ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/backends/common.py

113 lines
3.3 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
import contextlib
import functools
import logging
from unittest.mock import patch
import torch
from torch._dynamo import disable
from torch._dynamo.utils import counters, defake
from torch._functorch.aot_autograd import aot_module_simplified
from torch.utils._python_dispatch import _disable_current_modes
log = logging.getLogger(__name__)
def aot_autograd(**kwargs):
def compiler_fn(gm: torch.fx.GraphModule, example_inputs):
# Hack to get around circular import problems with aot_eager_decomp_partition
if callable(kwargs.get("decompositions")):
kwargs["decompositions"] = kwargs["decompositions"]()
# NB: dont delete counter increment
counters["aot_autograd"]["total"] += 1
use_fallback = False
if use_fallback:
log.debug("Unable to use AOT Autograd because graph has mutation")
counters["aot_autograd"]["not_ok"] += 1
return gm
# OK attempt to compile
def _wrapped_bw_compiler(*args, **kwargs):
# stop TorchDynamo from trying to compile our generated backwards pass
return disable(disable(bw_compiler)(*args, **kwargs))
bw_compiler = kwargs.get("bw_compiler") or kwargs["fw_compiler"]
kwargs["bw_compiler"] = _wrapped_bw_compiler
kwargs["inference_compiler"] = (
kwargs.get("inference_compiler") or kwargs["fw_compiler"]
)
from functorch.compile import nop
from torch._inductor.debug import enable_aot_logging
# debug asserts slow down compile time noticeably,
# So only default them on when the aot_eager backend is used.
if kwargs.get("fw_compiler", None) == nop:
patch_config = patch("functorch.compile.config.debug_assert", True)
else:
patch_config = contextlib.nullcontext()
try:
# NB: NOT cloned!
with enable_aot_logging(), patch_config:
cg = aot_module_simplified(gm, example_inputs, **kwargs)
counters["aot_autograd"]["ok"] += 1
return disable(cg)
except Exception:
counters["aot_autograd"]["not_ok"] += 1
raise
return compiler_fn
def mem_efficient_fusion_kwargs(use_decomps):
from functorch.compile import (
default_decompositions,
min_cut_rematerialization_partition,
ts_compile,
)
kwargs = {
# these are taken from memory_efficient_fusion()
"fw_compiler": ts_compile,
"bw_compiler": ts_compile,
"partition_fn": min_cut_rematerialization_partition,
}
if use_decomps:
kwargs["decompositions"] = default_decompositions
return kwargs
def fake_tensor_unsupported(fn):
"""
Decorator for backends that need real inputs. We swap out fake
tensors for zero tensors.
"""
@functools.wraps(fn)
def wrapper(model, inputs, **kwargs):
with _disable_current_modes():
inputs = list(map(defake, inputs))
return fn(model, inputs, **kwargs)
return wrapper
def device_from_inputs(example_inputs) -> torch.device:
for x in example_inputs:
if hasattr(x, "device"):
return x.device
def dtype_from_inputs(example_inputs) -> torch.dtype:
for x in example_inputs:
if hasattr(x, "dtype"):
return x.dtype