ai-content-maker/.venv/Lib/site-packages/sympy/vector/tests/test_dyadic.py

135 lines
4.8 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from sympy.core.numbers import pi
from sympy.core.symbol import symbols
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.simplify.simplify import simplify
from sympy.vector import (CoordSys3D, Vector, Dyadic,
DyadicAdd, DyadicMul, DyadicZero,
BaseDyadic, express)
A = CoordSys3D('A')
def test_dyadic():
a, b = symbols('a, b')
assert Dyadic.zero != 0
assert isinstance(Dyadic.zero, DyadicZero)
assert BaseDyadic(A.i, A.j) != BaseDyadic(A.j, A.i)
assert (BaseDyadic(Vector.zero, A.i) ==
BaseDyadic(A.i, Vector.zero) == Dyadic.zero)
d1 = A.i | A.i
d2 = A.j | A.j
d3 = A.i | A.j
assert isinstance(d1, BaseDyadic)
d_mul = a*d1
assert isinstance(d_mul, DyadicMul)
assert d_mul.base_dyadic == d1
assert d_mul.measure_number == a
assert isinstance(a*d1 + b*d3, DyadicAdd)
assert d1 == A.i.outer(A.i)
assert d3 == A.i.outer(A.j)
v1 = a*A.i - A.k
v2 = A.i + b*A.j
assert v1 | v2 == v1.outer(v2) == a * (A.i|A.i) + (a*b) * (A.i|A.j) +\
- (A.k|A.i) - b * (A.k|A.j)
assert d1 * 0 == Dyadic.zero
assert d1 != Dyadic.zero
assert d1 * 2 == 2 * (A.i | A.i)
assert d1 / 2. == 0.5 * d1
assert d1.dot(0 * d1) == Vector.zero
assert d1 & d2 == Dyadic.zero
assert d1.dot(A.i) == A.i == d1 & A.i
assert d1.cross(Vector.zero) == Dyadic.zero
assert d1.cross(A.i) == Dyadic.zero
assert d1 ^ A.j == d1.cross(A.j)
assert d1.cross(A.k) == - A.i | A.j
assert d2.cross(A.i) == - A.j | A.k == d2 ^ A.i
assert A.i ^ d1 == Dyadic.zero
assert A.j.cross(d1) == - A.k | A.i == A.j ^ d1
assert Vector.zero.cross(d1) == Dyadic.zero
assert A.k ^ d1 == A.j | A.i
assert A.i.dot(d1) == A.i & d1 == A.i
assert A.j.dot(d1) == Vector.zero
assert Vector.zero.dot(d1) == Vector.zero
assert A.j & d2 == A.j
assert d1.dot(d3) == d1 & d3 == A.i | A.j == d3
assert d3 & d1 == Dyadic.zero
q = symbols('q')
B = A.orient_new_axis('B', q, A.k)
assert express(d1, B) == express(d1, B, B)
expr1 = ((cos(q)**2) * (B.i | B.i) + (-sin(q) * cos(q)) *
(B.i | B.j) + (-sin(q) * cos(q)) * (B.j | B.i) + (sin(q)**2) *
(B.j | B.j))
assert (express(d1, B) - expr1).simplify() == Dyadic.zero
expr2 = (cos(q)) * (B.i | A.i) + (-sin(q)) * (B.j | A.i)
assert (express(d1, B, A) - expr2).simplify() == Dyadic.zero
expr3 = (cos(q)) * (A.i | B.i) + (-sin(q)) * (A.i | B.j)
assert (express(d1, A, B) - expr3).simplify() == Dyadic.zero
assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]])
assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0],
[0, 0, 0],
[0, 0, 0]])
assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]])
a, b, c, d, e, f = symbols('a, b, c, d, e, f')
v1 = a * A.i + b * A.j + c * A.k
v2 = d * A.i + e * A.j + f * A.k
d4 = v1.outer(v2)
assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f],
[b * d, b * e, b * f],
[c * d, c * e, c * f]])
d5 = v1.outer(v1)
C = A.orient_new_axis('C', q, A.i)
for expected, actual in zip(C.rotation_matrix(A) * d5.to_matrix(A) * \
C.rotation_matrix(A).T, d5.to_matrix(C)):
assert (expected - actual).simplify() == 0
def test_dyadic_simplify():
x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A')
N = CoordSys3D('N')
dy = N.i | N.i
test1 = (1 / x + 1 / y) * dy
assert (N.i & test1 & N.i) != (x + y) / (x * y)
test1 = test1.simplify()
assert test1.simplify() == simplify(test1)
assert (N.i & test1 & N.i) == (x + y) / (x * y)
test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy
test2 = test2.simplify()
assert (N.i & test2 & N.i) == (A**2 * s**4 / (4 * pi * k * m**3))
test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy
test3 = test3.simplify()
assert (N.i & test3 & N.i) == 0
test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy
test4 = test4.simplify()
assert (N.i & test4 & N.i) == -2 * y
def test_dyadic_srepr():
from sympy.printing.repr import srepr
N = CoordSys3D('N')
dy = N.i | N.j
res = "BaseDyadic(CoordSys3D(Str('N'), Tuple(ImmutableDenseMatrix([["\
"Integer(1), Integer(0), Integer(0)], [Integer(0), Integer(1), "\
"Integer(0)], [Integer(0), Integer(0), Integer(1)]]), "\
"VectorZero())).i, CoordSys3D(Str('N'), Tuple(ImmutableDenseMatrix("\
"[[Integer(1), Integer(0), Integer(0)], [Integer(0), Integer(1), "\
"Integer(0)], [Integer(0), Integer(0), Integer(1)]]), VectorZero())).j)"
assert srepr(dy) == res