2561 lines
126 KiB
Python
2561 lines
126 KiB
Python
|
from sympy.core.function import (Derivative, Function, diff)
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import (I, Rational, pi)
|
||
|
from sympy.core.relational import Eq
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Symbol, symbols)
|
||
|
from sympy.functions.elementary.hyperbolic import sinh
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.functions import exp, cos, sin, log, Ci, Si, erf, erfi
|
||
|
from sympy.matrices import dotprodsimp, NonSquareMatrixError
|
||
|
from sympy.solvers.ode import dsolve
|
||
|
from sympy.solvers.ode.ode import constant_renumber
|
||
|
from sympy.solvers.ode.subscheck import checksysodesol
|
||
|
from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix,
|
||
|
ODEOrderError, ODENonlinearError, _simpsol,
|
||
|
_is_commutative_anti_derivative, linodesolve,
|
||
|
canonical_odes, dsolve_system, _component_division,
|
||
|
_eqs2dict, _dict2graph)
|
||
|
from sympy.functions import airyai, airybi
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.simplify.ratsimp import ratsimp
|
||
|
from sympy.testing.pytest import ON_CI, raises, slow, skip, XFAIL
|
||
|
|
||
|
|
||
|
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
|
||
|
x = symbols('x')
|
||
|
f = Function('f')
|
||
|
g = Function('g')
|
||
|
h = Function('h')
|
||
|
|
||
|
|
||
|
def test_linear_ode_to_matrix():
|
||
|
f, g, h = symbols("f, g, h", cls=Function)
|
||
|
t = Symbol("t")
|
||
|
funcs = [f(t), g(t), h(t)]
|
||
|
f1 = f(t).diff(t)
|
||
|
g1 = g(t).diff(t)
|
||
|
h1 = h(t).diff(t)
|
||
|
f2 = f(t).diff(t, 2)
|
||
|
g2 = g(t).diff(t, 2)
|
||
|
h2 = h(t).diff(t, 2)
|
||
|
|
||
|
eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))]
|
||
|
sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]]))
|
||
|
assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1
|
||
|
|
||
|
eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))]
|
||
|
sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])],
|
||
|
Matrix([[0], [0], [0]]))
|
||
|
assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2
|
||
|
|
||
|
eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))]
|
||
|
sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])],
|
||
|
Matrix([[0], [0], [0]]))
|
||
|
assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3
|
||
|
|
||
|
eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)]
|
||
|
sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]),
|
||
|
Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]]))
|
||
|
assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4
|
||
|
|
||
|
eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))]
|
||
|
raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1))
|
||
|
|
||
|
eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))]
|
||
|
raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1))
|
||
|
|
||
|
|
||
|
def test__classify_linear_system():
|
||
|
x, y, z, w = symbols('x, y, z, w', cls=Function)
|
||
|
t, k, l = symbols('t k l')
|
||
|
x1 = diff(x(t), t)
|
||
|
y1 = diff(y(t), t)
|
||
|
z1 = diff(z(t), t)
|
||
|
w1 = diff(w(t), t)
|
||
|
x2 = diff(x(t), t, t)
|
||
|
y2 = diff(y(t), t, t)
|
||
|
funcs = [x(t), y(t)]
|
||
|
funcs_2 = funcs + [z(t), w(t)]
|
||
|
|
||
|
eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
|
||
|
assert _classify_linear_system(eqs_1, funcs, t) is None
|
||
|
|
||
|
eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
|
||
|
sol2 = {'is_implicit': True,
|
||
|
'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
|
||
|
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)],
|
||
|
[Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
|
||
|
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]}
|
||
|
assert _classify_linear_system(eqs_2, funcs, t) == sol2
|
||
|
|
||
|
eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
|
||
|
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
|
||
|
assert _classify_linear_system(eqs_2_1, funcs, t) is None
|
||
|
|
||
|
eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
|
||
|
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
|
||
|
assert _classify_linear_system(eqs_2_2, funcs, t) is None
|
||
|
|
||
|
eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t)))
|
||
|
answer_3 = {'no_of_equation': 4,
|
||
|
'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t),
|
||
|
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t),
|
||
|
z(t) + 5*Derivative(w(t), t),
|
||
|
w(t) + Derivative(z(t), t)),
|
||
|
'func': [x(t), y(t), z(t), w(t)],
|
||
|
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
|
||
|
'is_linear': True,
|
||
|
'is_constant': True,
|
||
|
'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[Rational(12, 5), Rational(-6, 5), 0, 0],
|
||
|
[Rational(-11, 2), Rational(3, 2), 0, 0],
|
||
|
[0, 0, 0, 1],
|
||
|
[0, 0, Rational(1, 5), 0]]),
|
||
|
'type_of_equation': 'type1',
|
||
|
'is_general': True}
|
||
|
assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3
|
||
|
|
||
|
eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t)))
|
||
|
answer_4 = {'no_of_equation': 4,
|
||
|
'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t),
|
||
|
-11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t),
|
||
|
-w(t) + Derivative(z(t), t),
|
||
|
-z(t) + Derivative(w(t), t)),
|
||
|
'func': [x(t), y(t), z(t), w(t)],
|
||
|
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
|
||
|
'is_linear': True,
|
||
|
'is_constant': True,
|
||
|
'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[Rational(12, 5), Rational(-6, 5), 0, 0],
|
||
|
[Rational(-11, 2), Rational(3, 2), 0, 0],
|
||
|
[0, 0, 0, -1],
|
||
|
[0, 0, -1, 0]]),
|
||
|
'type_of_equation': 'type1',
|
||
|
'is_general': True}
|
||
|
assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4
|
||
|
|
||
|
eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t)))
|
||
|
answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)),
|
||
|
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t),
|
||
|
t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear':
|
||
|
True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True}
|
||
|
assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5
|
||
|
|
||
|
eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
|
||
|
answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
|
||
|
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
|
||
|
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[ 0, -3, 11],
|
||
|
[ 3, 0, -7],
|
||
|
[-11, 7, 0]]),
|
||
|
'type_of_equation': 'type1', 'is_general': True}
|
||
|
|
||
|
assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6
|
||
|
|
||
|
eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t)))
|
||
|
answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
|
||
|
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
|
||
|
'is_homogeneous': True, 'func_coeff': -Matrix([
|
||
|
[ 0, -1],
|
||
|
[-1, 0]]),
|
||
|
'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eqs_7, funcs, t) == answer_7
|
||
|
|
||
|
eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t)))
|
||
|
answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
|
||
|
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
|
||
|
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[-21, 0, 0],
|
||
|
[-17, -3, 0],
|
||
|
[ -5, -7, -9]]),
|
||
|
'type_of_equation': 'type1', 'is_general': True}
|
||
|
|
||
|
assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8
|
||
|
|
||
|
eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t)))
|
||
|
answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)),
|
||
|
Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))),
|
||
|
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
|
||
|
'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[ -4, -5, -2],
|
||
|
[ -1, -13, -9],
|
||
|
[-32, -41, -11]]),
|
||
|
'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9
|
||
|
|
||
|
eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t))))
|
||
|
answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
|
||
|
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))),
|
||
|
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
|
||
|
'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[ 0, Rational(-20, 3), Rational(20, 3)],
|
||
|
[Rational(15, 4), 0, Rational(-15, 4)],
|
||
|
[Rational(-12, 5), Rational(12, 5), 0]]),
|
||
|
'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10
|
||
|
|
||
|
eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
|
||
|
sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
|
||
|
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
|
||
|
'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([
|
||
|
[ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11
|
||
|
|
||
|
eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t)))
|
||
|
sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
|
||
|
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
|
||
|
'is_homogeneous': True, 'func_coeff': -Matrix([
|
||
|
[0, -1],
|
||
|
[-1, 0]]), 'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12
|
||
|
|
||
|
eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
|
||
|
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
|
||
|
sol13 = {'no_of_equation': 3, 'eq': (
|
||
|
Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)),
|
||
|
Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)],
|
||
|
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[-21, 0, 0],
|
||
|
[-17, -3, 0],
|
||
|
[-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13
|
||
|
|
||
|
eq14 = (
|
||
|
Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)),
|
||
|
Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t)))
|
||
|
sol14 = {'no_of_equation': 3, 'eq': (
|
||
|
Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)),
|
||
|
Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)],
|
||
|
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[-4, -5, -2],
|
||
|
[-1, -13, -9],
|
||
|
[-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14
|
||
|
|
||
|
eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
|
||
|
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t)))
|
||
|
sol15 = {'no_of_equation': 3, 'eq': (
|
||
|
Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)),
|
||
|
Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)],
|
||
|
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
|
||
|
'func_coeff': -Matrix([
|
||
|
[0, Rational(-20, 3), Rational(20, 3)],
|
||
|
[Rational(15, 4), 0, Rational(-15, 4)],
|
||
|
[Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True}
|
||
|
assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15
|
||
|
|
||
|
# Constant coefficient homogeneous ODEs
|
||
|
eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23))
|
||
|
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9),
|
||
|
Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)],
|
||
|
'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True,
|
||
|
'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'}
|
||
|
assert _classify_linear_system(eq1, funcs, t) == sol1
|
||
|
|
||
|
# Non constant coefficient homogeneous ODEs
|
||
|
eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t)))
|
||
|
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))),
|
||
|
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False,
|
||
|
'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([
|
||
|
[5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True}
|
||
|
assert _classify_linear_system(eq1, funcs, t) == sol1
|
||
|
|
||
|
# Non constant coefficient non-homogeneous ODEs
|
||
|
eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))]
|
||
|
sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t),
|
||
|
t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
|
||
|
'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t],
|
||
|
[-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs':
|
||
|
Matrix([ [t], [0]]), 'type_of_equation': 'type4'}
|
||
|
assert _classify_linear_system(eq1, funcs, t) == sol1
|
||
|
|
||
|
eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))]
|
||
|
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t),
|
||
|
t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
|
||
|
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff':
|
||
|
Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4',
|
||
|
'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])}
|
||
|
assert _classify_linear_system(eq2, funcs, t) == sol2
|
||
|
|
||
|
eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))]
|
||
|
sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)),
|
||
|
Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))],
|
||
|
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant':
|
||
|
False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t,
|
||
|
-t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2,
|
||
|
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation':
|
||
|
'type4'}
|
||
|
assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3
|
||
|
|
||
|
eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)]
|
||
|
sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t),
|
||
|
t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t),
|
||
|
y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False,
|
||
|
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t,
|
||
|
-1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2,
|
||
|
t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'}
|
||
|
assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4
|
||
|
|
||
|
sum_terms = t*(x(t) + y(t) + z(t) + w(t))
|
||
|
eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)]
|
||
|
sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))),
|
||
|
Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) +
|
||
|
y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t),
|
||
|
z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False,
|
||
|
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t,
|
||
|
-t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2,
|
||
|
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2,
|
||
|
t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'}
|
||
|
assert _classify_linear_system(eq5, funcs_2, t) == sol5
|
||
|
|
||
|
# Second Order
|
||
|
t_ = symbols("t_")
|
||
|
|
||
|
eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)),
|
||
|
Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t)))
|
||
|
sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) +
|
||
|
3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) +
|
||
|
8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order':
|
||
|
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([
|
||
|
[11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True,
|
||
|
'is_higher_order': True}
|
||
|
assert _classify_linear_system(eq1, funcs, t) == sol1
|
||
|
|
||
|
eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
|
||
|
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t)))
|
||
|
sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
|
||
|
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order':
|
||
|
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True,
|
||
|
'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t
|
||
|
+ 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33,
|
||
|
'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True}
|
||
|
assert _classify_linear_system(eq2, funcs, t) == sol2
|
||
|
|
||
|
eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)),
|
||
|
t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2)))
|
||
|
sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) -
|
||
|
y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t),
|
||
|
t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2},
|
||
|
'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1':
|
||
|
Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True,
|
||
|
'is_higher_order': True}
|
||
|
assert _classify_linear_system(eq3, funcs, t) == sol3
|
||
|
|
||
|
eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
|
||
|
sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)),
|
||
|
Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t):
|
||
|
2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation':
|
||
|
'type0', 'is_second_order': True, 'is_higher_order': True}
|
||
|
assert _classify_linear_system(eq4, funcs, t) == sol4
|
||
|
|
||
|
|
||
|
# Multiple matches
|
||
|
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
y, t_ = symbols("y t_")
|
||
|
funcs = [f(t), g(t)]
|
||
|
|
||
|
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
|
||
|
Eq(-y*f(t) + Derivative(g(t), t), 0)]
|
||
|
sol1 = {'is_implicit': True,
|
||
|
'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))],
|
||
|
[Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]}
|
||
|
assert _classify_linear_system(eq1, funcs, t) == sol1
|
||
|
|
||
|
raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t))
|
||
|
|
||
|
eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
|
||
|
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t),
|
||
|
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
|
||
|
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2,
|
||
|
1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t),
|
||
|
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
|
||
|
assert _classify_linear_system(eq2, funcs, t) == sol2
|
||
|
|
||
|
eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
|
||
|
sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t),
|
||
|
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
|
||
|
'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant':
|
||
|
False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t),
|
||
|
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
|
||
|
assert _classify_linear_system(eq3, funcs, t) == sol3
|
||
|
|
||
|
|
||
|
def test_matrix_exp():
|
||
|
from sympy.matrices.dense import Matrix, eye, zeros
|
||
|
from sympy.solvers.ode.systems import matrix_exp
|
||
|
t = Symbol('t')
|
||
|
|
||
|
for n in range(1, 6+1):
|
||
|
assert matrix_exp(zeros(n), t) == eye(n)
|
||
|
|
||
|
for n in range(1, 6+1):
|
||
|
A = eye(n)
|
||
|
expAt = exp(t) * eye(n)
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
for n in range(1, 6+1):
|
||
|
A = Matrix(n, n, lambda i,j: i+1 if i==j else 0)
|
||
|
expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0)
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([[0, 1], [-1, 0]])
|
||
|
expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([[2, -5], [2, -4]])
|
||
|
expAt = Matrix([
|
||
|
[3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)],
|
||
|
[2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)]
|
||
|
])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]])
|
||
|
# TO update this.
|
||
|
# expAt = Matrix([
|
||
|
# [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4,
|
||
|
# (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4,
|
||
|
# (exp(12*t) - 1)*exp(4*t)/2],
|
||
|
# [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4,
|
||
|
# (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4,
|
||
|
# (-exp(12*t) + 1)*exp(4*t)/2],
|
||
|
# [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]])
|
||
|
expAt = Matrix([
|
||
|
[2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2],
|
||
|
[ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2],
|
||
|
[ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]
|
||
|
])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([[1, 1, 0, 0],
|
||
|
[0, 1, 1, 0],
|
||
|
[0, 0, 1, -S(1)/8],
|
||
|
[0, 0, S(1)/2, S(1)/2]])
|
||
|
expAt = Matrix([
|
||
|
[exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t),
|
||
|
-2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)],
|
||
|
[0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)],
|
||
|
[0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8],
|
||
|
[0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)]
|
||
|
])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([
|
||
|
[ 0, 1, 0, 0],
|
||
|
[-1, 0, 0, 0],
|
||
|
[ 0, 0, 0, 1],
|
||
|
[ 0, 0, -1, 0]])
|
||
|
|
||
|
expAt = Matrix([
|
||
|
[ cos(t), sin(t), 0, 0],
|
||
|
[-sin(t), cos(t), 0, 0],
|
||
|
[ 0, 0, cos(t), sin(t)],
|
||
|
[ 0, 0, -sin(t), cos(t)]])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
A = Matrix([
|
||
|
[ 0, 1, 1, 0],
|
||
|
[-1, 0, 0, 1],
|
||
|
[ 0, 0, 0, 1],
|
||
|
[ 0, 0, -1, 0]])
|
||
|
|
||
|
expAt = Matrix([
|
||
|
[ cos(t), sin(t), t*cos(t), t*sin(t)],
|
||
|
[-sin(t), cos(t), -t*sin(t), t*cos(t)],
|
||
|
[ 0, 0, cos(t), sin(t)],
|
||
|
[ 0, 0, -sin(t), cos(t)]])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
# This case is unacceptably slow right now but should be solvable...
|
||
|
#a, b, c, d, e, f = symbols('a b c d e f')
|
||
|
#A = Matrix([
|
||
|
#[-a, b, c, d],
|
||
|
#[ a, -b, e, 0],
|
||
|
#[ 0, 0, -c - e - f, 0],
|
||
|
#[ 0, 0, f, -d]])
|
||
|
|
||
|
A = Matrix([[0, I], [I, 0]])
|
||
|
expAt = Matrix([
|
||
|
[exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2],
|
||
|
[exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
|
||
|
assert matrix_exp(A, t) == expAt
|
||
|
|
||
|
# Testing Errors
|
||
|
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]])
|
||
|
M1 = Matrix([[t, 1], [1, 1]])
|
||
|
|
||
|
raises(ValueError, lambda: matrix_exp(M[:, :2], t))
|
||
|
raises(ValueError, lambda: matrix_exp(M[:2, :], t))
|
||
|
raises(ValueError, lambda: matrix_exp(M1, t))
|
||
|
raises(ValueError, lambda: matrix_exp(M1[:1, :1], t))
|
||
|
|
||
|
|
||
|
def test_canonical_odes():
|
||
|
f, g, h = symbols('f g h', cls=Function)
|
||
|
x = symbols('x')
|
||
|
funcs = [f(x), g(x), h(x)]
|
||
|
|
||
|
eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))]
|
||
|
sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]]
|
||
|
assert canonical_odes(eqs1, funcs[:2], x) == sol1
|
||
|
|
||
|
eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))]
|
||
|
sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))],
|
||
|
[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]]
|
||
|
assert canonical_odes(eqs2, funcs, x) == sol2
|
||
|
|
||
|
|
||
|
def test_sysode_linear_neq_order1_type1():
|
||
|
|
||
|
f, g, x, y, h = symbols('f g x y h', cls=Function)
|
||
|
a, b, c, t = symbols('a b c t')
|
||
|
|
||
|
eqs1 = [Eq(Derivative(x(t), t), x(t)),
|
||
|
Eq(Derivative(y(t), t), y(t))]
|
||
|
sol1 = [Eq(x(t), C1*exp(t)),
|
||
|
Eq(y(t), C2*exp(t))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eqs2 = [Eq(Derivative(x(t), t), 2*x(t)),
|
||
|
Eq(Derivative(y(t), t), 3*y(t))]
|
||
|
sol2 = [Eq(x(t), C1*exp(2*t)),
|
||
|
Eq(y(t), C2*exp(3*t))]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = [Eq(Derivative(x(t), t), a*x(t)),
|
||
|
Eq(Derivative(y(t), t), a*y(t))]
|
||
|
sol3 = [Eq(x(t), C1*exp(a*t)),
|
||
|
Eq(y(t), C2*exp(a*t))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #15474
|
||
|
# https://github.com/sympy/sympy/issues/15474
|
||
|
eqs4 = [Eq(Derivative(x(t), t), a*x(t)),
|
||
|
Eq(Derivative(y(t), t), b*y(t))]
|
||
|
sol4 = [Eq(x(t), C1*exp(a*t)),
|
||
|
Eq(y(t), C2*exp(b*t))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
|
||
|
|
||
|
eqs5 = [Eq(Derivative(x(t), t), -y(t)),
|
||
|
Eq(Derivative(y(t), t), x(t))]
|
||
|
sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)),
|
||
|
Eq(y(t), C1*cos(t) - C2*sin(t))]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(x(t), t), -2*y(t)),
|
||
|
Eq(Derivative(y(t), t), 2*x(t))]
|
||
|
sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)),
|
||
|
Eq(y(t), C1*cos(2*t) - C2*sin(2*t))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
|
||
|
|
||
|
eqs7 = [Eq(Derivative(x(t), t), I*y(t)),
|
||
|
Eq(Derivative(y(t), t), I*x(t))]
|
||
|
sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)),
|
||
|
Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))]
|
||
|
assert dsolve(eqs7) == sol7
|
||
|
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
|
||
|
|
||
|
eqs8 = [Eq(Derivative(x(t), t), -a*y(t)),
|
||
|
Eq(Derivative(y(t), t), a*x(t))]
|
||
|
sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)),
|
||
|
Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))]
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
|
||
|
|
||
|
eqs9 = [Eq(Derivative(x(t), t), x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), x(t) - y(t))]
|
||
|
sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)),
|
||
|
Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))]
|
||
|
assert dsolve(eqs9) == sol9
|
||
|
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
|
||
|
|
||
|
eqs10 = [Eq(Derivative(x(t), t), x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), x(t) + y(t))]
|
||
|
sol10 = [Eq(x(t), -C1 + C2*exp(2*t)),
|
||
|
Eq(y(t), C1 + C2*exp(2*t))]
|
||
|
assert dsolve(eqs10) == sol10
|
||
|
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
|
||
|
|
||
|
eqs11 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
|
||
|
sol11 = [Eq(x(t), C1*exp(2*t)*sin(t) + C2*exp(2*t)*cos(t)),
|
||
|
Eq(y(t), C1*exp(2*t)*cos(t) - C2*exp(2*t)*sin(t))]
|
||
|
assert dsolve(eqs11) == sol11
|
||
|
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
|
||
|
|
||
|
eqs12 = [Eq(Derivative(x(t), t), x(t) + 2*y(t)),
|
||
|
Eq(Derivative(y(t), t), 2*x(t) + y(t))]
|
||
|
sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)),
|
||
|
Eq(y(t), C1*exp(-t) + C2*exp(3*t))]
|
||
|
assert dsolve(eqs12) == sol12
|
||
|
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
|
||
|
|
||
|
eqs13 = [Eq(Derivative(x(t), t), 4*x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
|
||
|
sol13 = [Eq(x(t), C2*t*exp(3*t) + (C1 + C2)*exp(3*t)),
|
||
|
Eq(y(t), -C1*exp(3*t) - C2*t*exp(3*t))]
|
||
|
assert dsolve(eqs13) == sol13
|
||
|
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
|
||
|
|
||
|
eqs14 = [Eq(Derivative(x(t), t), a*y(t)),
|
||
|
Eq(Derivative(y(t), t), a*x(t))]
|
||
|
sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)),
|
||
|
Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))]
|
||
|
assert dsolve(eqs14) == sol14
|
||
|
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
|
||
|
|
||
|
eqs15 = [Eq(Derivative(x(t), t), a*y(t)),
|
||
|
Eq(Derivative(y(t), t), b*x(t))]
|
||
|
sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)),
|
||
|
Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))]
|
||
|
assert dsolve(eqs15) == sol15
|
||
|
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
|
||
|
|
||
|
eqs16 = [Eq(Derivative(x(t), t), a*x(t) + b*y(t)),
|
||
|
Eq(Derivative(y(t), t), c*x(t))]
|
||
|
sol16 = [Eq(x(t), -2*C1*b*exp(t*(a + sqrt(a**2 + 4*b*c))/2)/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a -
|
||
|
sqrt(a**2 + 4*b*c))/2)/(a + sqrt(a**2 + 4*b*c))),
|
||
|
Eq(y(t), C1*exp(t*(a + sqrt(a**2 + 4*b*c))/2) + C2*exp(t*(a - sqrt(a**2 + 4*b*c))/2))]
|
||
|
assert dsolve(eqs16) == sol16
|
||
|
assert checksysodesol(eqs16, sol16) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #18562
|
||
|
# https://github.com/sympy/sympy/issues/18562
|
||
|
eqs17 = [Eq(Derivative(x(t), t), a*y(t) + x(t)),
|
||
|
Eq(Derivative(y(t), t), a*x(t) - y(t))]
|
||
|
sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 +
|
||
|
1) + 1)),
|
||
|
Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))]
|
||
|
assert dsolve(eqs17) == sol17
|
||
|
assert checksysodesol(eqs17, sol17) == (True, [0, 0])
|
||
|
|
||
|
eqs18 = [Eq(Derivative(x(t), t), 0),
|
||
|
Eq(Derivative(y(t), t), 0)]
|
||
|
sol18 = [Eq(x(t), C1),
|
||
|
Eq(y(t), C2)]
|
||
|
assert dsolve(eqs18) == sol18
|
||
|
assert checksysodesol(eqs18, sol18) == (True, [0, 0])
|
||
|
|
||
|
eqs19 = [Eq(Derivative(x(t), t), 2*x(t) - y(t)),
|
||
|
Eq(Derivative(y(t), t), x(t))]
|
||
|
sol19 = [Eq(x(t), C2*t*exp(t) + (C1 + C2)*exp(t)),
|
||
|
Eq(y(t), C1*exp(t) + C2*t*exp(t))]
|
||
|
assert dsolve(eqs19) == sol19
|
||
|
assert checksysodesol(eqs19, sol19) == (True, [0, 0])
|
||
|
|
||
|
eqs20 = [Eq(Derivative(x(t), t), x(t)),
|
||
|
Eq(Derivative(y(t), t), x(t) + y(t))]
|
||
|
sol20 = [Eq(x(t), C1*exp(t)),
|
||
|
Eq(y(t), C1*t*exp(t) + C2*exp(t))]
|
||
|
assert dsolve(eqs20) == sol20
|
||
|
assert checksysodesol(eqs20, sol20) == (True, [0, 0])
|
||
|
|
||
|
eqs21 = [Eq(Derivative(x(t), t), 3*x(t)),
|
||
|
Eq(Derivative(y(t), t), x(t) + y(t))]
|
||
|
sol21 = [Eq(x(t), 2*C1*exp(3*t)),
|
||
|
Eq(y(t), C1*exp(3*t) + C2*exp(t))]
|
||
|
assert dsolve(eqs21) == sol21
|
||
|
assert checksysodesol(eqs21, sol21) == (True, [0, 0])
|
||
|
|
||
|
eqs22 = [Eq(Derivative(x(t), t), 3*x(t)),
|
||
|
Eq(Derivative(y(t), t), y(t))]
|
||
|
sol22 = [Eq(x(t), C1*exp(3*t)),
|
||
|
Eq(y(t), C2*exp(t))]
|
||
|
assert dsolve(eqs22) == sol22
|
||
|
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_sysode_linear_neq_order1_type1_slow():
|
||
|
|
||
|
t = Symbol('t')
|
||
|
Z0 = Function('Z0')
|
||
|
Z1 = Function('Z1')
|
||
|
Z2 = Function('Z2')
|
||
|
Z3 = Function('Z3')
|
||
|
|
||
|
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
|
||
|
|
||
|
eqs1 = [Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)),
|
||
|
Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)),
|
||
|
Eq(Derivative(Z2(t), t), (-k20 - k21 - k23)*Z2(t)),
|
||
|
Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))]
|
||
|
sol1 = [Eq(Z0(t), C1*k10/k01 - C2*(k10 - k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*(k10*(k20 + k21 - k30) -
|
||
|
k20**2 - k20*(k21 + k23 - k30) + k23*k30)*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 +
|
||
|
k23)) - C4*exp(-t*(k01 + k10))),
|
||
|
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(-k01*(k20 + k21 - k30) + k20*k21 + k21**2
|
||
|
+ k21*(k23 - k30))*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) + C4*exp(-t*(k01 +
|
||
|
k10))),
|
||
|
Eq(Z2(t), -C3*(k20 + k21 + k23 - k30)*exp(-t*(k20 + k21 + k23))/k23),
|
||
|
Eq(Z3(t), C2*exp(-k30*t) + C3*exp(-t*(k20 + k21 + k23)))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
x, y, z, u, v, w = symbols('x y z u v w', cls=Function)
|
||
|
k2, k3 = symbols('k2 k3')
|
||
|
a_b, a_c = symbols('a_b a_c', real=True)
|
||
|
|
||
|
eqs2 = [Eq(Derivative(z(t), t), k2*y(t)),
|
||
|
Eq(Derivative(x(t), t), k3*y(t)),
|
||
|
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
|
||
|
sol2 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
|
||
|
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
|
||
|
Eq(y(t), C2*exp(-t*(k2 + k3)))]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t),
|
||
|
2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t),
|
||
|
5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)]
|
||
|
sol3 = [Eq(u(t), C3*exp(-2*t) + (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 +
|
||
|
C2*Rational(-1, 2))),
|
||
|
Eq(v(t), (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))),
|
||
|
Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs4 = [Eq(Derivative(x(t), t), w(t)*Rational(-2, 9) + 2*x(t) + y(t) + z(t)*Rational(-8, 9)),
|
||
|
Eq(Derivative(y(t), t), w(t)*Rational(4, 9) + 2*y(t) + z(t)*Rational(16, 9)),
|
||
|
Eq(Derivative(z(t), t), w(t)*Rational(-2, 9) + z(t)*Rational(37, 9)),
|
||
|
Eq(Derivative(w(t), t), w(t)*Rational(44, 9) + z(t)*Rational(-4, 9))]
|
||
|
sol4 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
|
||
|
Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)),
|
||
|
Eq(z(t), 2*C3*exp(4*t) + C4*exp(5*t)*Rational(-1, 4)),
|
||
|
Eq(w(t), C3*exp(4*t) + C4*exp(5*t))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #15574
|
||
|
# https://github.com/sympy/sympy/issues/15574
|
||
|
eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))]
|
||
|
sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))]
|
||
|
assert dsolve(eq5) == sol5
|
||
|
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(x(t), t), x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), y(t) + z(t)),
|
||
|
Eq(Derivative(z(t), t), w(t)*Rational(-1, 8) + z(t)),
|
||
|
Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)]
|
||
|
sol6 = [Eq(x(t), C1*exp(t) + C2*t*exp(t) + 4*C4*t*exp(t*Rational(3, 4)) + (4*C3 + 48*C4)*exp(t*Rational(3,
|
||
|
4))),
|
||
|
Eq(y(t), C2*exp(t) - C4*t*exp(t*Rational(3, 4)) - (C3 + 8*C4)*exp(t*Rational(3, 4))),
|
||
|
Eq(z(t), C4*t*exp(t*Rational(3, 4))/4 + (C3/4 + C4)*exp(t*Rational(3, 4))),
|
||
|
Eq(w(t), C3*exp(t*Rational(3, 4))/2 + C4*t*exp(t*Rational(3, 4))/2)]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #15574
|
||
|
# https://github.com/sympy/sympy/issues/15574
|
||
|
eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)),
|
||
|
Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))]
|
||
|
sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)),
|
||
|
Eq(u(t), C5*exp(t))]
|
||
|
assert dsolve(eq7) == sol7
|
||
|
assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0])
|
||
|
|
||
|
eqs8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), 2*y(t)),
|
||
|
Eq(Derivative(z(t), t), 4*z(t)),
|
||
|
Eq(Derivative(w(t), t), u(t) + 5*w(t)),
|
||
|
Eq(Derivative(u(t), t), 5*u(t))]
|
||
|
sol8 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
|
||
|
Eq(y(t), C2*exp(2*t)),
|
||
|
Eq(z(t), C3*exp(4*t)),
|
||
|
Eq(w(t), C4*exp(5*t) + C5*t*exp(5*t)),
|
||
|
Eq(u(t), C5*exp(5*t))]
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #15574
|
||
|
# https://github.com/sympy/sympy/issues/15574
|
||
|
eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))]
|
||
|
sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))]
|
||
|
assert dsolve(eq9) == sol9
|
||
|
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #15407
|
||
|
# https://github.com/sympy/sympy/issues/15407
|
||
|
eqs10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)),
|
||
|
Eq(Derivative(y(t), t), a_b*y(t)),
|
||
|
Eq(Derivative(z(t), t), a_c*x(t))]
|
||
|
sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(-t*(a_b + a_c))/a_c),
|
||
|
Eq(y(t), C2*exp(a_b*t)),
|
||
|
Eq(z(t), C1*exp(-t*(a_b + a_c)) + C3)]
|
||
|
assert dsolve(eqs10) == sol10
|
||
|
assert checksysodesol(eqs10, sol10) == (True, [0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #14312
|
||
|
# https://github.com/sympy/sympy/issues/14312
|
||
|
eqs11 = [Eq(Derivative(x(t), t), k3*y(t)),
|
||
|
Eq(Derivative(y(t), t), (-k2 - k3)*y(t)),
|
||
|
Eq(Derivative(z(t), t), k2*y(t))]
|
||
|
sol11 = [Eq(x(t), C1 + C2*k3*exp(-t*(k2 + k3))/k2),
|
||
|
Eq(y(t), -C2*(k2 + k3)*exp(-t*(k2 + k3))/k2),
|
||
|
Eq(z(t), C2*exp(-t*(k2 + k3)) + C3)]
|
||
|
assert dsolve(eqs11) == sol11
|
||
|
assert checksysodesol(eqs11, sol11) == (True, [0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #14312
|
||
|
# https://github.com/sympy/sympy/issues/14312
|
||
|
eqs12 = [Eq(Derivative(z(t), t), k2*y(t)),
|
||
|
Eq(Derivative(x(t), t), k3*y(t)),
|
||
|
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
|
||
|
sol12 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
|
||
|
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
|
||
|
Eq(y(t), C2*exp(-t*(k2 + k3)))]
|
||
|
assert dsolve(eqs12) == sol12
|
||
|
assert checksysodesol(eqs12, sol12) == (True, [0, 0, 0])
|
||
|
|
||
|
f, g, h = symbols('f, g, h', cls=Function)
|
||
|
a, b, c = symbols('a, b, c')
|
||
|
|
||
|
# Regression test case for issue #15474
|
||
|
# https://github.com/sympy/sympy/issues/15474
|
||
|
eqs13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)),
|
||
|
Eq(Derivative(g(t), t), a*f(t))]
|
||
|
sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(-t*(sqrt(a + 1) - 1))/(sqrt(a + 1) +
|
||
|
1)),
|
||
|
Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(-t*(sqrt(a + 1) - 1)))]
|
||
|
assert dsolve(eqs13) == sol13
|
||
|
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
|
||
|
|
||
|
eqs14 = [Eq(Derivative(f(t), t), 2*g(t) - 3*h(t)),
|
||
|
Eq(Derivative(g(t), t), -2*f(t) + 4*h(t)),
|
||
|
Eq(Derivative(h(t), t), 3*f(t) - 4*g(t))]
|
||
|
sol14 = [Eq(f(t), 2*C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(3, 25) + C3*Rational(-8, 25)) -
|
||
|
cos(sqrt(29)*t)*(C2*Rational(8, 25) + sqrt(29)*C3*Rational(3, 25))),
|
||
|
Eq(g(t), C1*Rational(3, 2) + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(4, 25) + C3*Rational(6, 25)) -
|
||
|
cos(sqrt(29)*t)*(C2*Rational(6, 25) + sqrt(29)*C3*Rational(-4, 25))),
|
||
|
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
|
||
|
assert dsolve(eqs14) == sol14
|
||
|
assert checksysodesol(eqs14, sol14) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs15 = [Eq(2*Derivative(f(t), t), 12*g(t) - 12*h(t)),
|
||
|
Eq(3*Derivative(g(t), t), -8*f(t) + 8*h(t)),
|
||
|
Eq(4*Derivative(h(t), t), 6*f(t) - 6*g(t))]
|
||
|
sol15 = [Eq(f(t), C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(6, 13) + C3*Rational(-16, 13)) -
|
||
|
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(6, 13))),
|
||
|
Eq(g(t), C1 + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(8, 39) + C3*Rational(16, 13)) -
|
||
|
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(-8, 39))),
|
||
|
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
|
||
|
assert dsolve(eqs15) == sol15
|
||
|
assert checksysodesol(eqs15, sol15) == (True, [0, 0, 0])
|
||
|
|
||
|
eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)),
|
||
|
Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
|
||
|
sol16 = [Eq(x(t), 216*C1*exp(21*t)/209),
|
||
|
Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7),
|
||
|
Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))]
|
||
|
assert dsolve(eq16) == sol16
|
||
|
assert checksysodesol(eq16, sol16) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs17 = [Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)),
|
||
|
Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
|
||
|
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))]
|
||
|
sol17 = [Eq(x(t), C1*Rational(7, 3) - sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(11, 170) + C3*Rational(-21,
|
||
|
170)) - cos(sqrt(179)*t)*(C2*Rational(21, 170) + sqrt(179)*C3*Rational(11, 170))),
|
||
|
Eq(y(t), C1*Rational(11, 3) + sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(7, 170) + C3*Rational(33,
|
||
|
170)) - cos(sqrt(179)*t)*(C2*Rational(33, 170) + sqrt(179)*C3*Rational(-7, 170))),
|
||
|
Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))]
|
||
|
assert dsolve(eqs17) == sol17
|
||
|
assert checksysodesol(eqs17, sol17) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs18 = [Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
|
||
|
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
|
||
|
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))]
|
||
|
sol18 = [Eq(x(t), C1 - sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(4, 3) - C3) - cos(5*sqrt(2)*t)*(C2 +
|
||
|
sqrt(2)*C3*Rational(4, 3))),
|
||
|
Eq(y(t), C1 + sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(3, 4) + C3) - cos(5*sqrt(2)*t)*(C2 +
|
||
|
sqrt(2)*C3*Rational(-3, 4))),
|
||
|
Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))]
|
||
|
assert dsolve(eqs18) == sol18
|
||
|
assert checksysodesol(eqs18, sol18) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs19 = [Eq(Derivative(x(t), t), 4*x(t) - z(t)),
|
||
|
Eq(Derivative(y(t), t), 2*x(t) + 2*y(t) - z(t)),
|
||
|
Eq(Derivative(z(t), t), 3*x(t) + y(t))]
|
||
|
sol19 = [Eq(x(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + C2 + 2*C3)*exp(2*t)),
|
||
|
Eq(y(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + 2*C3)*exp(2*t)),
|
||
|
Eq(z(t), C2*t**2*exp(2*t) + t*(3*C2 + 2*C3)*exp(2*t) + (2*C1 + 3*C3)*exp(2*t))]
|
||
|
assert dsolve(eqs19) == sol19
|
||
|
assert checksysodesol(eqs19, sol19) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs20 = [Eq(Derivative(x(t), t), 4*x(t) - y(t) - 2*z(t)),
|
||
|
Eq(Derivative(y(t), t), 2*x(t) + y(t) - 2*z(t)),
|
||
|
Eq(Derivative(z(t), t), 5*x(t) - 3*z(t))]
|
||
|
sol20 = [Eq(x(t), C1*exp(2*t) - sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
|
||
|
Eq(y(t), -sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
|
||
|
Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))]
|
||
|
assert dsolve(eqs20) == sol20
|
||
|
assert checksysodesol(eqs20, sol20) == (True, [0, 0, 0])
|
||
|
|
||
|
eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t)))
|
||
|
sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2),
|
||
|
Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))]
|
||
|
|
||
|
assert dsolve(eq21) == sol21
|
||
|
assert checksysodesol(eq21, sol21) == (True, [0, 0])
|
||
|
|
||
|
eqs22 = [Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)),
|
||
|
Eq(Derivative(y(t), t), 12*x(t) + 41*y(t))]
|
||
|
sol22 = [Eq(x(t), C1*(39 - sqrt(1713))*exp(t*(sqrt(1713) + 43)/2)*Rational(-1, 24) + C2*(39 +
|
||
|
sqrt(1713))*exp(t*(43 - sqrt(1713))/2)*Rational(-1, 24)),
|
||
|
Eq(y(t), C1*exp(t*(sqrt(1713) + 43)/2) + C2*exp(t*(43 - sqrt(1713))/2))]
|
||
|
assert dsolve(eqs22) == sol22
|
||
|
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
|
||
|
|
||
|
eqs23 = [Eq(Derivative(x(t), t), x(t) + y(t)),
|
||
|
Eq(Derivative(y(t), t), -2*x(t) + 2*y(t))]
|
||
|
sol23 = [Eq(x(t), (C1/4 + sqrt(7)*C2/4)*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) +
|
||
|
sin(sqrt(7)*t/2)*(sqrt(7)*C1/4 + C2*Rational(-1, 4))*exp(t*Rational(3, 2))),
|
||
|
Eq(y(t), C1*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) - C2*sin(sqrt(7)*t/2)*exp(t*Rational(3, 2)))]
|
||
|
assert dsolve(eqs23) == sol23
|
||
|
assert checksysodesol(eqs23, sol23) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #15474
|
||
|
# https://github.com/sympy/sympy/issues/15474
|
||
|
a = Symbol("a", real=True)
|
||
|
eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)]
|
||
|
sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))]
|
||
|
assert dsolve(eq24) == sol24
|
||
|
assert checksysodesol(eq24, sol24) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #19150
|
||
|
# https://github.com/sympy/sympy/issues/19150
|
||
|
eqs25 = [Eq(Derivative(f(t), t), 0),
|
||
|
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + x(t))/(b*c)),
|
||
|
Eq(Derivative(x(t), t), (g(t) - 2*x(t) + y(t))/(b*c)),
|
||
|
Eq(Derivative(y(t), t), (h(t) + x(t) - 2*y(t))/(b*c)),
|
||
|
Eq(Derivative(h(t), t), 0)]
|
||
|
sol25 = [Eq(f(t), -3*C1 + 4*C2),
|
||
|
Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 -
|
||
|
sqrt(2))/(b*c))),
|
||
|
Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(-t*(sqrt(2) + 2)/(b*c)) + sqrt(2)*C5*exp(-t*(2 -
|
||
|
sqrt(2))/(b*c))),
|
||
|
Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))),
|
||
|
Eq(h(t), C1)]
|
||
|
assert dsolve(eqs25) == sol25
|
||
|
assert checksysodesol(eqs25, sol25) == (True, [0, 0, 0, 0, 0])
|
||
|
|
||
|
eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))]
|
||
|
sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))]
|
||
|
assert dsolve(eq26) == sol26
|
||
|
assert checksysodesol(eq26, sol26) == (True, [0, 0])
|
||
|
|
||
|
eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
|
||
|
sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))]
|
||
|
assert dsolve(eq27) == sol27
|
||
|
assert checksysodesol(eq27, sol27) == (True, [0, 0])
|
||
|
|
||
|
eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
|
||
|
sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))]
|
||
|
assert dsolve(eq28) == sol28
|
||
|
assert checksysodesol(eq28, sol28) == (True, [0, 0])
|
||
|
|
||
|
eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)]
|
||
|
sol29 = [Eq(f(t), C1), Eq(g(t), C2)]
|
||
|
assert dsolve(eq29) == sol29
|
||
|
assert checksysodesol(eq29, sol29) == (True, [0, 0])
|
||
|
|
||
|
eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)]
|
||
|
sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)]
|
||
|
assert dsolve(eq30) == sol30
|
||
|
assert checksysodesol(eq30, sol30) == (True, [0, 0])
|
||
|
|
||
|
eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)]
|
||
|
sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)]
|
||
|
assert dsolve(eq31) == sol31
|
||
|
assert checksysodesol(eq31, sol31) == (True, [0, 0])
|
||
|
|
||
|
eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))]
|
||
|
sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)]
|
||
|
assert dsolve(eq32) == sol32
|
||
|
assert checksysodesol(eq32, sol32) == (True, [0, 0])
|
||
|
|
||
|
eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))]
|
||
|
sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))]
|
||
|
assert dsolve(eq33) == sol33
|
||
|
assert checksysodesol(eq33, sol33) == (True, [0, 0])
|
||
|
|
||
|
eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))]
|
||
|
sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))]
|
||
|
assert dsolve(eq34) == sol34
|
||
|
assert checksysodesol(eq34, sol34) == (True, [0, 0])
|
||
|
|
||
|
eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))]
|
||
|
sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))]
|
||
|
assert dsolve(eq35) == sol35
|
||
|
assert checksysodesol(eq35, sol35) == (True, [0, 0])
|
||
|
|
||
|
eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)]
|
||
|
sol36 = [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)]
|
||
|
assert dsolve(eq36) == sol36
|
||
|
assert checksysodesol(eq36, sol36) == (True, [0, 0])
|
||
|
|
||
|
eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))]
|
||
|
sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))]
|
||
|
assert dsolve(eq37) == sol37
|
||
|
assert checksysodesol(eq37, sol37) == (True, [0, 0])
|
||
|
|
||
|
# Multiple systems
|
||
|
eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)]
|
||
|
sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)),
|
||
|
Eq(g(t), C1*cos(t) - C2*sin(t))],
|
||
|
[Eq(f(t), -C1*exp(-t) + C2*exp(t)),
|
||
|
Eq(g(t), C1*exp(-t) + C2*exp(t))]]
|
||
|
assert dsolve(eq1) == sol1
|
||
|
for sol in sol1:
|
||
|
assert checksysodesol(eq1, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_sysode_linear_neq_order1_type2():
|
||
|
|
||
|
f, g, h, k = symbols('f g h k', cls=Function)
|
||
|
x, t, a, b, c, d, y = symbols('x t a b c d y')
|
||
|
k1, k2 = symbols('k1 k2')
|
||
|
|
||
|
|
||
|
eqs1 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
|
||
|
Eq(Derivative(g(x), x), -f(x) - g(x) + 7)]
|
||
|
sol1 = [Eq(f(x), C1 + C2 + 6*x**2 + x*(C2 + 5)),
|
||
|
Eq(g(x), -C1 - 6*x**2 - x*(C2 - 7))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eqs2 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
|
||
|
Eq(Derivative(g(x), x), f(x) + g(x) + 7)]
|
||
|
sol2 = [Eq(f(x), -C1 + C2*exp(2*x) - x - 3),
|
||
|
Eq(g(x), C1 + C2*exp(2*x) + x - 3)]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = [Eq(Derivative(f(x), x), f(x) + 5),
|
||
|
Eq(Derivative(g(x), x), f(x) + 7)]
|
||
|
sol3 = [Eq(f(x), C1*exp(x) - 5),
|
||
|
Eq(g(x), C1*exp(x) + C2 + 2*x - 5)]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
|
||
|
|
||
|
eqs4 = [Eq(Derivative(f(x), x), f(x) + exp(x)),
|
||
|
Eq(Derivative(g(x), x), x*exp(x) + f(x) + g(x))]
|
||
|
sol4 = [Eq(f(x), C1*exp(x) + x*exp(x)),
|
||
|
Eq(g(x), C1*x*exp(x) + C2*exp(x) + x**2*exp(x))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
|
||
|
|
||
|
eqs5 = [Eq(Derivative(f(x), x), 5*x + f(x) + g(x)),
|
||
|
Eq(Derivative(g(x), x), f(x) - g(x))]
|
||
|
sol5 = [Eq(f(x), C1*(1 + sqrt(2))*exp(sqrt(2)*x) + C2*(1 - sqrt(2))*exp(-sqrt(2)*x) + x*Rational(-5, 2) +
|
||
|
Rational(-5, 2)),
|
||
|
Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + x*Rational(-5, 2))]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(f(x), x), -9*f(x) - 4*g(x)),
|
||
|
Eq(Derivative(g(x), x), -4*g(x)),
|
||
|
Eq(Derivative(h(x), x), h(x) + exp(x))]
|
||
|
sol6 = [Eq(f(x), C2*exp(-4*x)*Rational(-4, 5) + C1*exp(-9*x)),
|
||
|
Eq(g(x), C2*exp(-4*x)),
|
||
|
Eq(h(x), C3*exp(x) + x*exp(x))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #8859
|
||
|
# https://github.com/sympy/sympy/issues/8859
|
||
|
eqs7 = [Eq(Derivative(f(t), t), 3*t + f(t)),
|
||
|
Eq(Derivative(g(t), t), g(t))]
|
||
|
sol7 = [Eq(f(t), C1*exp(t) - 3*t - 3),
|
||
|
Eq(g(t), C2*exp(t))]
|
||
|
assert dsolve(eqs7) == sol7
|
||
|
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #8567
|
||
|
# https://github.com/sympy/sympy/issues/8567
|
||
|
eqs8 = [Eq(Derivative(f(t), t), f(t) + 2*g(t)),
|
||
|
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 2*exp(t))]
|
||
|
sol8 = [Eq(f(t), C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t)
|
||
|
+ exp(t)*sin(2*t)**2 + exp(t)*cos(2*t)**2),
|
||
|
Eq(g(t), C1*exp(t)*cos(2*t) - C2*exp(t)*sin(2*t))]
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
|
||
|
|
||
|
# Regression test case for issue #19150
|
||
|
# https://github.com/sympy/sympy/issues/19150
|
||
|
eqs9 = [Eq(Derivative(f(t), t), (c - 2*f(t) + g(t))/(a*b)),
|
||
|
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + h(t))/(a*b)),
|
||
|
Eq(Derivative(h(t), t), (d + g(t) - 2*h(t))/(a*b))]
|
||
|
sol9 = [Eq(f(t), -C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
|
||
|
Mul(Rational(1, 4), 3*c + d, evaluate=False)),
|
||
|
Eq(g(t), -sqrt(2)*C2*exp(-t*(sqrt(2) + 2)/(a*b)) + sqrt(2)*C3*exp(-t*(2 - sqrt(2))/(a*b)) +
|
||
|
Mul(Rational(1, 2), c + d, evaluate=False)),
|
||
|
Eq(h(t), C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
|
||
|
Mul(Rational(1, 4), c + 3*d, evaluate=False))]
|
||
|
assert dsolve(eqs9) == sol9
|
||
|
assert checksysodesol(eqs9, sol9) == (True, [0, 0, 0])
|
||
|
|
||
|
# Regression test case for issue #16635
|
||
|
# https://github.com/sympy/sympy/issues/16635
|
||
|
eqs10 = [Eq(Derivative(f(t), t), 15*t + f(t) - g(t) - 10),
|
||
|
Eq(Derivative(g(t), t), -15*t + f(t) - g(t) - 5)]
|
||
|
sol10 = [Eq(f(t), C1 + C2 + 5*t**3 + 5*t**2 + t*(C2 - 10)),
|
||
|
Eq(g(t), C1 + 5*t**3 - 10*t**2 + t*(C2 - 5))]
|
||
|
assert dsolve(eqs10) == sol10
|
||
|
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
|
||
|
|
||
|
# Multiple solutions
|
||
|
eqs11 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
|
||
|
Eq(-y*f(t) + Derivative(g(t), t), 0)]
|
||
|
sol11 = [[Eq(f(t), C1 - t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(-1, 2))],
|
||
|
[Eq(f(t), C1 + 3*t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(3, 2))]]
|
||
|
assert dsolve(eqs11) == sol11
|
||
|
for s11 in sol11:
|
||
|
assert checksysodesol(eqs11, s11) == (True, [0, 0])
|
||
|
|
||
|
# test case for issue #19831
|
||
|
# https://github.com/sympy/sympy/issues/19831
|
||
|
n = symbols('n', positive=True)
|
||
|
x0 = symbols('x_0')
|
||
|
t0 = symbols('t_0')
|
||
|
x_0 = symbols('x_0')
|
||
|
t_0 = symbols('t_0')
|
||
|
t = symbols('t')
|
||
|
x = Function('x')
|
||
|
y = Function('y')
|
||
|
T = symbols('T')
|
||
|
|
||
|
eqs12 = [Eq(Derivative(y(t), t), x(t)),
|
||
|
Eq(Derivative(x(t), t), n*(y(t) + 1))]
|
||
|
sol12 = [Eq(y(t), C1*exp(sqrt(n)*t)*n**Rational(-1, 2) - C2*exp(-sqrt(n)*t)*n**Rational(-1, 2) - 1),
|
||
|
Eq(x(t), C1*exp(sqrt(n)*t) + C2*exp(-sqrt(n)*t))]
|
||
|
assert dsolve(eqs12) == sol12
|
||
|
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
|
||
|
|
||
|
sol12b = [
|
||
|
Eq(y(t), (T*exp(-sqrt(n)*t_0)/2 + exp(-sqrt(n)*t_0)/2 +
|
||
|
x_0*exp(-sqrt(n)*t_0)/(2*sqrt(n)))*exp(sqrt(n)*t) +
|
||
|
(T*exp(sqrt(n)*t_0)/2 + exp(sqrt(n)*t_0)/2 -
|
||
|
x_0*exp(sqrt(n)*t_0)/(2*sqrt(n)))*exp(-sqrt(n)*t) - 1),
|
||
|
Eq(x(t), (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 + sqrt(n)*exp(-sqrt(n)*t_0)/2
|
||
|
+ x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t)
|
||
|
- (T*sqrt(n)*exp(sqrt(n)*t_0)/2 + sqrt(n)*exp(sqrt(n)*t_0)/2 -
|
||
|
x_0*exp(sqrt(n)*t_0)/2)*exp(-sqrt(n)*t))
|
||
|
]
|
||
|
assert dsolve(eqs12, ics={y(t0): T, x(t0): x0}) == sol12b
|
||
|
assert checksysodesol(eqs12, sol12b) == (True, [0, 0])
|
||
|
|
||
|
#Test cases added for the issue 19763
|
||
|
#https://github.com/sympy/sympy/issues/19763
|
||
|
|
||
|
eq13 = [Eq(Derivative(f(t), t), f(t) + g(t) + 9),
|
||
|
Eq(Derivative(g(t), t), 2*f(t) + 5*g(t) + 23)]
|
||
|
sol13 = [Eq(f(t), -C1*(2 + sqrt(6))*exp(t*(3 - sqrt(6)))/2 - C2*(2 - sqrt(6))*exp(t*(sqrt(6) + 3))/2 -
|
||
|
Rational(22,3)),
|
||
|
Eq(g(t), C1*exp(t*(3 - sqrt(6))) + C2*exp(t*(sqrt(6) + 3)) - Rational(5,3))]
|
||
|
assert dsolve(eq13) == sol13
|
||
|
assert checksysodesol(eq13, sol13) == (True, [0, 0])
|
||
|
|
||
|
eq14 = [Eq(Derivative(f(t), t), f(t) + g(t) + 81),
|
||
|
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 23)]
|
||
|
sol14 = [Eq(f(t), sqrt(2)*C1*exp(t)*sin(sqrt(2)*t)/2
|
||
|
+ sqrt(2)*C2*exp(t)*cos(sqrt(2)*t)/2
|
||
|
- 58*sin(sqrt(2)*t)**2/3 - 58*cos(sqrt(2)*t)**2/3),
|
||
|
Eq(g(t), C1*exp(t)*cos(sqrt(2)*t) - C2*exp(t)*sin(sqrt(2)*t)
|
||
|
- 185*sin(sqrt(2)*t)**2/3 - 185*cos(sqrt(2)*t)**2/3)]
|
||
|
assert dsolve(eq14) == sol14
|
||
|
assert checksysodesol(eq14, sol14) == (True, [0,0])
|
||
|
|
||
|
eq15 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
|
||
|
Eq(Derivative(g(t), t), 3*f(t) + 4*g(t) + k2)]
|
||
|
sol15 = [Eq(f(t), -C1*(3 - sqrt(33))*exp(t*(5 + sqrt(33))/2)/6 -
|
||
|
C2*(3 + sqrt(33))*exp(t*(5 - sqrt(33))/2)/6 + 2*k1 - k2),
|
||
|
Eq(g(t), C1*exp(t*(5 + sqrt(33))/2) + C2*exp(t*(5 - sqrt(33))/2) -
|
||
|
Mul(Rational(1,2), 3*k1 - k2, evaluate = False))]
|
||
|
assert dsolve(eq15) == sol15
|
||
|
assert checksysodesol(eq15, sol15) == (True, [0,0])
|
||
|
|
||
|
eq16 = [Eq(Derivative(f(t), t), k1),
|
||
|
Eq(Derivative(g(t), t), k2)]
|
||
|
sol16 = [Eq(f(t), C1 + k1*t),
|
||
|
Eq(g(t), C2 + k2*t)]
|
||
|
assert dsolve(eq16) == sol16
|
||
|
assert checksysodesol(eq16, sol16) == (True, [0,0])
|
||
|
|
||
|
eq17 = [Eq(Derivative(f(t), t), 0),
|
||
|
Eq(Derivative(g(t), t), c*f(t) + k2)]
|
||
|
sol17 = [Eq(f(t), C1),
|
||
|
Eq(g(t), C2*c + t*(C1*c + k2))]
|
||
|
assert dsolve(eq17) == sol17
|
||
|
assert checksysodesol(eq17 , sol17) == (True , [0,0])
|
||
|
|
||
|
eq18 = [Eq(Derivative(f(t), t), k1),
|
||
|
Eq(Derivative(g(t), t), f(t) + k2)]
|
||
|
sol18 = [Eq(f(t), C1 + k1*t),
|
||
|
Eq(g(t), C2 + k1*t**2/2 + t*(C1 + k2))]
|
||
|
assert dsolve(eq18) == sol18
|
||
|
assert checksysodesol(eq18 , sol18) == (True , [0,0])
|
||
|
|
||
|
eq19 = [Eq(Derivative(f(t), t), k1),
|
||
|
Eq(Derivative(g(t), t), f(t) + 2*g(t) + k2)]
|
||
|
sol19 = [Eq(f(t), -2*C1 + k1*t),
|
||
|
Eq(g(t), C1 + C2*exp(2*t) - k1*t/2 - Mul(Rational(1,4), k1 + 2*k2 , evaluate = False))]
|
||
|
assert dsolve(eq19) == sol19
|
||
|
assert checksysodesol(eq19 , sol19) == (True , [0,0])
|
||
|
|
||
|
eq20 = [Eq(diff(f(t), t), f(t) + k1),
|
||
|
Eq(diff(g(t), t), k2)]
|
||
|
sol20 = [Eq(f(t), C1*exp(t) - k1),
|
||
|
Eq(g(t), C2 + k2*t)]
|
||
|
assert dsolve(eq20) == sol20
|
||
|
assert checksysodesol(eq20 , sol20) == (True , [0,0])
|
||
|
|
||
|
eq21 = [Eq(diff(f(t), t), g(t) + k1),
|
||
|
Eq(diff(g(t), t), 0)]
|
||
|
sol21 = [Eq(f(t), C1 + t*(C2 + k1)),
|
||
|
Eq(g(t), C2)]
|
||
|
assert dsolve(eq21) == sol21
|
||
|
assert checksysodesol(eq21 , sol21) == (True , [0,0])
|
||
|
|
||
|
eq22 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
|
||
|
Eq(Derivative(g(t), t), k2)]
|
||
|
sol22 = [Eq(f(t), -2*C1 + C2*exp(t) - k1 - 2*k2*t - 2*k2),
|
||
|
Eq(g(t), C1 + k2*t)]
|
||
|
assert dsolve(eq22) == sol22
|
||
|
assert checksysodesol(eq22 , sol22) == (True , [0,0])
|
||
|
|
||
|
eq23 = [Eq(Derivative(f(t), t), g(t) + k1),
|
||
|
Eq(Derivative(g(t), t), 2*g(t) + k2)]
|
||
|
sol23 = [Eq(f(t), C1 + C2*exp(2*t)/2 - k2/4 + t*(2*k1 - k2)/2),
|
||
|
Eq(g(t), C2*exp(2*t) - k2/2)]
|
||
|
assert dsolve(eq23) == sol23
|
||
|
assert checksysodesol(eq23 , sol23) == (True , [0,0])
|
||
|
|
||
|
eq24 = [Eq(Derivative(f(t), t), f(t) + k1),
|
||
|
Eq(Derivative(g(t), t), 2*f(t) + k2)]
|
||
|
sol24 = [Eq(f(t), C1*exp(t)/2 - k1),
|
||
|
Eq(g(t), C1*exp(t) + C2 - 2*k1 - t*(2*k1 - k2))]
|
||
|
assert dsolve(eq24) == sol24
|
||
|
assert checksysodesol(eq24 , sol24) == (True , [0,0])
|
||
|
|
||
|
eq25 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
|
||
|
Eq(Derivative(g(t), t), 3*f(t) + 6*g(t) + k2)]
|
||
|
sol25 = [Eq(f(t), -2*C1 + C2*exp(7*t)/3 + 2*t*(3*k1 - k2)/7 -
|
||
|
Mul(Rational(1,49), k1 + 2*k2 , evaluate = False)),
|
||
|
Eq(g(t), C1 + C2*exp(7*t) - t*(3*k1 - k2)/7 -
|
||
|
Mul(Rational(3,49), k1 + 2*k2 , evaluate = False))]
|
||
|
assert dsolve(eq25) == sol25
|
||
|
assert checksysodesol(eq25 , sol25) == (True , [0,0])
|
||
|
|
||
|
eq26 = [Eq(Derivative(f(t), t), 2*f(t) - g(t) + k1),
|
||
|
Eq(Derivative(g(t), t), 4*f(t) - 2*g(t) + 2*k1)]
|
||
|
sol26 = [Eq(f(t), C1 + 2*C2 + t*(2*C1 + k1)),
|
||
|
Eq(g(t), 4*C2 + t*(4*C1 + 2*k1))]
|
||
|
assert dsolve(eq26) == sol26
|
||
|
assert checksysodesol(eq26 , sol26) == (True , [0,0])
|
||
|
|
||
|
# Test Case added for issue #22715
|
||
|
# https://github.com/sympy/sympy/issues/22715
|
||
|
|
||
|
eq27 = [Eq(diff(x(t),t),-1*y(t)+10), Eq(diff(y(t),t),5*x(t)-2*y(t)+3)]
|
||
|
sol27 = [Eq(x(t), (C1/5 - 2*C2/5)*exp(-t)*cos(2*t)
|
||
|
- (2*C1/5 + C2/5)*exp(-t)*sin(2*t)
|
||
|
+ 17*sin(2*t)**2/5 + 17*cos(2*t)**2/5),
|
||
|
Eq(y(t), C1*exp(-t)*cos(2*t) - C2*exp(-t)*sin(2*t)
|
||
|
+ 10*sin(2*t)**2 + 10*cos(2*t)**2)]
|
||
|
assert dsolve(eq27) == sol27
|
||
|
assert checksysodesol(eq27 , sol27) == (True , [0,0])
|
||
|
|
||
|
|
||
|
def test_sysode_linear_neq_order1_type3():
|
||
|
|
||
|
f, g, h, k, x0 , y0 = symbols('f g h k x0 y0', cls=Function)
|
||
|
x, t, a = symbols('x t a')
|
||
|
r = symbols('r', real=True)
|
||
|
|
||
|
eqs1 = [Eq(Derivative(f(r), r), r*g(r) + f(r)),
|
||
|
Eq(Derivative(g(r), r), -r*f(r) + g(r))]
|
||
|
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2)),
|
||
|
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eqs2 = [Eq(Derivative(f(x), x), x**2*g(x) + x*f(x)),
|
||
|
Eq(Derivative(g(x), x), 2*x**2*f(x) + (3*x**2 + x)*g(x))]
|
||
|
sol2 = [Eq(f(x), (sqrt(17)*C1/17 + C2*(17 - 3*sqrt(17))/34)*exp(x**3*(3 + sqrt(17))/6 + x**2/2) -
|
||
|
exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(sqrt(17)*C1/17 + C2*(3*sqrt(17) + 17)*Rational(-1, 34))),
|
||
|
Eq(g(x), exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(C1*(17 - 3*sqrt(17))/34 + sqrt(17)*C2*Rational(-2,
|
||
|
17)) + exp(x**3*(3 + sqrt(17))/6 + x**2/2)*(C1*(3*sqrt(17) + 17)/34 + sqrt(17)*C2*Rational(2, 17)))]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)),
|
||
|
Eq(g(x).diff(x), -f(x) + x*g(x))]
|
||
|
sol3 = [Eq(f(x), (C1/2 + I*C2/2)*exp(x**2/2 - I*x) + exp(x**2/2 + I*x)*(C1/2 + I*C2*Rational(-1, 2))),
|
||
|
Eq(g(x), (I*C1/2 + C2/2)*exp(x**2/2 + I*x) - exp(x**2/2 - I*x)*(I*C1/2 + C2*Rational(-1, 2)))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
|
||
|
|
||
|
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))),
|
||
|
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))]
|
||
|
sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
|
||
|
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
|
||
|
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))),
|
||
|
Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))]
|
||
|
sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
|
||
|
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
|
||
|
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))),
|
||
|
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))),
|
||
|
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))),
|
||
|
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))]
|
||
|
sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
|
||
|
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
|
||
|
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
|
||
|
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
y = symbols("y", real=True)
|
||
|
|
||
|
eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)),
|
||
|
Eq(Derivative(g(y), y), y*g(y) - f(y))]
|
||
|
sol7 = [Eq(f(y), C1*exp(y**2/2)*sin(y) + C2*exp(y**2/2)*cos(y)),
|
||
|
Eq(g(y), C1*exp(y**2/2)*cos(y) - C2*exp(y**2/2)*sin(y))]
|
||
|
assert dsolve(eqs7) == sol7
|
||
|
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
|
||
|
|
||
|
#Test cases added for the issue 19763
|
||
|
#https://github.com/sympy/sympy/issues/19763
|
||
|
|
||
|
eqs8 = [Eq(Derivative(f(t), t), 5*t*f(t) + 2*h(t)),
|
||
|
Eq(Derivative(h(t), t), 2*f(t) + 5*t*h(t))]
|
||
|
sol8 = [Eq(f(t), Mul(-1, (C1/2 - C2/2), evaluate = False)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t)),
|
||
|
Eq(h(t), (C1/2 - C2/2)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t))]
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
|
||
|
|
||
|
eqs9 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
|
||
|
Eq(diff(g(t), t), -t**2*f(t) + 5*t*g(t))]
|
||
|
sol9 = [Eq(f(t), (C1/2 - I*C2/2)*exp(I*t**3/3 + 5*t**2/2) + (C1/2 + I*C2/2)*exp(-I*t**3/3 + 5*t**2/2)),
|
||
|
Eq(g(t), Mul(-1, (I*C1/2 - C2/2) , evaluate = False)*exp(-I*t**3/3 + 5*t**2/2) + (I*C1/2 + C2/2)*exp(I*t**3/3 + 5*t**2/2))]
|
||
|
assert dsolve(eqs9) == sol9
|
||
|
assert checksysodesol(eqs9 , sol9) == (True , [0,0])
|
||
|
|
||
|
eqs10 = [Eq(diff(f(t), t), t**2*g(t) + 5*t*f(t)),
|
||
|
Eq(diff(g(t), t), -t**2*f(t) + (9*t**2 + 5*t)*g(t))]
|
||
|
sol10 = [Eq(f(t), (C1*(77 - 9*sqrt(77))/154 + sqrt(77)*C2/77)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2) + (C1*(77 + 9*sqrt(77))/154 - sqrt(77)*C2/77)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2)),
|
||
|
Eq(g(t), (sqrt(77)*C1/77 + C2*(77 - 9*sqrt(77))/154)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2) - (sqrt(77)*C1/77 - C2*(77 + 9*sqrt(77))/154)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2))]
|
||
|
assert dsolve(eqs10) == sol10
|
||
|
assert checksysodesol(eqs10 , sol10) == (True , [0,0])
|
||
|
|
||
|
eqs11 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
|
||
|
Eq(diff(g(t), t), (1-t**2)*f(t) + (5*t + 9*t**2)*g(t))]
|
||
|
sol11 = [Eq(f(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)),
|
||
|
Eq(g(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
|
||
|
assert dsolve(eqs11) == sol11
|
||
|
|
||
|
@slow
|
||
|
def test_sysode_linear_neq_order1_type4():
|
||
|
|
||
|
f, g, h, k = symbols('f g h k', cls=Function)
|
||
|
x, t, a = symbols('x t a')
|
||
|
r = symbols('r', real=True)
|
||
|
|
||
|
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)]
|
||
|
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) +
|
||
|
r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)),
|
||
|
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) -
|
||
|
r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))]
|
||
|
sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) +
|
||
|
exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(
|
||
|
r**2/2), r)),
|
||
|
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) -
|
||
|
exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(
|
||
|
r**2/2), r))]
|
||
|
# XXX: dsolve hangs for this in integration
|
||
|
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + x),
|
||
|
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + x),
|
||
|
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + 1)]
|
||
|
sol3 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + x**2/6 + x*Rational(-1, 3) +
|
||
|
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
|
||
|
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
|
||
|
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + x**2/6 + x*Rational(-1, 3) +
|
||
|
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
|
||
|
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
|
||
|
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + x**2*Rational(-1, 3) +
|
||
|
x*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
|
||
|
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs4 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
|
||
|
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
|
||
|
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + sin(x))]
|
||
|
sol4 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
|
||
|
2))),
|
||
|
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
|
||
|
2))),
|
||
|
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
|
||
|
2)))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1))]
|
||
|
sol5 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
|
||
|
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
|
||
|
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
|
||
|
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4))]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(g(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
|
||
|
Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))]
|
||
|
sol6 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
|
||
|
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
|
||
|
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
|
||
|
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
|
||
|
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x)
|
||
|
+ h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))]
|
||
|
sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
|
||
|
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
|
||
|
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
|
||
|
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
|
||
|
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 +
|
||
|
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
|
||
|
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x))]
|
||
|
with dotprodsimp(True):
|
||
|
assert dsolve(eqs7, simplify=False, doit=False) == sol7
|
||
|
assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0])
|
||
|
|
||
|
eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x)
|
||
|
+ g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) +
|
||
|
sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))]
|
||
|
sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 +
|
||
|
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
|
||
|
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
|
||
|
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
|
||
|
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
|
||
|
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
|
||
|
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
|
||
|
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
|
||
|
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
|
||
|
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
|
||
|
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
|
||
|
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x))]
|
||
|
with dotprodsimp(True):
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_sysode_linear_neq_order1_type5_type6():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x, x_ = symbols("x x_")
|
||
|
|
||
|
# Type 5
|
||
|
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)]
|
||
|
sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
# Type 6
|
||
|
eqs2 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x),
|
||
|
Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)]
|
||
|
sol2 = [Eq(f(x), C2*x**3 - x*(C1 + Rational(1, 4)) + x*log(x)*Rational(-1, 2) + Rational(-2, 3)),
|
||
|
Eq(g(x), C2*x**3 + x*log(x)/2 + x*(C1 + Rational(-1, 4)) + Rational(1, 3))]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_higher_order_to_first_order():
|
||
|
f, g = symbols('f g', cls=Function)
|
||
|
x = symbols('x')
|
||
|
|
||
|
eqs1 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
|
||
|
Eq(Derivative(g(x), (x, 2)), -f(x))]
|
||
|
sol1 = [Eq(f(x), -C2*x*exp(-x) + C3*x*exp(x) - (C1 - C2)*exp(-x) + (C3 + C4)*exp(x)),
|
||
|
Eq(g(x), C2*x*exp(-x) - C3*x*exp(x) + (C1 + C2)*exp(-x) + (C3 - C4)*exp(x))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))]
|
||
|
sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = [Eq(Derivative(f(x), (x, 2)), 2*f(x)),
|
||
|
Eq(Derivative(g(x), (x, 2)), -f(x) + 2*g(x))]
|
||
|
sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)),
|
||
|
Eq(g(x), sqrt(2)*C1*x*exp(-sqrt(2)*x) - sqrt(2)*C2*x*exp(sqrt(2)*x) + (C1 +
|
||
|
sqrt(2)*C4)*exp(-sqrt(2)*x) + (C2 - sqrt(2)*C3)*exp(sqrt(2)*x))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
|
||
|
|
||
|
eqs4 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
|
||
|
Eq(Derivative(g(x), (x, 2)), 2*g(x))]
|
||
|
sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 + C3*x*exp(-sqrt(2)*x)/4 + (C2/4 + sqrt(2)*C3/8)*exp(-sqrt(2)*x) -
|
||
|
exp(sqrt(2)*x)*(sqrt(2)*C1/8 + C4*Rational(-1, 4))),
|
||
|
Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 + sqrt(2)*C3*exp(-sqrt(2)*x)*Rational(-1, 2))]
|
||
|
assert dsolve(eqs4) == sol4
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
|
||
|
|
||
|
eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))]
|
||
|
sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
|
||
|
|
||
|
eqs6 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x)),
|
||
|
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x))]
|
||
|
sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C4*x**3/6 + x*(C3 + C4)),
|
||
|
Eq(g(x), -C1 + C2*x**2*Rational(-1, 2) - C3*x + C4*x**3*Rational(-1, 6))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
|
||
|
|
||
|
eqs7 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
|
||
|
Eq(Derivative(g(x), (x, 2)), f(x) + g(x) + 1)]
|
||
|
sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
|
||
|
Rational(-1, 2)),
|
||
|
Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
|
||
|
Rational(-1, 2))]
|
||
|
assert dsolve(eqs7) == sol7
|
||
|
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
|
||
|
|
||
|
eqs8 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
|
||
|
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x) + 1)]
|
||
|
sol8 = [Eq(f(x), C1 + C2 + C4*x**3/6 + x**4/12 + x**2*(C2/2 + Rational(1, 2)) + x*(C3 + C4)),
|
||
|
Eq(g(x), -C1 - C3*x + C4*x**3*Rational(-1, 6) + x**4*Rational(-1, 12) - x**2*(C2/2 + Rational(-1,
|
||
|
2)))]
|
||
|
assert dsolve(eqs8) == sol8
|
||
|
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
|
||
|
|
||
|
x, y = symbols('x, y', cls=Function)
|
||
|
t, l = symbols('t, l')
|
||
|
|
||
|
eqs10 = [Eq(Derivative(x(t), (t, 2)), 5*x(t) + 43*y(t)),
|
||
|
Eq(Derivative(y(t), (t, 2)), x(t) + 9*y(t))]
|
||
|
sol10 = [Eq(x(t), C1*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))/2 + C2*sqrt(7 -
|
||
|
sqrt(47))*(61 + 9*sqrt(47))*exp(-t*sqrt(7 - sqrt(47)))/2 + C3*(61 - 9*sqrt(47))*sqrt(sqrt(47) +
|
||
|
7)*exp(t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C4*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(t*sqrt(7
|
||
|
- sqrt(47)))*Rational(-1, 2)),
|
||
|
Eq(y(t), C1*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C2*sqrt(7
|
||
|
- sqrt(47))*(sqrt(47) + 7)*exp(-t*sqrt(7 - sqrt(47)))*Rational(-1, 2) + C3*(7 -
|
||
|
sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))/2 + C4*sqrt(7 - sqrt(47))*(sqrt(47) +
|
||
|
7)*exp(t*sqrt(7 - sqrt(47)))/2)]
|
||
|
assert dsolve(eqs10) == sol10
|
||
|
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
|
||
|
|
||
|
eqs11 = [Eq(7*x(t) + Derivative(x(t), (t, 2)) - 9*Derivative(y(t), t), 0),
|
||
|
Eq(7*y(t) + 9*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
|
||
|
sol11 = [Eq(y(t), C1*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)/14 + C2*(9 -
|
||
|
sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
|
||
|
sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 -
|
||
|
9*sqrt(109))/2)*Rational(-1, 14)),
|
||
|
Eq(x(t), C1*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C2*(9 -
|
||
|
sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
|
||
|
sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 -
|
||
|
9*sqrt(109))/2)/14)]
|
||
|
assert dsolve(eqs11) == sol11
|
||
|
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
|
||
|
|
||
|
# Euler Systems
|
||
|
# Note: To add examples of euler systems solver with non-homogeneous term.
|
||
|
eqs13 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2),
|
||
|
Eq(Derivative(g(t), (t, 2)), g(t)/t**2)]
|
||
|
sol13 = [Eq(f(t), C1*(sqrt(5) + 3)*Rational(-1, 2)*t**(Rational(1, 2) +
|
||
|
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
|
||
|
sqrt(5)/2)*(3 - sqrt(5))*Rational(-1, 2) - C3*t**(1 -
|
||
|
sqrt(2))*(1 + sqrt(2)) - C4*t**(1 + sqrt(2))*(1 - sqrt(2))),
|
||
|
Eq(g(t), C1*(1 + sqrt(5))*Rational(-1, 2)*t**(Rational(1, 2) +
|
||
|
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
|
||
|
sqrt(5)/2)*(1 - sqrt(5))*Rational(-1, 2))]
|
||
|
assert dsolve(eqs13) == sol13
|
||
|
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
|
||
|
|
||
|
# Solving systems using dsolve separately
|
||
|
eqs14 = [Eq(Derivative(f(t), (t, 2)), t*f(t)),
|
||
|
Eq(Derivative(g(t), (t, 2)), t*g(t))]
|
||
|
sol14 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)),
|
||
|
Eq(g(t), C3*airyai(t) + C4*airybi(t))]
|
||
|
assert dsolve(eqs14) == sol14
|
||
|
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
eqs15 = [Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))),
|
||
|
Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t)))]
|
||
|
sol15 = [Eq(x(t), C1 - erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2/33 + sqrt(6)*sqrt(pi)*C3*Rational(-1, 44)) +
|
||
|
erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(2, 55) + sqrt(5)*sqrt(pi)*C3*Rational(4, 55))),
|
||
|
Eq(y(t), C4 + erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2*Rational(2, 33) + sqrt(6)*sqrt(pi)*C3*Rational(-1,
|
||
|
22)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(3, 110) + sqrt(5)*sqrt(pi)*C3*Rational(3, 55)))]
|
||
|
assert dsolve(eqs15) == sol15
|
||
|
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_higher_order_to_first_order_9():
|
||
|
f, g = symbols('f g', cls=Function)
|
||
|
x = symbols('x')
|
||
|
|
||
|
eqs9 = [f(x) + g(x) - 2*exp(I*x) + 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)),
|
||
|
f(x) + g(x) - 2*exp(I*x) + 2*Derivative(g(x), x) + Derivative(g(x), (x, 2))]
|
||
|
sol9 = [Eq(f(x), -C1 + C4*exp(-2*x)/2 - (C2/2 - C3/2)*exp(-x)*cos(x)
|
||
|
+ (C2/2 + C3/2)*exp(-x)*sin(x) + 2*((1 - 2*I)*exp(I*x)*sin(x)**2/5)
|
||
|
+ 2*((1 - 2*I)*exp(I*x)*cos(x)**2/5)),
|
||
|
Eq(g(x), C1 - C4*exp(-2*x)/2 - (C2/2 - C3/2)*exp(-x)*cos(x)
|
||
|
+ (C2/2 + C3/2)*exp(-x)*sin(x) + 2*((1 - 2*I)*exp(I*x)*sin(x)**2/5)
|
||
|
+ 2*((1 - 2*I)*exp(I*x)*cos(x)**2/5))]
|
||
|
assert dsolve(eqs9) == sol9
|
||
|
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_higher_order_to_first_order_12():
|
||
|
f, g = symbols('f g', cls=Function)
|
||
|
x = symbols('x')
|
||
|
|
||
|
x, y = symbols('x, y', cls=Function)
|
||
|
t, l = symbols('t, l')
|
||
|
|
||
|
eqs12 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0),
|
||
|
Eq(4*y(t) - 8*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
|
||
|
sol12 = [Eq(y(t), C1*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
|
||
|
sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))/2 + C3*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))*Rational(-1,
|
||
|
2) + C4*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2),
|
||
|
Eq(x(t), C1*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
|
||
|
sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C3*(2 + sqrt(5))*cos(2*t*sqrt(9 -
|
||
|
4*sqrt(5)))/2 + C4*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))/2)]
|
||
|
assert dsolve(eqs12) == sol12
|
||
|
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_second_order_to_first_order_2():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
|
||
|
|
||
|
eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
|
||
|
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
|
||
|
sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 -
|
||
|
I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))),
|
||
|
Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 +
|
||
|
C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))]
|
||
|
# XXX: dsolve hangs for this in integration
|
||
|
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t)))
|
||
|
sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)*
|
||
|
exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 -
|
||
|
3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))),
|
||
|
Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)*
|
||
|
exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)*
|
||
|
exp(2*t_)/2)/2, (t_, log(t))))]
|
||
|
# XXX: dsolve hangs for this in integration
|
||
|
assert dsolve_system(eqs3, simplify=False, doit=False) == [sol3]
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
|
||
|
|
||
|
# Regression Test case for sympy#19238
|
||
|
# https://github.com/sympy/sympy/issues/19238
|
||
|
# Note: When the doit method is removed, these particular types of systems
|
||
|
# can be divided first so that we have lesser number of big matrices.
|
||
|
eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m),
|
||
|
Eq(Derivative(f(t), (t, 2)), 0)]
|
||
|
sol5 = [Eq(g(t), C1 + C2*t + a*m*t**2/2),
|
||
|
Eq(f(t), C3 + C4*t)]
|
||
|
assert dsolve(eqs5) == sol5
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
|
||
|
|
||
|
# Type 2
|
||
|
eqs6 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4),
|
||
|
Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)]
|
||
|
sol6 = [Eq(f(t), C1*sqrt(t**2)*exp(-1/t) - C2*sqrt(t**2)*exp(1/t)),
|
||
|
Eq(g(t), C3*sqrt(t**2)*exp(-sqrt(d)/t)*d**Rational(-1, 2) -
|
||
|
C4*sqrt(t**2)*exp(sqrt(d)/t)*d**Rational(-1, 2))]
|
||
|
assert dsolve(eqs6) == sol6
|
||
|
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_second_order_to_first_order_slow1():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
|
||
|
|
||
|
# Type 1
|
||
|
|
||
|
eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
|
||
|
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
|
||
|
sol1 = [Eq(f(x), C1*x + 2*C2*x*Ci(2*x) - C2*sin(2*x) - 2*C3*x*Si(2*x) - C3*cos(2*x)),
|
||
|
Eq(g(x), -2*C2*x*Si(2*x) - C2*cos(2*x) - 2*C3*x*Ci(2*x) + C3*sin(2*x) + C4*x)]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_second_order_to_first_order_slow4():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
|
||
|
|
||
|
eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)),
|
||
|
Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))]
|
||
|
sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
|
||
|
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
|
||
|
exp(-sin(exp(t_)))/2 +
|
||
|
C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))),
|
||
|
Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
|
||
|
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
|
||
|
exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))]
|
||
|
# XXX: dsolve hangs for this in integration
|
||
|
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_component_division():
|
||
|
f, g, h, k = symbols('f g h k', cls=Function)
|
||
|
x = symbols("x")
|
||
|
funcs = [f(x), g(x), h(x), k(x)]
|
||
|
|
||
|
eqs1 = [Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
Eq(Derivative(g(x), x), f(x)),
|
||
|
Eq(Derivative(h(x), x), h(x)),
|
||
|
Eq(Derivative(k(x), x), h(x)**4 + k(x))]
|
||
|
sol1 = [Eq(f(x), 2*C1*exp(2*x)),
|
||
|
Eq(g(x), C1*exp(2*x) + C2),
|
||
|
Eq(h(x), C3*exp(x)),
|
||
|
Eq(k(x), C3**4*exp(4*x)/3 + C4*exp(x))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)),
|
||
|
((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))}
|
||
|
eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}},
|
||
|
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
g(x): Eq(Derivative(g(x), x), f(x)),
|
||
|
h(x): Eq(Derivative(h(x), x), h(x)),
|
||
|
k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))})
|
||
|
graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}]
|
||
|
assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1
|
||
|
assert _eqs2dict(eqs1, funcs) == eqsdict1
|
||
|
assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1
|
||
|
|
||
|
eqs2 = [Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
Eq(Derivative(g(x), x), f(x)),
|
||
|
Eq(Derivative(h(x), x), h(x)),
|
||
|
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
|
||
|
sol2 = [Eq(f(x), C1*exp(2*x)),
|
||
|
Eq(g(x), C1*exp(2*x)/2 + C2),
|
||
|
Eq(h(x), C3*exp(x)),
|
||
|
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
|
||
|
assert dsolve(eqs2) == sol2
|
||
|
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
|
||
|
(Eq(Derivative(g(x), x), f(x)),),
|
||
|
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
|
||
|
frozenset([(Eq(Derivative(h(x), x), h(x)),)])}
|
||
|
eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
|
||
|
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
g(x): Eq(Derivative(g(x), x), f(x)),
|
||
|
h(x): Eq(Derivative(h(x), x), h(x)),
|
||
|
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
|
||
|
graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
|
||
|
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2
|
||
|
assert _eqs2dict(eqs2, funcs) == eqsdict2
|
||
|
assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2
|
||
|
|
||
|
eqs3 = [Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
Eq(Derivative(g(x), x), x + f(x)),
|
||
|
Eq(Derivative(h(x), x), h(x)),
|
||
|
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
|
||
|
sol3 = [Eq(f(x), C1*exp(2*x)),
|
||
|
Eq(g(x), C1*exp(2*x)/2 + C2 + x**2/2),
|
||
|
Eq(h(x), C3*exp(x)),
|
||
|
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
|
||
|
assert dsolve(eqs3) == sol3
|
||
|
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
|
||
|
(Eq(Derivative(g(x), x), x + f(x)),),
|
||
|
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
|
||
|
frozenset([(Eq(Derivative(h(x), x), h(x)),),])}
|
||
|
eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
|
||
|
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
|
||
|
g(x): Eq(Derivative(g(x), x), x + f(x)),
|
||
|
h(x): Eq(Derivative(h(x), x), h(x)),
|
||
|
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
|
||
|
graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
|
||
|
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3
|
||
|
assert _eqs2dict(eqs3, funcs) == eqsdict3
|
||
|
assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3
|
||
|
|
||
|
# Note: To be uncommented when the default option to call dsolve first for
|
||
|
# single ODE system can be rearranged. This can be done after the doit
|
||
|
# option in dsolve is made False by default.
|
||
|
|
||
|
eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
Eq(Derivative(g(x), x), f(x) + x*g(x) + x),
|
||
|
Eq(Derivative(h(x), x), h(x)),
|
||
|
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
|
||
|
sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\
|
||
|
sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\
|
||
|
sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2
|
||
|
- sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2
|
||
|
- sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)),
|
||
|
Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\
|
||
|
sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
|
||
|
x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 +
|
||
|
x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
|
||
|
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)),
|
||
|
Eq(h(x), C3*exp(x)),
|
||
|
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
|
||
|
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 -
|
||
|
sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 -
|
||
|
sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
|
||
|
x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +
|
||
|
sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
|
||
|
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))]
|
||
|
components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
Eq(Derivative(g(x), x), x*g(x) + x + f(x))]),
|
||
|
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
|
||
|
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
|
||
|
eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
|
||
|
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)),
|
||
|
h(x): Eq(Derivative(h(x), x), h(x)),
|
||
|
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
|
||
|
graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
|
||
|
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4
|
||
|
assert _eqs2dict(eqs4, funcs) == eqsdict4
|
||
|
assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4
|
||
|
# XXX: dsolve hangs in integration here:
|
||
|
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
|
||
|
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
Eq(Derivative(g(x), x), x*g(x) + f(x)),
|
||
|
Eq(Derivative(h(x), x), h(x)),
|
||
|
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
|
||
|
sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)),
|
||
|
Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)),
|
||
|
Eq(h(x), C3*exp(x)),
|
||
|
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
|
||
|
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))]
|
||
|
components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
Eq(Derivative(g(x), x), x*g(x) + f(x))]),
|
||
|
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
|
||
|
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
|
||
|
eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
|
||
|
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
|
||
|
g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)),
|
||
|
h(x): Eq(Derivative(h(x), x), h(x)),
|
||
|
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
|
||
|
graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
|
||
|
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5
|
||
|
assert _eqs2dict(eqs5, funcs) == eqsdict5
|
||
|
assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5
|
||
|
# XXX: dsolve hangs in integration here:
|
||
|
assert dsolve_system(eqs5, simplify=False, doit=False) == [sol5]
|
||
|
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_linodesolve():
|
||
|
t, x, a = symbols("t x a")
|
||
|
f, g, h = symbols("f g h", cls=Function)
|
||
|
|
||
|
# Testing the Errors
|
||
|
raises(ValueError, lambda: linodesolve(1, t))
|
||
|
raises(ValueError, lambda: linodesolve(a, t))
|
||
|
|
||
|
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A1, t))
|
||
|
|
||
|
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A2, t))
|
||
|
|
||
|
# Testing auto functionality
|
||
|
func = [f(t), g(t)]
|
||
|
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))]
|
||
|
ceq = canonical_odes(eq, func, t)
|
||
|
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
|
||
|
A = A0
|
||
|
sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))*
|
||
|
exp(t*(-sqrt(5)/2 - Rational(1, 2))),
|
||
|
C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))]
|
||
|
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
|
||
|
|
||
|
# Testing the Errors
|
||
|
raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1])))
|
||
|
raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)])))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2))
|
||
|
raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t)))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(7, t, b=t**2))
|
||
|
raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t)))
|
||
|
|
||
|
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
|
||
|
b1 = Matrix([t, 1, t**2])
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1))
|
||
|
|
||
|
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
|
||
|
b2 = Matrix([t, t**2])
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1))
|
||
|
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1]))
|
||
|
|
||
|
# DOIT check
|
||
|
A1 = Matrix([[1, -1], [1, -1]])
|
||
|
b1 = Matrix([15*t - 10, -15*t - 5])
|
||
|
sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t,
|
||
|
C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t]
|
||
|
assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True),
|
||
|
variables=[t]) == sol1
|
||
|
|
||
|
# Testing auto functionality
|
||
|
func = [f(t), g(t)]
|
||
|
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))]
|
||
|
ceq = canonical_odes(eq, func, t)
|
||
|
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
|
||
|
A = A0
|
||
|
sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 -
|
||
|
t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 +
|
||
|
t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 + sqrt(5)*exp(-t/2 +
|
||
|
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
|
||
|
t/2)/(-5 + sqrt(5)), t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 +
|
||
|
sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2,
|
||
|
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 +
|
||
|
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
|
||
|
t/2)/(-5 + sqrt(5)), t) + exp(-sqrt(5)*t/2 -
|
||
|
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)]
|
||
|
assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol
|
||
|
|
||
|
# non-homogeneous term assumed to be 0
|
||
|
sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
|
||
|
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2,
|
||
|
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2)]
|
||
|
assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1
|
||
|
|
||
|
# Testing the Errors
|
||
|
raises(ValueError, lambda: linodesolve(t+10, t))
|
||
|
raises(ValueError, lambda: linodesolve(a*t, t))
|
||
|
|
||
|
A1 = Matrix([[1, t], [-t, 1]])
|
||
|
B1, _ = _is_commutative_anti_derivative(A1, t)
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1))
|
||
|
raises(ValueError, lambda: linodesolve(A1, t, B=1))
|
||
|
|
||
|
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
|
||
|
B2, _ = _is_commutative_anti_derivative(A2, t)
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :]))
|
||
|
raises(ValueError, lambda: linodesolve(A2, t, B=2))
|
||
|
raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31"))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(A1, t, B=B2))
|
||
|
raises(ValueError, lambda: linodesolve(A2, t, B=B1))
|
||
|
|
||
|
# Testing auto functionality
|
||
|
func = [f(t), g(t)]
|
||
|
eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))]
|
||
|
ceq = canonical_odes(eq, func, t)
|
||
|
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
|
||
|
A = A0
|
||
|
sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t),
|
||
|
(-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)]
|
||
|
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
|
||
|
assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol
|
||
|
|
||
|
A1 = Matrix([[t, 1], [t, -1]])
|
||
|
raises(NotImplementedError, lambda: linodesolve(A1, t))
|
||
|
|
||
|
# Testing the Errors
|
||
|
raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1])))
|
||
|
raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)])))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2))
|
||
|
raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t)))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(7*t, t, b=t**2))
|
||
|
raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t)))
|
||
|
|
||
|
A1 = Matrix([[1, t], [-t, 1]])
|
||
|
b1 = Matrix([t, t ** 2])
|
||
|
B1, _ = _is_commutative_anti_derivative(A1, t)
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1))
|
||
|
|
||
|
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
|
||
|
b2 = Matrix([t, 1, t**2])
|
||
|
B2, _ = _is_commutative_anti_derivative(A2, t)
|
||
|
raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(A1, t, b=b2))
|
||
|
raises(ValueError, lambda: linodesolve(A2, t, b=b1))
|
||
|
|
||
|
raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2))
|
||
|
raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1))
|
||
|
|
||
|
# Testing auto functionality
|
||
|
func = [f(x), g(x), h(x)]
|
||
|
eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
|
||
|
Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
|
||
|
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
|
||
|
ceq = canonical_odes(eq, func, x)
|
||
|
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1)
|
||
|
A = A0
|
||
|
_x1 = exp(-3*x**2/2)
|
||
|
_x2 = exp(3*x**2/2)
|
||
|
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
|
||
|
_x4 = 2*_x2*_x3/3
|
||
|
_x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
|
||
|
sol = [
|
||
|
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
|
||
|
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
|
||
|
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3,
|
||
|
]
|
||
|
assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol
|
||
|
assert constant_renumber(linodesolve(A, x, b=b, type="type4"),
|
||
|
variables=Tuple(*eq).free_symbols) == sol
|
||
|
|
||
|
A1 = Matrix([[t, 1], [t, -1]])
|
||
|
raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1))
|
||
|
|
||
|
# non-homogeneous term not passed
|
||
|
sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2),
|
||
|
-C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)]
|
||
|
assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_linear_3eq_order1_type4_slow():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
t = Symbol('t')
|
||
|
|
||
|
f = t ** 3 + log(t)
|
||
|
g = t ** 2 + sin(t)
|
||
|
eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)),
|
||
|
Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y(
|
||
|
t) + (-3 * f + g) * z(t)))
|
||
|
with dotprodsimp(True):
|
||
|
dsolve(eq1)
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_linear_neq_order1_type2_slow1():
|
||
|
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
|
||
|
x1 = Function('x1')
|
||
|
x2 = Function('x2')
|
||
|
|
||
|
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
|
||
|
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
|
||
|
eq = [eq1, eq2]
|
||
|
|
||
|
# XXX: Solution is too complicated
|
||
|
[sol] = dsolve_system(eq, simplify=False, doit=False)
|
||
|
assert checksysodesol(eq, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
# Regression test case for issue #9204
|
||
|
# https://github.com/sympy/sympy/issues/9204
|
||
|
@slow
|
||
|
def test_linear_new_order1_type2_de_lorentz_slow_check():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
|
||
|
m = Symbol("m", real=True)
|
||
|
q = Symbol("q", real=True)
|
||
|
t = Symbol("t", real=True)
|
||
|
|
||
|
e1, e2, e3 = symbols("e1:4", real=True)
|
||
|
b1, b2, b3 = symbols("b1:4", real=True)
|
||
|
v1, v2, v3 = symbols("v1:4", cls=Function, real=True)
|
||
|
|
||
|
eqs = [
|
||
|
-e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)),
|
||
|
-e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)),
|
||
|
-e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t))
|
||
|
]
|
||
|
sol = dsolve(eqs)
|
||
|
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
# Regression test case for issue #14001
|
||
|
# https://github.com/sympy/sympy/issues/14001
|
||
|
@slow
|
||
|
def test_linear_neq_order1_type2_slow_check():
|
||
|
RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0")
|
||
|
V = Function("V")
|
||
|
I = Function("I")
|
||
|
system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)]
|
||
|
[sol] = dsolve_system(system, simplify=False, doit=False)
|
||
|
|
||
|
assert checksysodesol(system, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def _linear_3eq_order1_type4_long():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
t = Symbol('t')
|
||
|
|
||
|
f = t ** 3 + log(t)
|
||
|
g = t ** 2 + sin(t)
|
||
|
|
||
|
eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)),
|
||
|
Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y(
|
||
|
t) + (-3*f + g)*z(t)))
|
||
|
|
||
|
dsolve_sol = dsolve(eq1)
|
||
|
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
|
||
|
|
||
|
x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16)
|
||
|
x_2 = sqrt(3)
|
||
|
x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2
|
||
|
x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652)
|
||
|
x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t))
|
||
|
x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t))
|
||
|
x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t))
|
||
|
x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2
|
||
|
x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196)
|
||
|
x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4
|
||
|
x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4
|
||
|
sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*(
|
||
|
-424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 -
|
||
|
167*C3/257 + x_8*x_9) + x_7*(C1 - C2))]
|
||
|
|
||
|
assert dsolve_sol1 == sol
|
||
|
assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_neq_order1_type4_slow_check1():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x = symbols("x")
|
||
|
|
||
|
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x),
|
||
|
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)]
|
||
|
sol = dsolve(eqs)
|
||
|
assert checksysodesol(eqs, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_neq_order1_type4_slow_check2():
|
||
|
f, g, h = symbols("f, g, h", cls=Function)
|
||
|
x = Symbol("x")
|
||
|
|
||
|
eqs = [
|
||
|
Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1),
|
||
|
Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) + 10),
|
||
|
Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x))
|
||
|
]
|
||
|
with dotprodsimp(True):
|
||
|
sol = dsolve(eqs)
|
||
|
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
def _neq_order1_type4_slow3():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x = symbols("x")
|
||
|
|
||
|
eqs = [
|
||
|
Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)),
|
||
|
Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x))
|
||
|
]
|
||
|
sol = [
|
||
|
Eq(f(x), (C1/2 - I*C2/2 - I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
|
||
|
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
|
||
|
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
|
||
|
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
|
||
|
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 +
|
||
|
I*x) + (C1/2 + I*C2/2 + I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
|
||
|
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
|
||
|
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
|
||
|
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
|
||
|
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 -
|
||
|
I*x)),
|
||
|
Eq(g(x), (-I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 +
|
||
|
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
|
||
|
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 -
|
||
|
I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 +
|
||
|
I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 +
|
||
|
I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2 +
|
||
|
Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 +
|
||
|
I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2,
|
||
|
x)/2 + I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 +
|
||
|
I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 +
|
||
|
exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x))
|
||
|
]
|
||
|
|
||
|
return eqs, sol
|
||
|
|
||
|
|
||
|
def test_neq_order1_type4_slow3():
|
||
|
eqs, sol = _neq_order1_type4_slow3()
|
||
|
assert dsolve_system(eqs, simplify=False, doit=False) == [sol]
|
||
|
# XXX: dsolve gives an error in integration:
|
||
|
# assert dsolve(eqs) == sol
|
||
|
# https://github.com/sympy/sympy/issues/20155
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_neq_order1_type4_slow_check3():
|
||
|
eqs, sol = _neq_order1_type4_slow3()
|
||
|
assert checksysodesol(eqs, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
@slow
|
||
|
def test_linear_3eq_order1_type4_long_dsolve_slow_xfail():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
|
||
|
eq, sol = _linear_3eq_order1_type4_long()
|
||
|
|
||
|
dsolve_sol = dsolve(eq)
|
||
|
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
|
||
|
|
||
|
assert dsolve_sol1 == sol
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
|
||
|
eq, sol = _linear_3eq_order1_type4_long()
|
||
|
|
||
|
# XXX: Only works with dotprodsimp see
|
||
|
# test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow
|
||
|
with dotprodsimp(True):
|
||
|
dsolve_sol = dsolve(eq)
|
||
|
|
||
|
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
|
||
|
assert dsolve_sol1 == sol
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_linear_3eq_order1_type4_long_check():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
|
||
|
eq, sol = _linear_3eq_order1_type4_long()
|
||
|
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_dsolve_system():
|
||
|
f, g = symbols("f g", cls=Function)
|
||
|
x = symbols("x")
|
||
|
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
|
||
|
funcs = [f(x), g(x)]
|
||
|
|
||
|
sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]]
|
||
|
assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol
|
||
|
|
||
|
raises(ValueError, lambda: dsolve_system(1))
|
||
|
raises(ValueError, lambda: dsolve_system(eqs, 1))
|
||
|
raises(ValueError, lambda: dsolve_system(eqs, funcs, 1))
|
||
|
raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x))
|
||
|
|
||
|
eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x)))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq) == ([], []))
|
||
|
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], []))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], []))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], []))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], []))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], []))
|
||
|
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], []))
|
||
|
|
||
|
def test_dsolve():
|
||
|
|
||
|
f, g = symbols('f g', cls=Function)
|
||
|
x, y = symbols('x y')
|
||
|
|
||
|
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
|
||
|
with raises(ValueError):
|
||
|
dsolve(eqs)
|
||
|
|
||
|
eqs = [f(x, y).diff(x)]
|
||
|
with raises(ValueError):
|
||
|
dsolve(eqs)
|
||
|
|
||
|
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
|
||
|
with raises(ValueError):
|
||
|
dsolve(eqs)
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_higher_order1_slow1():
|
||
|
x, y = symbols("x y", cls=Function)
|
||
|
t = symbols("t")
|
||
|
|
||
|
eq = [
|
||
|
Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)),
|
||
|
Eq(diff(y(t),t,t), (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))
|
||
|
]
|
||
|
sol, = dsolve_system(eq, simplify=False, doit=False)
|
||
|
# The solution is too long to write out explicitly and checkodesol is too
|
||
|
# slow so we test for particular values of t:
|
||
|
for e in eq:
|
||
|
res = (e.lhs - e.rhs).subs({sol[0].lhs:sol[0].rhs, sol[1].lhs:sol[1].rhs})
|
||
|
res = res.subs({d: d.doit(deep=False) for d in res.atoms(Derivative)})
|
||
|
assert ratsimp(res.subs(t, 1)) == 0
|
||
|
|
||
|
|
||
|
def test_second_order_type2_slow1():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
t, l = symbols('t, l')
|
||
|
|
||
|
eqs1 = [Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))),
|
||
|
Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t)))]
|
||
|
sol1 = [Eq(x(t), I*C1*airyai(t*(2 - I)**(S(1)/3)) + I*C2*airybi(t*(2 - I)**(S(1)/3)) - I*C3*airyai(t*(2 +
|
||
|
I)**(S(1)/3)) - I*C4*airybi(t*(2 + I)**(S(1)/3))),
|
||
|
Eq(y(t), C1*airyai(t*(2 - I)**(S(1)/3)) + C2*airybi(t*(2 - I)**(S(1)/3)) + C3*airyai(t*(2 + I)**(S(1)/3)) +
|
||
|
C4*airybi(t*(2 + I)**(S(1)/3)))]
|
||
|
assert dsolve(eqs1) == sol1
|
||
|
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
@XFAIL
|
||
|
def test_nonlinear_3eq_order1_type1():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
a, b, c = symbols('a b c')
|
||
|
|
||
|
eqs = [
|
||
|
a * f(x).diff(x) - (b - c) * g(x) * h(x),
|
||
|
b * g(x).diff(x) - (c - a) * h(x) * f(x),
|
||
|
c * h(x).diff(x) - (a - b) * f(x) * g(x),
|
||
|
]
|
||
|
|
||
|
assert dsolve(eqs) # NotImplementedError
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
def test_nonlinear_3eq_order1_type4():
|
||
|
eqs = [
|
||
|
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
|
||
|
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
|
||
|
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
|
||
|
]
|
||
|
dsolve(eqs) # KeyError when matching
|
||
|
# sol = ?
|
||
|
# assert dsolve_sol == sol
|
||
|
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
@XFAIL
|
||
|
def test_nonlinear_3eq_order1_type3():
|
||
|
if ON_CI:
|
||
|
skip("Too slow for CI.")
|
||
|
eqs = [
|
||
|
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
|
||
|
Eq(g(x).diff(x), (4 - 2*h(x) )),
|
||
|
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
|
||
|
]
|
||
|
dsolve(eqs) # Not sure if this finishes...
|
||
|
# sol = ?
|
||
|
# assert dsolve_sol == sol
|
||
|
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
@XFAIL
|
||
|
def test_nonlinear_3eq_order1_type5():
|
||
|
eqs = [
|
||
|
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
|
||
|
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
|
||
|
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
|
||
|
]
|
||
|
dsolve(eqs) # KeyError
|
||
|
# sol = ?
|
||
|
# assert dsolve_sol == sol
|
||
|
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_linear_2eq_order1():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
k, l, m, n = symbols('k, l, m, n', Integer=True)
|
||
|
t = Symbol('t')
|
||
|
x0, y0 = symbols('x0, y0', cls=Function)
|
||
|
|
||
|
eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
|
||
|
sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
|
||
|
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
|
||
|
assert checksysodesol(eq1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
|
||
|
sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
|
||
|
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
|
||
|
assert checksysodesol(eq2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
|
||
|
sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
|
||
|
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
|
||
|
assert checksysodesol(eq3, sol3) == (True, [0, 0])
|
||
|
|
||
|
eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
|
||
|
sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
|
||
|
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
|
||
|
assert checksysodesol(eq4, sol4) == (True, [0, 0])
|
||
|
|
||
|
eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
|
||
|
sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
|
||
|
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
|
||
|
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
|
||
|
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
|
||
|
assert checksysodesol(eq5, sol5) == (True, [0, 0])
|
||
|
|
||
|
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
|
||
|
sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
|
||
|
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
|
||
|
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
|
||
|
s = dsolve(eq6)
|
||
|
assert s == sol6 # too complicated to test with subs and simplify
|
||
|
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
|
||
|
|
||
|
|
||
|
def test_nonlinear_2eq_order1():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
t = Symbol('t')
|
||
|
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
|
||
|
sol1 = [
|
||
|
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
|
||
|
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
|
||
|
assert dsolve(eq1) == sol1
|
||
|
assert checksysodesol(eq1, sol1) == (True, [0, 0])
|
||
|
|
||
|
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
|
||
|
sol2 = [
|
||
|
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
|
||
|
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
|
||
|
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
|
||
|
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
|
||
|
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
|
||
|
assert dsolve(eq2) == sol2
|
||
|
assert checksysodesol(eq2, sol2) == (True, [0, 0])
|
||
|
|
||
|
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
|
||
|
tt = Rational(2, 3)
|
||
|
sol3 = [
|
||
|
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
|
||
|
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
|
||
|
assert dsolve(eq3) == sol3
|
||
|
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
|
||
|
|
||
|
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
|
||
|
sol4 = {Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))}
|
||
|
assert dsolve(eq4) == sol4
|
||
|
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
|
||
|
|
||
|
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
|
||
|
sol5 = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)}
|
||
|
assert dsolve(eq5) == sol5
|
||
|
assert checksysodesol(eq5, sol5) == (True, [0, 0])
|
||
|
|
||
|
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
|
||
|
sol6 = [
|
||
|
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
|
||
|
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
|
||
|
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
|
||
|
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
|
||
|
assert dsolve(eq6) == sol6
|
||
|
assert checksysodesol(eq6, sol6) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
@slow
|
||
|
def test_nonlinear_3eq_order1():
|
||
|
x, y, z = symbols('x, y, z', cls=Function)
|
||
|
t, u = symbols('t u')
|
||
|
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
|
||
|
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
|
||
|
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
|
||
|
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
|
||
|
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
|
||
|
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
|
||
|
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
|
||
|
|
||
|
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
|
||
|
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
|
||
|
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
|
||
|
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
|
||
|
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
|
||
|
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
|
||
|
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
|
||
|
|
||
|
|
||
|
def test_C1_function_9239():
|
||
|
t = Symbol('t')
|
||
|
C1 = Function('C1')
|
||
|
C2 = Function('C2')
|
||
|
C3 = Symbol('C3')
|
||
|
C4 = Symbol('C4')
|
||
|
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
|
||
|
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
|
||
|
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
|
||
|
assert checksysodesol(eq, sol) == (True, [0, 0])
|
||
|
|
||
|
|
||
|
def test_dsolve_linsystem_symbol():
|
||
|
eps = Symbol('epsilon', positive=True)
|
||
|
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
|
||
|
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
|
||
|
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
|
||
|
assert checksysodesol(eq1, sol1) == (True, [0, 0])
|