ai-content-maker/.venv/Lib/site-packages/tokenizers/implementations/sentencepiece_bpe.py

104 lines
3.7 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Dict, Iterator, List, Optional, Tuple, Union
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers
from tokenizers.models import BPE
from tokenizers.normalizers import NFKC
from .base_tokenizer import BaseTokenizer
class SentencePieceBPETokenizer(BaseTokenizer):
"""SentencePiece BPE Tokenizer
Represents the BPE algorithm, with the pretokenization used by SentencePiece
"""
def __init__(
self,
vocab: Optional[Union[str, Dict[str, int]]] = None,
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
unk_token: Union[str, AddedToken] = "<unk>",
replacement: str = "",
add_prefix_space: bool = True,
dropout: Optional[float] = None,
fuse_unk: Optional[bool] = False,
):
if vocab is not None and merges is not None:
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
else:
tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk))
if tokenizer.token_to_id(str(unk_token)) is not None:
tokenizer.add_special_tokens([str(unk_token)])
tokenizer.normalizer = NFKC()
prepend_scheme = "always" if add_prefix_space else "never"
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
tokenizer.decoder = decoders.Metaspace(replacement=replacement, prepend_scheme=prepend_scheme)
parameters = {
"model": "SentencePieceBPE",
"unk_token": unk_token,
"replacement": replacement,
"add_prefix_space": add_prefix_space,
"dropout": dropout,
}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab_filename: str, merges_filename: str, **kwargs):
vocab, merges = BPE.read_file(vocab_filename, merges_filename)
return SentencePieceBPETokenizer(vocab, merges, **kwargs)
def train(
self,
files: Union[str, List[str]],
vocab_size: int = 30000,
min_frequency: int = 2,
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
limit_alphabet: int = 1000,
initial_alphabet: List[str] = [],
show_progress: bool = True,
):
"""Train the model using the given files"""
trainer = trainers.BpeTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
special_tokens=special_tokens,
limit_alphabet=limit_alphabet,
initial_alphabet=initial_alphabet,
show_progress=show_progress,
)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
def train_from_iterator(
self,
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
vocab_size: int = 30000,
min_frequency: int = 2,
special_tokens: List[Union[str, AddedToken]] = ["<unk>"],
limit_alphabet: int = 1000,
initial_alphabet: List[str] = [],
show_progress: bool = True,
length: Optional[int] = None,
):
"""Train the model using the given iterator"""
trainer = trainers.BpeTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
special_tokens=special_tokens,
limit_alphabet=limit_alphabet,
initial_alphabet=initial_alphabet,
show_progress=show_progress,
)
self._tokenizer.train_from_iterator(
iterator,
trainer=trainer,
length=length,
)