
|
||
|
[4, 0, 0, 0],
|
||
|
[0, 4, 0, 0],
|
||
|
], (2, 4), ZZ).transpose(), denom=6)
|
||
|
C = A.submodule_from_matrix(DomainMatrix([
|
||
|
[0, 10, 0, 0],
|
||
|
[0, 0, 7, 0],
|
||
|
], (2, 4), ZZ).transpose(), denom=15)
|
||
|
D = A.submodule_from_matrix(DomainMatrix([
|
||
|
[20, 0, 0, 0],
|
||
|
[ 0, 20, 0, 0],
|
||
|
[ 0, 0, 14, 0],
|
||
|
], (3, 4), ZZ).transpose(), denom=30)
|
||
|
assert B + C == D
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
Y = Z.submodule_from_gens([Z(0), Z(1)])
|
||
|
raises(TypeError, lambda: B + Y)
|
||
|
|
||
|
|
||
|
def test_Submodule_mul():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
C = A.submodule_from_matrix(DomainMatrix([
|
||
|
[0, 10, 0, 0],
|
||
|
[0, 0, 7, 0],
|
||
|
], (2, 4), ZZ).transpose(), denom=15)
|
||
|
C1 = A.submodule_from_matrix(DomainMatrix([
|
||
|
[0, 20, 0, 0],
|
||
|
[0, 0, 14, 0],
|
||
|
], (2, 4), ZZ).transpose(), denom=3)
|
||
|
C2 = A.submodule_from_matrix(DomainMatrix([
|
||
|
[0, 0, 10, 0],
|
||
|
[0, 0, 0, 7],
|
||
|
], (2, 4), ZZ).transpose(), denom=15)
|
||
|
C3_unred = A.submodule_from_matrix(DomainMatrix([
|
||
|
[0, 0, 100, 0],
|
||
|
[0, 0, 0, 70],
|
||
|
[0, 0, 0, 70],
|
||
|
[-49, -49, -49, -49]
|
||
|
], (4, 4), ZZ).transpose(), denom=225)
|
||
|
C3 = A.submodule_from_matrix(DomainMatrix([
|
||
|
[4900, 4900, 0, 0],
|
||
|
[4410, 4410, 10, 0],
|
||
|
[2107, 2107, 7, 7]
|
||
|
], (3, 4), ZZ).transpose(), denom=225)
|
||
|
assert C * 1 == C
|
||
|
assert C ** 1 == C
|
||
|
assert C * 10 == C1
|
||
|
assert C * A(1) == C2
|
||
|
assert C.mul(C, hnf=False) == C3_unred
|
||
|
assert C * C == C3
|
||
|
assert C ** 2 == C3
|
||
|
|
||
|
|
||
|
def test_Submodule_reduce_element():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.whole_submodule()
|
||
|
b = B(to_col([90, 84, 80, 75]), denom=120)
|
||
|
|
||
|
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=2)
|
||
|
b_bar_expected = B(to_col([30, 24, 20, 15]), denom=120)
|
||
|
b_bar = C.reduce_element(b)
|
||
|
assert b_bar == b_bar_expected
|
||
|
|
||
|
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=4)
|
||
|
b_bar_expected = B(to_col([0, 24, 20, 15]), denom=120)
|
||
|
b_bar = C.reduce_element(b)
|
||
|
assert b_bar == b_bar_expected
|
||
|
|
||
|
C = B.submodule_from_matrix(DomainMatrix.eye(4, ZZ), denom=8)
|
||
|
b_bar_expected = B(to_col([0, 9, 5, 0]), denom=120)
|
||
|
b_bar = C.reduce_element(b)
|
||
|
assert b_bar == b_bar_expected
|
||
|
|
||
|
a = A(to_col([1, 2, 3, 4]))
|
||
|
raises(NotImplementedError, lambda: C.reduce_element(a))
|
||
|
|
||
|
C = B.submodule_from_matrix(DomainMatrix([
|
||
|
[5, 4, 3, 2],
|
||
|
[0, 8, 7, 6],
|
||
|
[0, 0,11,12],
|
||
|
[0, 0, 0, 1]
|
||
|
], (4, 4), ZZ).transpose())
|
||
|
raises(StructureError, lambda: C.reduce_element(b))
|
||
|
|
||
|
|
||
|
def test_is_HNF():
|
||
|
M = DM([
|
||
|
[3, 2, 1],
|
||
|
[0, 2, 1],
|
||
|
[0, 0, 1]
|
||
|
], ZZ)
|
||
|
M1 = DM([
|
||
|
[3, 2, 1],
|
||
|
[0, -2, 1],
|
||
|
[0, 0, 1]
|
||
|
], ZZ)
|
||
|
M2 = DM([
|
||
|
[3, 2, 3],
|
||
|
[0, 2, 1],
|
||
|
[0, 0, 1]
|
||
|
], ZZ)
|
||
|
assert is_sq_maxrank_HNF(M) is True
|
||
|
assert is_sq_maxrank_HNF(M1) is False
|
||
|
assert is_sq_maxrank_HNF(M2) is False
|
||
|
|
||
|
|
||
|
def test_make_mod_elt():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
col = to_col([1, 2, 3, 4])
|
||
|
eA = make_mod_elt(A, col)
|
||
|
eB = make_mod_elt(B, col)
|
||
|
assert isinstance(eA, PowerBasisElement)
|
||
|
assert not isinstance(eB, PowerBasisElement)
|
||
|
|
||
|
|
||
|
def test_ModuleElement_repr():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 2, 3, 4]), denom=2)
|
||
|
assert repr(e) == '[1, 2, 3, 4]/2'
|
||
|
|
||
|
|
||
|
def test_ModuleElement_reduced():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([2, 4, 6, 8]), denom=2)
|
||
|
f = e.reduced()
|
||
|
assert f.denom == 1 and f == e
|
||
|
|
||
|
|
||
|
def test_ModuleElement_reduced_mod_p():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([20, 40, 60, 80]))
|
||
|
f = e.reduced_mod_p(7)
|
||
|
assert f.coeffs == [-1, -2, -3, 3]
|
||
|
|
||
|
|
||
|
def test_ModuleElement_from_int_list():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
c = [1, 2, 3, 4]
|
||
|
assert ModuleElement.from_int_list(A, c).coeffs == c
|
||
|
|
||
|
|
||
|
def test_ModuleElement_len():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(0)
|
||
|
assert len(e) == 4
|
||
|
|
||
|
|
||
|
def test_ModuleElement_column():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(0)
|
||
|
col1 = e.column()
|
||
|
assert col1 == e.col and col1 is not e.col
|
||
|
col2 = e.column(domain=FF(5))
|
||
|
assert col2.domain.is_FF
|
||
|
|
||
|
|
||
|
def test_ModuleElement_QQ_col():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 2, 3, 4]), denom=1)
|
||
|
f = A(to_col([3, 6, 9, 12]), denom=3)
|
||
|
assert e.QQ_col == f.QQ_col
|
||
|
|
||
|
|
||
|
def test_ModuleElement_to_ancestors():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
D = C.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
|
||
|
eD = D(0)
|
||
|
eC = eD.to_parent()
|
||
|
eB = eD.to_ancestor(B)
|
||
|
eA = eD.over_power_basis()
|
||
|
assert eC.module is C and eC.coeffs == [5, 0, 0, 0]
|
||
|
assert eB.module is B and eB.coeffs == [15, 0, 0, 0]
|
||
|
assert eA.module is A and eA.coeffs == [30, 0, 0, 0]
|
||
|
|
||
|
a = A(0)
|
||
|
raises(ValueError, lambda: a.to_parent())
|
||
|
|
||
|
|
||
|
def test_ModuleElement_compatibility():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
D = B.submodule_from_matrix(5 * DomainMatrix.eye(4, ZZ))
|
||
|
assert C(0).is_compat(C(1)) is True
|
||
|
assert C(0).is_compat(D(0)) is False
|
||
|
u, v = C(0).unify(D(0))
|
||
|
assert u.module is B and v.module is B
|
||
|
assert C(C.represent(u)) == C(0) and D(D.represent(v)) == D(0)
|
||
|
|
||
|
u, v = C(0).unify(C(1))
|
||
|
assert u == C(0) and v == C(1)
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
raises(UnificationFailed, lambda: C(0).unify(Z(1)))
|
||
|
|
||
|
|
||
|
def test_ModuleElement_eq():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 2, 3, 4]), denom=1)
|
||
|
f = A(to_col([3, 6, 9, 12]), denom=3)
|
||
|
assert e == f
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
assert e != Z(0)
|
||
|
assert e != 3.14
|
||
|
|
||
|
|
||
|
def test_ModuleElement_equiv():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 2, 3, 4]), denom=1)
|
||
|
f = A(to_col([3, 6, 9, 12]), denom=3)
|
||
|
assert e.equiv(f)
|
||
|
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
g = C(to_col([1, 2, 3, 4]), denom=1)
|
||
|
h = A(to_col([3, 6, 9, 12]), denom=1)
|
||
|
assert g.equiv(h)
|
||
|
assert C(to_col([5, 0, 0, 0]), denom=7).equiv(QQ(15, 7))
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
raises(UnificationFailed, lambda: e.equiv(Z(0)))
|
||
|
|
||
|
assert e.equiv(3.14) is False
|
||
|
|
||
|
|
||
|
def test_ModuleElement_add():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
e = A(to_col([1, 2, 3, 4]), denom=6)
|
||
|
f = A(to_col([5, 6, 7, 8]), denom=10)
|
||
|
g = C(to_col([1, 1, 1, 1]), denom=2)
|
||
|
assert e + f == A(to_col([10, 14, 18, 22]), denom=15)
|
||
|
assert e - f == A(to_col([-5, -4, -3, -2]), denom=15)
|
||
|
assert e + g == A(to_col([10, 11, 12, 13]), denom=6)
|
||
|
assert e + QQ(7, 10) == A(to_col([26, 10, 15, 20]), denom=30)
|
||
|
assert g + QQ(7, 10) == A(to_col([22, 15, 15, 15]), denom=10)
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
raises(TypeError, lambda: e + Z(0))
|
||
|
raises(TypeError, lambda: e + 3.14)
|
||
|
|
||
|
|
||
|
def test_ModuleElement_mul():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
e = A(to_col([0, 2, 0, 0]), denom=3)
|
||
|
f = A(to_col([0, 0, 0, 7]), denom=5)
|
||
|
g = C(to_col([0, 0, 0, 1]), denom=2)
|
||
|
h = A(to_col([0, 0, 3, 1]), denom=7)
|
||
|
assert e * f == A(to_col([-14, -14, -14, -14]), denom=15)
|
||
|
assert e * g == A(to_col([-1, -1, -1, -1]))
|
||
|
assert e * h == A(to_col([-2, -2, -2, 4]), denom=21)
|
||
|
assert e * QQ(6, 5) == A(to_col([0, 4, 0, 0]), denom=5)
|
||
|
assert (g * QQ(10, 21)).equiv(A(to_col([0, 0, 0, 5]), denom=7))
|
||
|
assert e // QQ(6, 5) == A(to_col([0, 5, 0, 0]), denom=9)
|
||
|
|
||
|
U = Poly(cyclotomic_poly(7, x))
|
||
|
Z = PowerBasis(U)
|
||
|
raises(TypeError, lambda: e * Z(0))
|
||
|
raises(TypeError, lambda: e * 3.14)
|
||
|
raises(TypeError, lambda: e // 3.14)
|
||
|
raises(ZeroDivisionError, lambda: e // 0)
|
||
|
|
||
|
|
||
|
def test_ModuleElement_div():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
e = A(to_col([0, 2, 0, 0]), denom=3)
|
||
|
f = A(to_col([0, 0, 0, 7]), denom=5)
|
||
|
g = C(to_col([1, 1, 1, 1]))
|
||
|
assert e // f == 10*A(3)//21
|
||
|
assert e // g == -2*A(2)//9
|
||
|
assert 3 // g == -A(1)
|
||
|
|
||
|
|
||
|
def test_ModuleElement_pow():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
C = A.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
|
||
|
e = A(to_col([0, 2, 0, 0]), denom=3)
|
||
|
g = C(to_col([0, 0, 0, 1]), denom=2)
|
||
|
assert e ** 3 == A(to_col([0, 0, 0, 8]), denom=27)
|
||
|
assert g ** 2 == C(to_col([0, 3, 0, 0]), denom=4)
|
||
|
assert e ** 0 == A(to_col([1, 0, 0, 0]))
|
||
|
assert g ** 0 == A(to_col([1, 0, 0, 0]))
|
||
|
assert e ** 1 == e
|
||
|
assert g ** 1 == g
|
||
|
|
||
|
|
||
|
def test_ModuleElement_mod():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 15, 8, 0]), denom=2)
|
||
|
assert e % 7 == A(to_col([1, 1, 8, 0]), denom=2)
|
||
|
assert e % QQ(1, 2) == A.zero()
|
||
|
assert e % QQ(1, 3) == A(to_col([1, 1, 0, 0]), denom=6)
|
||
|
|
||
|
B = A.submodule_from_gens([A(0), 5*A(1), 3*A(2), A(3)])
|
||
|
assert e % B == A(to_col([1, 5, 2, 0]), denom=2)
|
||
|
|
||
|
C = B.whole_submodule()
|
||
|
raises(TypeError, lambda: e % C)
|
||
|
|
||
|
|
||
|
def test_PowerBasisElement_polys():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 15, 8, 0]), denom=2)
|
||
|
assert e.numerator(x=zeta) == Poly(8 * zeta ** 2 + 15 * zeta + 1, domain=ZZ)
|
||
|
assert e.poly(x=zeta) == Poly(4 * zeta ** 2 + QQ(15, 2) * zeta + QQ(1, 2), domain=QQ)
|
||
|
|
||
|
|
||
|
def test_PowerBasisElement_norm():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
lam = A(to_col([1, -1, 0, 0]))
|
||
|
assert lam.norm() == 5
|
||
|
|
||
|
|
||
|
def test_PowerBasisElement_inverse():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
e = A(to_col([1, 1, 1, 1]))
|
||
|
assert 2 // e == -2*A(1)
|
||
|
assert e ** -3 == -A(3)
|
||
|
|
||
|
|
||
|
def test_ModuleHomomorphism_matrix():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
phi = ModuleEndomorphism(A, lambda a: a ** 2)
|
||
|
M = phi.matrix()
|
||
|
assert M == DomainMatrix([
|
||
|
[1, 0, -1, 0],
|
||
|
[0, 0, -1, 1],
|
||
|
[0, 1, -1, 0],
|
||
|
[0, 0, -1, 0]
|
||
|
], (4, 4), ZZ)
|
||
|
|
||
|
|
||
|
def test_ModuleHomomorphism_kernel():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
phi = ModuleEndomorphism(A, lambda a: a ** 5)
|
||
|
N = phi.kernel()
|
||
|
assert N.n == 3
|
||
|
|
||
|
|
||
|
def test_EndomorphismRing_represent():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
R = A.endomorphism_ring()
|
||
|
phi = R.inner_endomorphism(A(1))
|
||
|
col = R.represent(phi)
|
||
|
assert col.transpose() == DomainMatrix([
|
||
|
[0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, -1, -1, -1, -1]
|
||
|
], (1, 16), ZZ)
|
||
|
|
||
|
B = A.submodule_from_matrix(DomainMatrix.zeros((4, 0), ZZ))
|
||
|
S = B.endomorphism_ring()
|
||
|
psi = S.inner_endomorphism(A(1))
|
||
|
col = S.represent(psi)
|
||
|
assert col == DomainMatrix([], (0, 0), ZZ)
|
||
|
|
||
|
raises(NotImplementedError, lambda: R.represent(3.14))
|
||
|
|
||
|
|
||
|
def test_find_min_poly():
|
||
|
T = Poly(cyclotomic_poly(5, x))
|
||
|
A = PowerBasis(T)
|
||
|
powers = []
|
||
|
m = find_min_poly(A(1), QQ, x=x, powers=powers)
|
||
|
assert m == Poly(T, domain=QQ)
|
||
|
assert len(powers) == 5
|
||
|
|
||
|
# powers list need not be passed
|
||
|
m = find_min_poly(A(1), QQ, x=x)
|
||
|
assert m == Poly(T, domain=QQ)
|
||
|
|
||
|
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
|
||
|
raises(MissingUnityError, lambda: find_min_poly(B(1), QQ))
|