ai-content-maker/.venv/Lib/site-packages/sympy/tensor/functions.py

155 lines
4.1 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from collections.abc import Iterable
from functools import singledispatch
from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.core.parameters import global_parameters
class TensorProduct(Expr):
"""
Generic class for tensor products.
"""
is_number = False
def __new__(cls, *args, **kwargs):
from sympy.tensor.array import NDimArray, tensorproduct, Array
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.matrices import MatrixBase
from sympy.strategies import flatten
args = [sympify(arg) for arg in args]
evaluate = kwargs.get("evaluate", global_parameters.evaluate)
if not evaluate:
obj = Expr.__new__(cls, *args)
return obj
arrays = []
other = []
scalar = S.One
for arg in args:
if isinstance(arg, (Iterable, MatrixBase, NDimArray)):
arrays.append(Array(arg))
elif isinstance(arg, (MatrixExpr,)):
other.append(arg)
else:
scalar *= arg
coeff = scalar*tensorproduct(*arrays)
if len(other) == 0:
return coeff
if coeff != 1:
newargs = [coeff] + other
else:
newargs = other
obj = Expr.__new__(cls, *newargs, **kwargs)
return flatten(obj)
def rank(self):
return len(self.shape)
def _get_args_shapes(self):
from sympy.tensor.array import Array
return [i.shape if hasattr(i, "shape") else Array(i).shape for i in self.args]
@property
def shape(self):
shape_list = self._get_args_shapes()
return sum(shape_list, ())
def __getitem__(self, index):
index = iter(index)
return Mul.fromiter(
arg.__getitem__(tuple(next(index) for i in shp))
for arg, shp in zip(self.args, self._get_args_shapes())
)
@singledispatch
def shape(expr):
"""
Return the shape of the *expr* as a tuple. *expr* should represent
suitable object such as matrix or array.
Parameters
==========
expr : SymPy object having ``MatrixKind`` or ``ArrayKind``.
Raises
======
NoShapeError : Raised when object with wrong kind is passed.
Examples
========
This function returns the shape of any object representing matrix or array.
>>> from sympy import shape, Array, ImmutableDenseMatrix, Integral
>>> from sympy.abc import x
>>> A = Array([1, 2])
>>> shape(A)
(2,)
>>> shape(Integral(A, x))
(2,)
>>> M = ImmutableDenseMatrix([1, 2])
>>> shape(M)
(2, 1)
>>> shape(Integral(M, x))
(2, 1)
You can support new type by dispatching.
>>> from sympy import Expr
>>> class NewExpr(Expr):
... pass
>>> @shape.register(NewExpr)
... def _(expr):
... return shape(expr.args[0])
>>> shape(NewExpr(M))
(2, 1)
If unsuitable expression is passed, ``NoShapeError()`` will be raised.
>>> shape(Integral(x, x))
Traceback (most recent call last):
...
sympy.tensor.functions.NoShapeError: shape() called on non-array object: Integral(x, x)
Notes
=====
Array-like classes (such as ``Matrix`` or ``NDimArray``) has ``shape``
property which returns its shape, but it cannot be used for non-array
classes containing array. This function returns the shape of any
registered object representing array.
"""
if hasattr(expr, "shape"):
return expr.shape
raise NoShapeError(
"%s does not have shape, or its type is not registered to shape()." % expr)
class NoShapeError(Exception):
"""
Raised when ``shape()`` is called on non-array object.
This error can be imported from ``sympy.tensor.functions``.
Examples
========
>>> from sympy import shape
>>> from sympy.abc import x
>>> shape(x)
Traceback (most recent call last):
...
sympy.tensor.functions.NoShapeError: shape() called on non-array object: x
"""
pass