215 lines
7.4 KiB
Python
215 lines
7.4 KiB
Python
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""Mesh summaries and TensorFlow operations to create them.
|
||
|
|
||
|
V2 versions
|
||
|
"""
|
||
|
|
||
|
import json
|
||
|
|
||
|
from tensorboard.compat import tf2 as tf
|
||
|
from tensorboard.compat.proto import summary_pb2
|
||
|
from tensorboard.plugins.mesh import metadata
|
||
|
from tensorboard.plugins.mesh import plugin_data_pb2
|
||
|
from tensorboard.util import tensor_util
|
||
|
|
||
|
|
||
|
def _write_summary(
|
||
|
name, description, tensor, content_type, components, json_config, step
|
||
|
):
|
||
|
"""Creates a tensor summary with summary metadata.
|
||
|
|
||
|
Args:
|
||
|
name: A name for this summary. The summary tag used for TensorBoard will
|
||
|
be this name prefixed by any active name scopes.
|
||
|
description: Optional long-form description for this summary, as a
|
||
|
constant `str`. Markdown is supported. Defaults to empty.
|
||
|
tensor: Tensor to display in summary.
|
||
|
content_type: Type of content inside the Tensor.
|
||
|
components: Bitmask representing present parts (vertices, colors, etc.) that
|
||
|
belong to the summary.
|
||
|
json_config: A string, JSON-serialized dictionary of ThreeJS classes
|
||
|
configuration.
|
||
|
step: Explicit `int64`-castable monotonic step value for this summary. If
|
||
|
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
|
||
|
not be None.
|
||
|
|
||
|
Returns:
|
||
|
A boolean indicating if summary was saved successfully or not.
|
||
|
"""
|
||
|
tensor = tf.convert_to_tensor(value=tensor)
|
||
|
shape = tensor.shape.as_list()
|
||
|
shape = [dim if dim is not None else -1 for dim in shape]
|
||
|
tensor_metadata = metadata.create_summary_metadata(
|
||
|
name,
|
||
|
None, # display_name
|
||
|
content_type,
|
||
|
components,
|
||
|
shape,
|
||
|
description,
|
||
|
json_config=json_config,
|
||
|
)
|
||
|
return tf.summary.write(
|
||
|
tag=metadata.get_instance_name(name, content_type),
|
||
|
tensor=tensor,
|
||
|
step=step,
|
||
|
metadata=tensor_metadata,
|
||
|
)
|
||
|
|
||
|
|
||
|
def _get_json_config(config_dict):
|
||
|
"""Parses and returns JSON string from python dictionary."""
|
||
|
json_config = "{}"
|
||
|
if config_dict is not None:
|
||
|
json_config = json.dumps(config_dict, sort_keys=True)
|
||
|
return json_config
|
||
|
|
||
|
|
||
|
def mesh(
|
||
|
name,
|
||
|
vertices,
|
||
|
faces=None,
|
||
|
colors=None,
|
||
|
config_dict=None,
|
||
|
step=None,
|
||
|
description=None,
|
||
|
):
|
||
|
"""Writes a TensorFlow mesh summary.
|
||
|
|
||
|
Args:
|
||
|
name: A name for this summary. The summary tag used for TensorBoard will
|
||
|
be this name prefixed by any active name scopes.
|
||
|
vertices: Tensor of shape `[dim_1, ..., dim_n, 3]` representing the 3D
|
||
|
coordinates of vertices.
|
||
|
faces: Tensor of shape `[dim_1, ..., dim_n, 3]` containing indices of
|
||
|
vertices within each triangle.
|
||
|
colors: Tensor of shape `[dim_1, ..., dim_n, 3]` containing colors for each
|
||
|
vertex.
|
||
|
config_dict: Dictionary with ThreeJS classes names and configuration.
|
||
|
step: Explicit `int64`-castable monotonic step value for this summary. If
|
||
|
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
|
||
|
not be None.
|
||
|
description: Optional long-form description for this summary, as a
|
||
|
constant `str`. Markdown is supported. Defaults to empty.
|
||
|
|
||
|
Returns:
|
||
|
True if all components of the mesh were saved successfully and False
|
||
|
otherwise.
|
||
|
"""
|
||
|
json_config = _get_json_config(config_dict)
|
||
|
|
||
|
# All tensors representing a single mesh will be represented as separate
|
||
|
# summaries internally. Those summaries will be regrouped on the client before
|
||
|
# rendering.
|
||
|
tensors = [
|
||
|
metadata.MeshTensor(
|
||
|
vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32
|
||
|
),
|
||
|
metadata.MeshTensor(
|
||
|
faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32
|
||
|
),
|
||
|
metadata.MeshTensor(
|
||
|
colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8
|
||
|
),
|
||
|
]
|
||
|
tensors = [tensor for tensor in tensors if tensor.data is not None]
|
||
|
|
||
|
components = metadata.get_components_bitmask(
|
||
|
[tensor.content_type for tensor in tensors]
|
||
|
)
|
||
|
|
||
|
summary_scope = (
|
||
|
getattr(tf.summary.experimental, "summary_scope", None)
|
||
|
or tf.summary.summary_scope
|
||
|
)
|
||
|
all_success = True
|
||
|
with summary_scope(name, "mesh_summary", values=tensors):
|
||
|
for tensor in tensors:
|
||
|
all_success = all_success and _write_summary(
|
||
|
name,
|
||
|
description,
|
||
|
tensor.data,
|
||
|
tensor.content_type,
|
||
|
components,
|
||
|
json_config,
|
||
|
step,
|
||
|
)
|
||
|
|
||
|
return all_success
|
||
|
|
||
|
|
||
|
def mesh_pb(
|
||
|
tag, vertices, faces=None, colors=None, config_dict=None, description=None
|
||
|
):
|
||
|
"""Create a mesh summary to save in pb format.
|
||
|
|
||
|
Args:
|
||
|
tag: String tag for the summary.
|
||
|
vertices: numpy array of shape `[dim_1, ..., dim_n, 3]` representing the 3D
|
||
|
coordinates of vertices.
|
||
|
faces: numpy array of shape `[dim_1, ..., dim_n, 3]` containing indices of
|
||
|
vertices within each triangle.
|
||
|
colors: numpy array of shape `[dim_1, ..., dim_n, 3]` containing colors for
|
||
|
each vertex.
|
||
|
config_dict: Dictionary with ThreeJS classes names and configuration.
|
||
|
description: Optional long-form description for this summary, as a
|
||
|
constant `str`. Markdown is supported. Defaults to empty.
|
||
|
|
||
|
Returns:
|
||
|
Instance of tf.Summary class.
|
||
|
"""
|
||
|
json_config = _get_json_config(config_dict)
|
||
|
|
||
|
summaries = []
|
||
|
tensors = [
|
||
|
metadata.MeshTensor(
|
||
|
vertices, plugin_data_pb2.MeshPluginData.VERTEX, tf.float32
|
||
|
),
|
||
|
metadata.MeshTensor(
|
||
|
faces, plugin_data_pb2.MeshPluginData.FACE, tf.int32
|
||
|
),
|
||
|
metadata.MeshTensor(
|
||
|
colors, plugin_data_pb2.MeshPluginData.COLOR, tf.uint8
|
||
|
),
|
||
|
]
|
||
|
tensors = [tensor for tensor in tensors if tensor.data is not None]
|
||
|
components = metadata.get_components_bitmask(
|
||
|
[tensor.content_type for tensor in tensors]
|
||
|
)
|
||
|
for tensor in tensors:
|
||
|
shape = tensor.data.shape
|
||
|
shape = [dim if dim is not None else -1 for dim in shape]
|
||
|
tensor_proto = tensor_util.make_tensor_proto(
|
||
|
tensor.data, dtype=tensor.data_type
|
||
|
)
|
||
|
summary_metadata = metadata.create_summary_metadata(
|
||
|
tag,
|
||
|
None, # display_name
|
||
|
tensor.content_type,
|
||
|
components,
|
||
|
shape,
|
||
|
description,
|
||
|
json_config=json_config,
|
||
|
)
|
||
|
instance_tag = metadata.get_instance_name(tag, tensor.content_type)
|
||
|
summaries.append((instance_tag, summary_metadata, tensor_proto))
|
||
|
|
||
|
summary = summary_pb2.Summary()
|
||
|
for instance_tag, summary_metadata, tensor_proto in summaries:
|
||
|
summary.value.add(
|
||
|
tag=instance_tag, metadata=summary_metadata, tensor=tensor_proto
|
||
|
)
|
||
|
return summary
|