ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/backends/tvm.py

173 lines
6.2 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
import functools
import importlib
import logging
import os
import tempfile
import torch
from .common import device_from_inputs, fake_tensor_unsupported
from .registry import register_backend
log = logging.getLogger(__name__)
@register_backend
@fake_tensor_unsupported
def tvm(gm, example_inputs, *, scheduler=None, trials=20000):
import tvm # type: ignore[import]
from tvm import relay # type: ignore[import]
from tvm.contrib import graph_executor # type: ignore[import]
jit_mod = torch.jit.trace(gm, example_inputs)
device = device_from_inputs(example_inputs)
shape_list = [(f"inp_{idx}", i.shape) for idx, i in enumerate(example_inputs)]
example_outputs = gm(*example_inputs)
if len(example_outputs) == 0:
log.warning("Explicitly fall back to eager due to zero output")
return gm.forward
mod, params = relay.frontend.from_pytorch(jit_mod, shape_list)
if device.type == "cuda":
dev = tvm.cuda(device.index)
target = tvm.target.cuda()
else:
dev = tvm.cpu(0)
target = tvm.target.Target(llvm_target())
if scheduler is None:
scheduler = os.environ.get("TVM_SCHEDULER", None)
if scheduler == "auto_scheduler":
from tvm import auto_scheduler
log_file = tempfile.NamedTemporaryFile()
if not os.path.exists(log_file):
tasks, task_weights = auto_scheduler.extract_tasks(
mod["main"], params, target
)
for task in tasks:
print(task.compute_dag)
else:
print("No tasks")
if len(tasks) != 0:
tuner = auto_scheduler.TaskScheduler(tasks, task_weights)
if not os.path.exists(log_file):
assert trials > 0
tune_option = auto_scheduler.TuningOptions(
num_measure_trials=trials,
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
early_stopping=2000,
)
try:
tuner.tune(tune_option)
except Exception:
if os.path.exists(log_file):
os.unlink(log_file)
raise
with auto_scheduler.ApplyHistoryBest(log_file):
with tvm.transform.PassContext(
opt_level=3, config={"relay.backend.use_auto_scheduler": True}
):
lib = relay.build(mod, target=target, params=params)
elif scheduler == "meta_schedule":
from tvm import meta_schedule as ms
with tempfile.TemporaryDirectory() as work_dir:
if device.type != "cuda":
# meta_schedule needs num-cores to be specified
# here we use the maximum core count
target = tvm.target.Target(
f"{llvm_target()} --num-cores {ms.utils.cpu_count(logical=False)}"
)
# TODO(shingjan): This could be replaced by tvm.contrib.torch.optimize_torch
# once USE_PT_TVMDSOOP is updated and turned on by default in TVM.
database = ms.relay_integration.tune_relay(
mod=mod,
target=target,
work_dir=work_dir,
max_trials_global=20000,
num_trials_per_iter=64,
params=params,
strategy="evolutionary",
)
lib = ms.relay_integration.compile_relay(
database=database,
mod=mod,
target=target,
params=params,
)
elif scheduler == "default" or not scheduler:
# no autotuning
with tvm.transform.PassContext(opt_level=10):
lib = relay.build(mod, target=target, params=params)
else:
raise NotImplementedError(
"This tuning option is invalid/not implemented for torchdynamo's TVM-related backend. "
"There are three available options: default, auto_scheduler and meta_schedule."
)
m = graph_executor.GraphModule(lib["default"](dev))
def to_torch_tensor(nd_tensor):
"""A helper function to transfer a NDArray to torch.tensor."""
if nd_tensor.dtype == "bool":
# DLPack does not support boolean so it can't be handled by
# torch.utils.dlpack.from_pack. Workaround by going through
# numpy, although this brings additional data copy overhead.
return torch.from_numpy(nd_tensor.numpy())
return torch.utils.dlpack.from_dlpack(nd_tensor.to_dlpack())
def to_tvm_tensor(torch_tensor):
"""A helper function to transfer a torch.tensor to NDArray."""
if torch_tensor.dtype == torch.bool:
# same reason as above, fallback to numpy conversion which
# could introduce data copy overhead
return tvm.nd.array(torch_tensor.cpu().numpy())
return tvm.nd.from_dlpack(torch_tensor)
def exec_tvm(*i_args):
args = [a.contiguous() for a in i_args]
shape_info, _ = m.get_input_info()
active_inputs = {name for name, _ in shape_info.items()}
for idx, arg in enumerate(args, 0):
if arg.dim() != 0:
if arg.requires_grad:
arg = arg.detach()
inp_name = f"inp_{idx}"
if inp_name not in active_inputs:
log.warning(
"input %s skipped as not found in tvm's runtime library",
inp_name,
)
continue
m.set_input(
inp_name,
to_tvm_tensor(arg),
)
m.run()
return [to_torch_tensor(m.get_output(i)) for i in range(m.get_num_outputs())]
return exec_tvm
tvm_meta_schedule = functools.partial(tvm, scheduler="meta_schedule")
tvm_auto_scheduler = functools.partial(tvm, scheduler="auto_scheduler")
def has_tvm():
try:
importlib.import_module("tvm")
return True
except ImportError:
return False
@functools.lru_cache(None)
def llvm_target():
if "avx512" in open("/proc/cpuinfo").read():
return "llvm -mcpu=skylake-avx512"
return "llvm -mcpu=core-avx2"