258 lines
8.9 KiB
Python
258 lines
8.9 KiB
Python
|
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""The TensorBoard Images plugin."""
|
||
|
|
||
|
|
||
|
import imghdr
|
||
|
import urllib.parse
|
||
|
|
||
|
from werkzeug import wrappers
|
||
|
|
||
|
from tensorboard import errors
|
||
|
from tensorboard import plugin_util
|
||
|
from tensorboard.backend import http_util
|
||
|
from tensorboard.data import provider
|
||
|
from tensorboard.plugins import base_plugin
|
||
|
from tensorboard.plugins.image import metadata
|
||
|
|
||
|
|
||
|
_IMGHDR_TO_MIMETYPE = {
|
||
|
"bmp": "image/bmp",
|
||
|
"gif": "image/gif",
|
||
|
"jpeg": "image/jpeg",
|
||
|
"png": "image/png",
|
||
|
"svg": "image/svg+xml",
|
||
|
}
|
||
|
|
||
|
_DEFAULT_IMAGE_MIMETYPE = "application/octet-stream"
|
||
|
_DEFAULT_DOWNSAMPLING = 10 # images per time series
|
||
|
|
||
|
|
||
|
# Extend imghdr.tests to include svg.
|
||
|
def detect_svg(data, f):
|
||
|
del f # Unused.
|
||
|
# Assume XML documents attached to image tag to be SVG.
|
||
|
if data.startswith(b"<?xml ") or data.startswith(b"<svg "):
|
||
|
return "svg"
|
||
|
|
||
|
|
||
|
imghdr.tests.append(detect_svg)
|
||
|
|
||
|
|
||
|
class ImagesPlugin(base_plugin.TBPlugin):
|
||
|
"""Images Plugin for TensorBoard."""
|
||
|
|
||
|
plugin_name = metadata.PLUGIN_NAME
|
||
|
|
||
|
def __init__(self, context):
|
||
|
"""Instantiates ImagesPlugin via TensorBoard core.
|
||
|
|
||
|
Args:
|
||
|
context: A base_plugin.TBContext instance.
|
||
|
"""
|
||
|
self._downsample_to = (context.sampling_hints or {}).get(
|
||
|
self.plugin_name, _DEFAULT_DOWNSAMPLING
|
||
|
)
|
||
|
self._data_provider = context.data_provider
|
||
|
self._version_checker = plugin_util._MetadataVersionChecker(
|
||
|
data_kind="image",
|
||
|
latest_known_version=0,
|
||
|
)
|
||
|
|
||
|
def get_plugin_apps(self):
|
||
|
return {
|
||
|
"/images": self._serve_image_metadata,
|
||
|
"/individualImage": self._serve_individual_image,
|
||
|
"/tags": self._serve_tags,
|
||
|
}
|
||
|
|
||
|
def is_active(self):
|
||
|
return False # `list_plugins` as called by TB core suffices
|
||
|
|
||
|
def frontend_metadata(self):
|
||
|
return base_plugin.FrontendMetadata(element_name="tf-image-dashboard")
|
||
|
|
||
|
def _index_impl(self, ctx, experiment):
|
||
|
mapping = self._data_provider.list_blob_sequences(
|
||
|
ctx,
|
||
|
experiment_id=experiment,
|
||
|
plugin_name=metadata.PLUGIN_NAME,
|
||
|
)
|
||
|
result = {run: {} for run in mapping}
|
||
|
for (run, tag_to_content) in mapping.items():
|
||
|
for (tag, metadatum) in tag_to_content.items():
|
||
|
md = metadata.parse_plugin_metadata(metadatum.plugin_content)
|
||
|
if not self._version_checker.ok(md.version, run, tag):
|
||
|
continue
|
||
|
description = plugin_util.markdown_to_safe_html(
|
||
|
metadatum.description
|
||
|
)
|
||
|
result[run][tag] = {
|
||
|
"displayName": metadatum.display_name,
|
||
|
"description": description,
|
||
|
"samples": metadatum.max_length - 2, # width, height
|
||
|
}
|
||
|
return result
|
||
|
|
||
|
@wrappers.Request.application
|
||
|
def _serve_image_metadata(self, request):
|
||
|
"""Given a tag and list of runs, serve a list of metadata for images.
|
||
|
|
||
|
Note that the images themselves are not sent; instead, we respond with URLs
|
||
|
to the images. The frontend should treat these URLs as opaque and should not
|
||
|
try to parse information about them or generate them itself, as the format
|
||
|
may change.
|
||
|
|
||
|
Args:
|
||
|
request: A werkzeug.wrappers.Request object.
|
||
|
|
||
|
Returns:
|
||
|
A werkzeug.Response application.
|
||
|
"""
|
||
|
ctx = plugin_util.context(request.environ)
|
||
|
experiment = plugin_util.experiment_id(request.environ)
|
||
|
tag = request.args.get("tag")
|
||
|
run = request.args.get("run")
|
||
|
sample = int(request.args.get("sample", 0))
|
||
|
try:
|
||
|
response = self._image_response_for_run(
|
||
|
ctx, experiment, run, tag, sample
|
||
|
)
|
||
|
except KeyError:
|
||
|
return http_util.Respond(
|
||
|
request, "Invalid run or tag", "text/plain", code=400
|
||
|
)
|
||
|
return http_util.Respond(request, response, "application/json")
|
||
|
|
||
|
def _image_response_for_run(self, ctx, experiment, run, tag, sample):
|
||
|
"""Builds a JSON-serializable object with information about images.
|
||
|
|
||
|
Args:
|
||
|
run: The name of the run.
|
||
|
tag: The name of the tag the images all belong to.
|
||
|
sample: The zero-indexed sample of the image for which to retrieve
|
||
|
information. For instance, setting `sample` to `2` will fetch
|
||
|
information about only the third image of each batch. Steps with
|
||
|
fewer than three images will be omitted from the results.
|
||
|
|
||
|
Returns:
|
||
|
A list of dictionaries containing the wall time, step, and URL
|
||
|
for each image.
|
||
|
|
||
|
Raises:
|
||
|
KeyError, NotFoundError: If no image data exists for the given
|
||
|
parameters.
|
||
|
"""
|
||
|
all_images = self._data_provider.read_blob_sequences(
|
||
|
ctx,
|
||
|
experiment_id=experiment,
|
||
|
plugin_name=metadata.PLUGIN_NAME,
|
||
|
downsample=self._downsample_to,
|
||
|
run_tag_filter=provider.RunTagFilter(runs=[run], tags=[tag]),
|
||
|
)
|
||
|
images = all_images.get(run, {}).get(tag, None)
|
||
|
if images is None:
|
||
|
raise errors.NotFoundError(
|
||
|
"No image data for run=%r, tag=%r" % (run, tag)
|
||
|
)
|
||
|
return [
|
||
|
{
|
||
|
"wall_time": datum.wall_time,
|
||
|
"step": datum.step,
|
||
|
"query": self._data_provider_query(datum.values[sample + 2]),
|
||
|
}
|
||
|
for datum in images
|
||
|
if len(datum.values) - 2 > sample
|
||
|
]
|
||
|
|
||
|
def _filter_by_sample(self, tensor_events, sample):
|
||
|
return [
|
||
|
tensor_event
|
||
|
for tensor_event in tensor_events
|
||
|
if (
|
||
|
len(tensor_event.tensor_proto.string_val) - 2 # width, height
|
||
|
> sample
|
||
|
)
|
||
|
]
|
||
|
|
||
|
def _query_for_individual_image(self, run, tag, sample, index):
|
||
|
"""Builds a URL for accessing the specified image.
|
||
|
|
||
|
This should be kept in sync with _serve_image_metadata. Note that the URL is
|
||
|
*not* guaranteed to always return the same image, since images may be
|
||
|
unloaded from the reservoir as new images come in.
|
||
|
|
||
|
Args:
|
||
|
run: The name of the run.
|
||
|
tag: The tag.
|
||
|
sample: The relevant sample index, zero-indexed. See documentation
|
||
|
on `_image_response_for_run` for more details.
|
||
|
index: The index of the image. Negative values are OK.
|
||
|
|
||
|
Returns:
|
||
|
A string representation of a URL that will load the index-th sampled image
|
||
|
in the given run with the given tag.
|
||
|
"""
|
||
|
query_string = urllib.parse.urlencode(
|
||
|
{
|
||
|
"run": run,
|
||
|
"tag": tag,
|
||
|
"sample": sample,
|
||
|
"index": index,
|
||
|
}
|
||
|
)
|
||
|
return query_string
|
||
|
|
||
|
def _data_provider_query(self, blob_reference):
|
||
|
return urllib.parse.urlencode({"blob_key": blob_reference.blob_key})
|
||
|
|
||
|
def _get_generic_data_individual_image(self, ctx, blob_key):
|
||
|
"""Returns the actual image bytes for a given image.
|
||
|
|
||
|
Args:
|
||
|
blob_key: As returned by a previous `read_blob_sequences` call.
|
||
|
|
||
|
Returns:
|
||
|
A bytestring of the raw image bytes.
|
||
|
"""
|
||
|
return self._data_provider.read_blob(ctx, blob_key=blob_key)
|
||
|
|
||
|
@wrappers.Request.application
|
||
|
def _serve_individual_image(self, request):
|
||
|
"""Serves an individual image."""
|
||
|
try:
|
||
|
ctx = plugin_util.context(request.environ)
|
||
|
blob_key = request.args["blob_key"]
|
||
|
data = self._get_generic_data_individual_image(ctx, blob_key)
|
||
|
except (KeyError, IndexError):
|
||
|
return http_util.Respond(
|
||
|
request,
|
||
|
"Invalid run, tag, index, or sample",
|
||
|
"text/plain",
|
||
|
code=400,
|
||
|
)
|
||
|
image_type = imghdr.what(None, data)
|
||
|
content_type = _IMGHDR_TO_MIMETYPE.get(
|
||
|
image_type, _DEFAULT_IMAGE_MIMETYPE
|
||
|
)
|
||
|
return http_util.Respond(request, data, content_type)
|
||
|
|
||
|
@wrappers.Request.application
|
||
|
def _serve_tags(self, request):
|
||
|
ctx = plugin_util.context(request.environ)
|
||
|
experiment = plugin_util.experiment_id(request.environ)
|
||
|
index = self._index_impl(ctx, experiment)
|
||
|
return http_util.Respond(request, index, "application/json")
|