ai-content-maker/.venv/Lib/site-packages/tensorboard/plugins/graph/graphs_plugin.py

338 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""The TensorBoard Graphs plugin."""
import json
from werkzeug import wrappers
from tensorboard import errors
from tensorboard import plugin_util
from tensorboard.backend import http_util
from tensorboard.backend import process_graph
from tensorboard.compat.proto import config_pb2
from tensorboard.compat.proto import graph_pb2
from tensorboard.data import provider
from tensorboard.plugins import base_plugin
from tensorboard.plugins.graph import graph_util
from tensorboard.plugins.graph import keras_util
from tensorboard.plugins.graph import metadata
from tensorboard.util import tb_logging
logger = tb_logging.get_logger()
class GraphsPlugin(base_plugin.TBPlugin):
"""Graphs Plugin for TensorBoard."""
plugin_name = metadata.PLUGIN_NAME
def __init__(self, context):
"""Instantiates GraphsPlugin via TensorBoard core.
Args:
context: A base_plugin.TBContext instance.
"""
self._data_provider = context.data_provider
def get_plugin_apps(self):
return {
"/graph": self.graph_route,
"/info": self.info_route,
"/run_metadata": self.run_metadata_route,
}
def is_active(self):
"""The graphs plugin is active iff any run has a graph or metadata."""
return False # `list_plugins` as called by TB core suffices
def data_plugin_names(self):
return (
metadata.PLUGIN_NAME,
metadata.PLUGIN_NAME_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
metadata.PLUGIN_NAME_KERAS_MODEL,
metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
)
def frontend_metadata(self):
return base_plugin.FrontendMetadata(
element_name="tf-graph-dashboard",
# TODO(@chihuahua): Reconcile this setting with Health Pills.
disable_reload=True,
)
def info_impl(self, ctx, experiment=None):
"""Returns a dict of all runs and their data availabilities."""
result = {}
def add_row_item(run, tag=None):
run_item = result.setdefault(
run,
{
"run": run,
"tags": {},
# A run-wide GraphDef of ops.
"run_graph": False,
},
)
tag_item = None
if tag:
tag_item = run_item.get("tags").setdefault(
tag,
{
"tag": tag,
"conceptual_graph": False,
# A tagged GraphDef of ops.
"op_graph": False,
"profile": False,
},
)
return (run_item, tag_item)
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
)
for (run_name, tags) in mapping.items():
for (tag, tag_data) in tags.items():
# The Summary op is defined in TensorFlow and does not use a stringified proto
# as a content of plugin data. It contains single string that denotes a version.
# https://github.com/tensorflow/tensorflow/blob/11f4ecb54708865ec757ca64e4805957b05d7570/tensorflow/python/ops/summary_ops_v2.py#L789-L790
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["op_graph"] = True
# Tensors associated with plugin name metadata.PLUGIN_NAME_RUN_METADATA
# contain both op graph and profile information.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_RUN_METADATA,
)
for (run_name, tags) in mapping.items():
for (tag, tag_data) in tags.items():
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["profile"] = True
tag_item["op_graph"] = True
# Tensors associated with plugin name metadata.PLUGIN_NAME_KERAS_MODEL
# contain serialized Keras model in JSON format.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_KERAS_MODEL,
)
for (run_name, tags) in mapping.items():
for (tag, tag_data) in tags.items():
if tag_data.plugin_content != b"1":
logger.warning(
"Ignoring unrecognizable version of RunMetadata."
)
continue
(_, tag_item) = add_row_item(run_name, tag)
tag_item["conceptual_graph"] = True
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME,
)
for (run_name, tags) in mapping.items():
if metadata.RUN_GRAPH_NAME in tags:
(run_item, _) = add_row_item(run_name, None)
run_item["run_graph"] = True
# Top level `Event.tagged_run_metadata` represents profile data only.
mapping = self._data_provider.list_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
)
for (run_name, tags) in mapping.items():
for tag in tags:
(_, tag_item) = add_row_item(run_name, tag)
tag_item["profile"] = True
return result
def _read_blob(self, ctx, experiment, plugin_names, run, tag):
for plugin_name in plugin_names:
blob_sequences = self._data_provider.read_blob_sequences(
ctx,
experiment_id=experiment,
plugin_name=plugin_name,
run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
downsample=1,
)
blob_sequence_data = blob_sequences.get(run, {}).get(tag, ())
try:
blob_ref = blob_sequence_data[0].values[0]
except IndexError:
continue
return self._data_provider.read_blob(
ctx, blob_key=blob_ref.blob_key
)
raise errors.NotFoundError()
def graph_impl(
self,
ctx,
run,
tag,
is_conceptual,
experiment=None,
limit_attr_size=None,
large_attrs_key=None,
):
"""Result of the form `(body, mime_type)`; may raise `NotFound`."""
if is_conceptual:
keras_model_config = json.loads(
self._read_blob(
ctx,
experiment,
[metadata.PLUGIN_NAME_KERAS_MODEL],
run,
tag,
)
)
graph = keras_util.keras_model_to_graph_def(keras_model_config)
elif tag is None:
graph_raw = self._read_blob(
ctx,
experiment,
[metadata.PLUGIN_NAME],
run,
metadata.RUN_GRAPH_NAME,
)
graph = graph_pb2.GraphDef.FromString(graph_raw)
else:
# Op graph: could be either of two plugins. (Cf. `info_impl`.)
plugins = [
metadata.PLUGIN_NAME_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA_WITH_GRAPH,
]
raw_run_metadata = self._read_blob(
ctx, experiment, plugins, run, tag
)
run_metadata = config_pb2.RunMetadata.FromString(raw_run_metadata)
graph = graph_util.merge_graph_defs(
[
func_graph.pre_optimization_graph
for func_graph in run_metadata.function_graphs
]
)
# This next line might raise a ValueError if the limit parameters
# are invalid (size is negative, size present but key absent, etc.).
process_graph.prepare_graph_for_ui(
graph, limit_attr_size, large_attrs_key
)
return (str(graph), "text/x-protobuf") # pbtxt
def run_metadata_impl(self, ctx, experiment, run, tag):
"""Result of the form `(body, mime_type)`; may raise `NotFound`."""
# Profile graph: could be either of two plugins. (Cf. `info_impl`.)
plugins = [
metadata.PLUGIN_NAME_TAGGED_RUN_METADATA,
metadata.PLUGIN_NAME_RUN_METADATA,
]
raw_run_metadata = self._read_blob(ctx, experiment, plugins, run, tag)
run_metadata = config_pb2.RunMetadata.FromString(raw_run_metadata)
return (str(run_metadata), "text/x-protobuf") # pbtxt
@wrappers.Request.application
def info_route(self, request):
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
info = self.info_impl(ctx, experiment)
return http_util.Respond(request, info, "application/json")
@wrappers.Request.application
def graph_route(self, request):
"""Given a single run, return the graph definition in protobuf
format."""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
run = request.args.get("run")
tag = request.args.get("tag")
conceptual_arg = request.args.get("conceptual", False)
is_conceptual = True if conceptual_arg == "true" else False
if run is None:
return http_util.Respond(
request, 'query parameter "run" is required', "text/plain", 400
)
limit_attr_size = request.args.get("limit_attr_size", None)
if limit_attr_size is not None:
try:
limit_attr_size = int(limit_attr_size)
except ValueError:
return http_util.Respond(
request,
"query parameter `limit_attr_size` must be an integer",
"text/plain",
400,
)
large_attrs_key = request.args.get("large_attrs_key", None)
try:
result = self.graph_impl(
ctx,
run,
tag,
is_conceptual,
experiment,
limit_attr_size,
large_attrs_key,
)
except ValueError as e:
return http_util.Respond(request, e.message, "text/plain", code=400)
(body, mime_type) = result
return http_util.Respond(request, body, mime_type)
@wrappers.Request.application
def run_metadata_route(self, request):
"""Given a tag and a run, return the session.run() metadata."""
ctx = plugin_util.context(request.environ)
experiment = plugin_util.experiment_id(request.environ)
tag = request.args.get("tag")
run = request.args.get("run")
if tag is None:
return http_util.Respond(
request, 'query parameter "tag" is required', "text/plain", 400
)
if run is None:
return http_util.Respond(
request, 'query parameter "run" is required', "text/plain", 400
)
(body, mime_type) = self.run_metadata_impl(ctx, experiment, run, tag)
return http_util.Respond(request, body, mime_type)