ai-content-maker/.venv/Lib/site-packages/thinc/backends/linalg.pxd

276 lines
8.2 KiB
Cython
Raw Normal View History

2024-05-03 04:18:51 +03:00
# cython: infer_types=True
# cython: cdivision=True
cimport cython
from cymem.cymem cimport Pool
from libc.stdint cimport int32_t
from libc.string cimport memcpy, memset
ctypedef float weight_t
DEF USE_BLAS = False
DEF EPS = 1e-5
IF USE_BLAS:
cimport blis.cy
cdef extern from "math.h" nogil:
weight_t exp(weight_t x)
weight_t sqrt(weight_t x)
cdef class Matrix:
cdef readonly Pool mem
cdef weight_t* data
cdef readonly int32_t nr_row
cdef readonly int32_t nr_col
cdef class Vec:
@staticmethod
cdef inline int arg_max(const weight_t* scores, const int n_classes) nogil:
if n_classes == 2:
return 0 if scores[0] > scores[1] else 1
cdef int i
cdef int best = 0
cdef weight_t mode = scores[0]
for i in range(1, n_classes):
if scores[i] > mode:
mode = scores[i]
best = i
return best
@staticmethod
cdef inline weight_t max(const weight_t* x, int32_t nr) nogil:
if nr == 0:
return 0
cdef int i
cdef weight_t mode = x[0]
for i in range(1, nr):
if x[i] > mode:
mode = x[i]
return mode
@staticmethod
cdef inline weight_t sum(const weight_t* vec, int32_t nr) nogil:
cdef int i
cdef weight_t total = 0
for i in range(nr):
total += vec[i]
return total
@staticmethod
cdef inline weight_t norm(const weight_t* vec, int32_t nr) nogil:
cdef weight_t total = 0
for i in range(nr):
total += vec[i] ** 2
return sqrt(total)
@staticmethod
cdef inline void add(weight_t* output, const weight_t* x,
weight_t inc, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
Vec.add_i(output, inc, nr)
@staticmethod
cdef inline void add_i(weight_t* vec, weight_t inc, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] += inc
@staticmethod
cdef inline void mul(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.mul_i(output, scal, nr)
@staticmethod
cdef inline void mul_i(weight_t* vec, weight_t scal, int32_t nr) nogil:
cdef int i
IF USE_BLAS:
blis.cy.scalv(BLIS_NO_CONJUGATE, nr, scal, vec, 1)
ELSE:
for i in range(nr):
vec[i] *= scal
@staticmethod
cdef inline void pow(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.pow_i(output, scal, nr)
@staticmethod
cdef inline void pow_i(weight_t* vec, const weight_t scal, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] **= scal
@staticmethod
@cython.cdivision(True)
cdef inline void div(weight_t* output, const weight_t* vec, weight_t scal,
int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.div_i(output, scal, nr)
@staticmethod
@cython.cdivision(True)
cdef inline void div_i(weight_t* vec, const weight_t scal, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] /= scal
@staticmethod
cdef inline void exp(weight_t* output, const weight_t* vec, int32_t nr) nogil:
memcpy(output, vec, sizeof(output[0]) * nr)
Vec.exp_i(output, nr)
@staticmethod
cdef inline void exp_i(weight_t* vec, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] = exp(vec[i])
@staticmethod
cdef inline void reciprocal_i(weight_t* vec, int32_t nr) nogil:
cdef int i
for i in range(nr):
vec[i] = 1.0 / vec[i]
@staticmethod
cdef inline weight_t mean(const weight_t* X, int32_t nr_dim) nogil:
cdef weight_t mean = 0.
for x in X[:nr_dim]:
mean += x
return mean / nr_dim
@staticmethod
cdef inline weight_t variance(const weight_t* X, int32_t nr_dim) nogil:
# See https://www.johndcook.com/blog/standard_deviation/
cdef double m = X[0]
cdef double v = 0.
for i in range(1, nr_dim):
diff = X[i]-m
m += diff / (i+1)
v += diff * (X[i] - m)
return v / nr_dim
cdef class VecVec:
@staticmethod
cdef inline void add(weight_t* output,
const weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.add_i(output, y, scale, nr)
@staticmethod
cdef inline void add_i(weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr) nogil:
cdef int i
IF USE_BLAS:
blis.cy.axpyv(BLIS_NO_CONJUGATE, nr, scale, y, 1, x, 1)
ELSE:
for i in range(nr):
x[i] += y[i] * scale
@staticmethod
cdef inline void batch_add_i(weight_t* x,
const weight_t* y,
weight_t scale,
int32_t nr, int32_t nr_batch) nogil:
# For fixed x, matrix of y
cdef int i, _
for _ in range(nr_batch):
VecVec.add_i(x,
y, scale, nr)
y += nr
@staticmethod
cdef inline void add_pow(weight_t* output,
const weight_t* x, const weight_t* y, weight_t power, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.add_pow_i(output, y, power, nr)
@staticmethod
cdef inline void add_pow_i(weight_t* x,
const weight_t* y, weight_t power, int32_t nr) nogil:
cdef int i
for i in range(nr):
x[i] += y[i] ** power
@staticmethod
cdef inline void mul(weight_t* output,
const weight_t* x, const weight_t* y, int32_t nr) nogil:
memcpy(output, x, sizeof(output[0]) * nr)
VecVec.mul_i(output, y, nr)
@staticmethod
cdef inline void mul_i(weight_t* x,
const weight_t* y, int32_t nr) nogil:
cdef int i
for i in range(nr):
x[i] *= y[i]
@staticmethod
cdef inline weight_t dot(
const weight_t* x, const weight_t* y, int32_t nr) nogil:
cdef int i
cdef weight_t total = 0
for i in range(nr):
total += x[i] * y[i]
return total
@staticmethod
cdef inline int arg_max_if_true(
const weight_t* scores, const int* is_valid, const int n_classes) nogil:
cdef int i
cdef int best = -1
for i in range(n_classes):
if is_valid[i] and (best == -1 or scores[i] > scores[best]):
best = i
return best
@staticmethod
cdef inline int arg_max_if_zero(
const weight_t* scores, const weight_t* costs, const int n_classes) nogil:
cdef int i
cdef int best = -1
for i in range(n_classes):
if costs[i] == 0 and (best == -1 or scores[i] > scores[best]):
best = i
return best
cdef class Mat:
@staticmethod
cdef inline void mean_row(weight_t* Ex,
const weight_t* mat, int32_t nr_row, int32_t nr_col) nogil:
memset(Ex, 0, sizeof(Ex[0]) * nr_col)
for i in range(nr_row):
VecVec.add_i(Ex, &mat[i * nr_col], 1.0, nr_col)
Vec.mul_i(Ex, 1.0 / nr_row, nr_col)
@staticmethod
cdef inline void var_row(weight_t* Vx,
const weight_t* mat, const weight_t* Ex,
int32_t nr_row, int32_t nr_col, weight_t eps) nogil:
# From https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
if nr_row == 0 or nr_col == 0:
return
cdef weight_t sum_, sum2
for i in range(nr_col):
sum_ = 0.0
sum2 = 0.0
for j in range(nr_row):
x = mat[j * nr_col + i]
sum2 += (x - Ex[i]) ** 2
sum_ += x - Ex[i]
Vx[i] = (sum2 - sum_**2 / nr_row) / nr_row
Vx[i] += eps