ai-content-maker/.venv/Lib/site-packages/torch/_dynamo/variables/builtin.py

1749 lines
65 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
import contextlib
import functools
import inspect
import itertools
import logging
import math
import operator
import types
from collections import defaultdict, OrderedDict
from typing import Dict, List
import torch
from torch import sym_float, sym_int
from .. import config, polyfill, variables
from ..exc import (
AttributeMutationError,
unimplemented,
Unsupported,
UserError,
UserErrorType,
)
from ..guards import GuardBuilder, install_guard
from ..replay_record import DummyModule
from ..source import AttrSource, GetItemSource, is_constant_source, TypeSource
from ..utils import (
check_constant_args,
check_numpy_ndarray_args,
check_unspec_python_args,
extract_fake_example_value,
get_fake_value,
guard_if_dyn,
istype,
numpy_operator_wrapper,
proxy_args_kwargs,
tensortype_to_dtype,
)
from .base import MutableLocal, typestr, VariableTracker
from .constant import ConstantVariable
from .ctx_manager import EventVariable, StreamVariable
from .dicts import (
ConstDictVariable,
DefaultDictVariable,
DictView,
is_hashable,
SetVariable,
)
from .lists import (
BaseListVariable,
ListIteratorVariable,
ListVariable,
SizeVariable,
TupleIteratorVariable,
TupleVariable,
)
from .tensor import (
FakeItemVariable,
SymNodeVariable,
TensorVariable,
UnspecializedPythonVariable,
)
from .user_defined import UserDefinedVariable
log = logging.getLogger(__name__)
IN_PLACE_DESUGARING_MAP = {
operator.iadd: operator.add,
operator.isub: operator.sub,
operator.imul: operator.mul,
operator.ifloordiv: operator.floordiv,
operator.itruediv: operator.truediv,
operator.imod: operator.mod,
operator.imatmul: operator.imatmul,
operator.ilshift: operator.lshift,
operator.irshift: operator.rshift,
operator.ipow: operator.pow,
operator.iand: operator.and_,
operator.ior: operator.or_,
operator.ixor: operator.xor,
}
def _polyfill_call_impl(name):
"""Create a BuiltinVariable.call_{name} method that inlines through polyfill.{name}"""
def call_fn(self, tx, *args, **kwargs):
return tx.inline_user_function_return(
variables.UserFunctionVariable(fn), args, kwargs
)
fn = getattr(polyfill, name)
call_fn.__name__ = f"call_{name}"
return call_fn
class BuiltinVariable(VariableTracker):
_SENTINEL = object()
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.BUILTIN_MATCH))
return BuiltinVariable(value, source=source)
@staticmethod
@functools.lru_cache(None)
def _constant_fold_functions():
fns = {
abs,
all,
any,
bool,
callable,
chr,
divmod,
float,
getattr,
int,
len,
max,
min,
ord,
pow,
repr,
round,
str,
str.format,
sum,
type,
operator.abs,
operator.pos,
operator.neg,
operator.not_,
operator.truth,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.sub,
operator.getitem,
operator.length_hint,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
operator.index,
}
fns.update(x for x in math.__dict__.values() if isinstance(x, type(math.sqrt)))
return fns
def can_constant_fold_through(self):
return self.fn in self._constant_fold_functions()
@staticmethod
@functools.lru_cache(None)
def _fx_graph_functions():
fns = {
operator.abs,
operator.pos,
operator.neg,
operator.not_,
operator.invert,
operator.pow,
operator.mul,
operator.matmul,
operator.floordiv,
operator.truediv,
operator.mod,
operator.add,
operator.lt,
operator.gt,
operator.ge,
operator.le,
operator.ne,
operator.eq,
operator.sub,
operator.getitem,
operator.length_hint,
operator.lshift,
operator.rshift,
operator.and_,
operator.or_,
operator.xor,
operator.ipow,
operator.imul,
operator.imatmul,
operator.ifloordiv,
operator.itruediv,
operator.imod,
operator.iadd,
operator.isub,
operator.ilshift,
operator.irshift,
operator.iand,
operator.ixor,
operator.ior,
}
return fns
@staticmethod
@functools.lru_cache(None)
def _binops():
# function -> ([forward name, reverse name, in-place name], in-place op)
fns = {
operator.add: (["__add__", "__radd__", "__iadd__"], operator.iadd),
operator.sub: (["__sub__", "__rsub__", "__isub__"], operator.isub),
operator.mul: (["__mul__", "__rmul__", "__imul__"], operator.imul),
operator.truediv: (
["__truediv__", "__rtruediv__", "__itruediv__"],
operator.itruediv,
),
operator.floordiv: (
["__floordiv__", "__rfloordiv__", "__ifloordiv__"],
operator.ifloordiv,
),
operator.mod: (["__mod__", "__rmod__", "__imod__"], operator.imod),
pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
operator.pow: (["__pow__", "__rpow__", "__ipow__"], operator.ipow),
operator.lshift: (
["__lshift__", "__rlshift__", "__ilshift__"],
operator.ilshift,
),
operator.rshift: (
["__rshift__", "__rrshift__", "__irshift__"],
operator.irshift,
),
# NB: The follow binary operators are not supported for now, since the
# corresponding magic methods aren't defined on SymInt / SymFloat:
# operator.matmul
# divmod
# operator.and_
# operator.or_
# operator.xor
}
return fns
@staticmethod
@functools.lru_cache(None)
def _binop_handlers():
# Multiple dispatch mechanism defining custom binop behavior for certain type
# combinations. Handlers are attempted in order, and will be used if the type checks
# match. They are expected to have the signature:
# fn(tx, arg0: VariableTracker, arg1: VariableTracker, options) -> VariableTracker
# Override table contains: op_fn -> [list of handlers]
op_handlers = {}
for (
op,
(magic_method_names, in_place_op),
) in BuiltinVariable._binops().items():
op_handlers[op] = []
op_handlers[in_place_op] = []
forward_name, reverse_name, inplace_name = magic_method_names
# User-defined args (highest precedence)
def user_defined_handler(
tx,
a,
b,
options,
forward_name=forward_name,
reverse_name=reverse_name,
):
# Manually handle reversing logic if needed (e.g. call __radd__)
# TODO: If we expand this to handle tensor args, we need to manually
# handle cases like this:
#
# class A(int):
# def __radd__(self, other):
# print("woof")
# torch.randn(3) + A(3)
#
# In this example, A.__radd__() is not called -> nothing is printed, because
# Tensor.__add__ only does a subtype test against int, ignoring the subclass.
# To be fully correct, we should not call A.__radd__() here, and there may be
# other cases to reason about and add exceptions for.
if isinstance(a, UserDefinedVariable):
return a.call_method(tx, forward_name, [b], {})
else:
return b.call_method(tx, reverse_name, [a], {})
op_handlers[op].append(
((UserDefinedVariable, VariableTracker), user_defined_handler)
)
op_handlers[op].append(
((VariableTracker, UserDefinedVariable), user_defined_handler)
)
def user_defined_inplace_handler(
tx, a, b, options, forward_name=inplace_name
):
return a.call_method(tx, forward_name, [b], {})
op_handlers[in_place_op].append(
((UserDefinedVariable, VariableTracker), user_defined_inplace_handler)
)
op_handlers[in_place_op].append(
((VariableTracker, UserDefinedVariable), user_defined_inplace_handler)
)
# Dynamic shape args
def dynamic_handler(tx, a, b, options, fn=op):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function", fn, *proxy_args_kwargs([a, b], {})
),
**options,
)
op_handlers[op].append(
((SymNodeVariable, VariableTracker), dynamic_handler)
)
op_handlers[op].append(
((VariableTracker, SymNodeVariable), dynamic_handler)
)
# NB: Prefer out-of-place op when calling in-place op to generate valid graph
op_handlers[in_place_op].append(
((SymNodeVariable, VariableTracker), dynamic_handler)
)
op_handlers[in_place_op].append(
((VariableTracker, SymNodeVariable), dynamic_handler)
)
# Special cases - lower precedence but still prefer these over constant folding
# List-like addition (e.g. [1, 2] + [3, 4])
def tuple_add_handler(tx, a, b, options):
return TupleVariable(a.items + list(b.unpack_var_sequence(tx)), **options)
def size_add_handler(tx, a, b, options):
return SizeVariable(a.items + list(b.unpack_var_sequence(tx)), **options)
list_like_addition_handlers = [
# NB: Prefer the tuple-specific logic over base logic because of
# some SizeVariable weirdness. Specifically, the tuple-specific logic
# drops the subclass type (e.g. SizeVariable) and returns TupleVariables.
(
(SizeVariable, SizeVariable),
size_add_handler,
),
(
(TupleVariable, TupleVariable),
tuple_add_handler,
),
(
(TupleVariable, ConstantVariable),
tuple_add_handler,
),
(
(ConstantVariable, TupleVariable),
lambda tx, a, b, options: TupleVariable(
list(a.unpack_var_sequence(tx)) + b.items, **options
),
),
(
(BaseListVariable, BaseListVariable),
lambda tx, a, b, options: type(a)(a.items + b.items, **options),
),
]
op_handlers[operator.add].extend(list_like_addition_handlers)
def list_iadd_handler(tx, a, b, _):
if not a.mutable_local or not b.has_unpack_var_sequence(tx):
# Handler doesn't apply
return None
seq = b.unpack_var_sequence(tx)
tx.output.side_effects.mutation(a)
a.items.extend(seq)
return a
list_like_iadd_handlers = [
(
(ListVariable, VariableTracker),
list_iadd_handler,
),
(
(TupleVariable, TupleVariable),
tuple_add_handler,
),
(
(TupleVariable, ConstantVariable),
tuple_add_handler,
),
]
op_handlers[operator.iadd].extend(list_like_iadd_handlers)
# List-like expansion (e.g. [1, 2, 3] * 3)
def expand_list_like(tx, lst, const, options):
return lst.__class__(
items=lst.items * const.as_python_constant(),
mutable_local=MutableLocal(),
**options,
)
list_like_expansion_handlers = [
((ListVariable, ConstantVariable), expand_list_like),
((TupleVariable, ConstantVariable), expand_list_like),
(
(ConstantVariable, ListVariable),
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
),
(
(ConstantVariable, TupleVariable),
lambda tx, a, b, options: expand_list_like(tx, b, a, options),
),
]
op_handlers[operator.mul].extend(list_like_expansion_handlers)
return op_handlers
@staticmethod
def _find_binop_handler(op, a, b):
handlers = BuiltinVariable._binop_handlers()
if op not in handlers:
return None
# Return first handler that matches the type checks
for (type1, type2), handler in handlers[op]:
if isinstance(a, type1) and isinstance(b, type2):
return handler
return None
def can_insert_in_graph(self):
return self.fn in self._fx_graph_functions()
def __init__(self, fn, **kwargs):
super().__init__(**kwargs)
self.fn = fn
def __str__(self):
if self.fn is None:
name = "None"
else:
name = self.fn.__name__
return f"{self.__class__.__name__}({name})"
def python_type(self):
return type(self.fn)
def as_python_constant(self):
return self.fn
def as_proxy(self):
DTYPE = {
bool: torch.bool,
int: torch.int64,
float: torch.float64,
}
if self.fn in DTYPE:
return DTYPE[self.fn]
return super().as_proxy()
def reconstruct(self, codegen):
name = self.fn.__name__
assert self.fn.__module__ == "builtins"
assert name not in codegen.tx.f_globals, "shadowed global"
codegen.append_output(codegen.create_load_global(name, False, add=True))
def constant_args(self, *args, **kwargs):
return check_constant_args(args, kwargs)
def tensor_args(self, *args, **kwargs):
return any(
isinstance(i, variables.TensorVariable)
for i in itertools.chain(args, kwargs.values())
) and not any(
isinstance(i, variables.GetAttrVariable)
for i in itertools.chain(args, kwargs.values())
)
def python_and_tensor_constant_only(self, *args, **kwargs):
tensor_args = []
non_tensor_args = []
for i in itertools.chain(args, kwargs.values()):
if isinstance(i, variables.TensorVariable):
tensor_args.append(i)
else:
non_tensor_args.append(i)
return all(
is_constant_source(t.source) if t.source is not None else False
for t in tensor_args
) and self.constant_args(*non_tensor_args)
def unspec_python_args(self, *args, **kwargs):
return check_unspec_python_args(args, kwargs)
@staticmethod
def unwrap_unspec_args_kwargs(args, kwargs):
return [x.as_python_constant() for x in args], {
k: v.as_python_constant() for k, v in kwargs.items()
}
def has_constant_handler(self, args, kwargs):
constant_args = check_constant_args(args, kwargs)
unspec_python_args = self.unspec_python_args(*args, **kwargs)
return self.can_constant_fold_through() and (
constant_args or unspec_python_args
)
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
from . import UserFunctionVariable
from .builder import wrap_fx_proxy, wrap_fx_proxy_cls
args = [v.realize() for v in args]
kwargs = {k: v.realize() for k, v in kwargs.items()}
assert isinstance(args, (list, tuple))
assert isinstance(kwargs, dict)
tensor_args = self.tensor_args(*args, **kwargs)
# args[0] is list and args[1] is unspec
if self.fn is operator.getitem and not isinstance(
args[0], variables.TensorVariable
):
tensor_args = False
if (
self.can_insert_in_graph()
and tensor_args
and not (
self.fn is operator.getitem
and isinstance(args[0], ConstDictVariable)
and isinstance(args[1], variables.TensorVariable)
)
):
try:
fn = self.fn
# Constant fold for constant tensor and python constants
if tensor_args and self.python_and_tensor_constant_only(
*args, **kwargs
):
from ..bytecode_transformation import unique_id
from .functions import invoke_and_store_as_constant
return invoke_and_store_as_constant(
tx, fn, unique_id(fn.__name__), args, kwargs
)
if self.fn in IN_PLACE_DESUGARING_MAP and isinstance(
args[0], variables.ConstantVariable
):
# In-place operators like += usually mustate tensor
# values, but in the edge case of immutable values they
# re-bind the variable.
#
# The easiest way to keep the graph consistent in this
# scenario is to de-sugar eagerly.
fn, args = IN_PLACE_DESUGARING_MAP[self.fn], [args[0], args[1]]
if self.fn is operator.getitem and isinstance(args[1], SymNodeVariable):
# Standard indexing will force specialization due to
# __index__. Rewrite as a regular torch op which will
# trace fine
fn, args = torch.select, [
args[0],
variables.ConstantVariable.create(0),
args[1],
]
# Interaction between ndarray and tensors:
# We prefer the tensor op whenever there are tensors involved
if check_numpy_ndarray_args(args, kwargs) and not any(
type(arg) == variables.TensorVariable for arg in args
):
proxy = tx.output.create_proxy(
"call_function",
numpy_operator_wrapper(self.fn),
*proxy_args_kwargs(args, kwargs),
)
return wrap_fx_proxy_cls(variables.NumpyNdarrayVariable, tx, proxy)
proxy = tx.output.create_proxy(
"call_function",
fn,
*proxy_args_kwargs(args, kwargs),
)
if any(isinstance(arg, FakeItemVariable) for arg in args):
return wrap_fx_proxy_cls(
FakeItemVariable,
tx,
proxy,
)
elif self.unspec_python_args(*args, **kwargs):
_args, _kwargs = self.unwrap_unspec_args_kwargs(args, kwargs)
raw_value = self.fn(*_args, **_kwargs)
need_unwrap = any(
x.need_unwrap
for x in itertools.chain(args, kwargs.values())
if isinstance(x, variables.UnspecializedPythonVariable)
)
return wrap_fx_proxy_cls(
UnspecializedPythonVariable,
tx,
proxy,
raw_value=raw_value,
need_unwrap=need_unwrap,
)
elif all(isinstance(x, SymNodeVariable) for x in args):
return SymNodeVariable.create(tx, proxy, None)
else:
# Work around for vision_maskrcnn due to precision difference
# specialize the dividend when float divide by tensor
if self.fn is operator.truediv and isinstance(
args[0], variables.UnspecializedPythonVariable
):
args[0] = args[0].convert_to_constant(tx)
return wrap_fx_proxy(tx, proxy)
except NotImplementedError:
unimplemented(f"partial tensor op: {self} {args} {kwargs}")
# Handle cases like int(torch.seed())
# Also handle sym_float to sym_int cases
if self.fn in (int, float) and isinstance(
args[0], (SymNodeVariable, variables.TensorVariable)
):
if isinstance(args[0], variables.TensorVariable):
item = args[0].call_method(tx, "item", [], {})
else:
item = args[0]
fn_ = sym_int if self.fn is int else sym_float
out = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
(item.as_proxy(),),
{},
),
)
return out
# Handle `str` on a user defined function
if self.fn == str and args and isinstance(args[0], (UserFunctionVariable)):
return variables.ConstantVariable.create(value=str(args[0].fn))
# Handle binary ops (e.g. __add__ / __radd__, __iadd__, etc.)
# NB: Tensor args are handled above and not here
if len(kwargs) == 0 and len(args) == 2:
# Try to find a handler for the arg types; otherwise, fall through to constant handler
binop_handler = BuiltinVariable._find_binop_handler(
self.fn, args[0], args[1]
)
if binop_handler:
res = binop_handler(tx, args[0], args[1], {})
if res is not None:
return res
handler = getattr(self, f"call_{self.fn.__name__}", None)
if handler:
try:
result = handler(tx, *args, **kwargs)
if result is not None:
return result
except TypeError:
# Check if binding is bad. inspect signature bind is expensive.
# So check only when handler call fails.
try:
inspect.signature(handler).bind(tx, *args, **kwargs)
except TypeError as e:
has_constant_handler = self.has_constant_handler(args, kwargs)
if not has_constant_handler:
log.warning(
"incorrect arg count %s %s and no constant handler",
handler,
e,
)
unimplemented(f"invalid handler args {handler} {args} {kwargs}")
else:
raise
except Unsupported as exc:
has_constant_handler = self.has_constant_handler(args, kwargs)
if not has_constant_handler:
raise
# Actually, we will handle this just fine
exc.remove_from_stats()
# NB: call to has_constant_handler is deliberately delayed post generic
# handler because has_constant_handler calls as_python_constant
# internally which realizes LazyVariableTracker for ConstantVariables,
# unnecessarily putting guards on objects which might not actually be used.
has_constant_handler = self.has_constant_handler(args, kwargs)
if has_constant_handler:
from .builder import SourcelessBuilder
# constant fold
return SourcelessBuilder()(
tx,
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
return super().call_function(tx, args, kwargs)
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
if self.fn == dict and name == "fromkeys":
return BuiltinVariable.call_custom_dict_fromkeys(tx, dict, *args, **kwargs)
if self.fn == itertools.chain and name == "from_iterable":
assert len(args) == 1
assert len(kwargs) == 0
obj = args[0]
items = []
for item in obj.unpack_var_sequence(tx):
items.extend(item.unpack_var_sequence(tx))
return variables.TupleVariable(items)
return super().call_method(tx, name, args, kwargs)
def _call_min_max(self, tx, *args):
if len(args) == 1 and args[0].has_unpack_var_sequence(tx):
# expand iterable
items = args[0].unpack_var_sequence(tx)
return self._call_min_max_seq(tx, items)
elif len(args) == 2:
return self._call_min_max_binary(tx, args[0], args[1])
elif len(args) > 2:
return self._call_min_max_seq(tx, args)
def _call_min_max_seq(self, tx, items):
assert len(items) > 0
if len(items) == 1:
return items[0]
return functools.reduce(functools.partial(self._call_min_max_binary, tx), items)
def _call_min_max_binary(self, tx, a, b):
if self.tensor_args(a, b):
if not isinstance(a, variables.TensorVariable):
a, b = b, a
assert isinstance(a, variables.TensorVariable)
# result of an item call is a scalar convert to a tensor
if isinstance(a, FakeItemVariable):
a = variables.TorchInGraphFunctionVariable(torch.tensor).call_function(
tx, [a], {}
)
# Dynamic input does not get resolved, rather, gets stored as call_function
if isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
from .builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
type(a),
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
self.fn,
*proxy_args_kwargs([a, b], {}),
),
)
# convert min/max to torch ops
if b.is_python_constant():
if isinstance(a, variables.NumpyNdarrayVariable):
import numpy as np
fn = variables.NumpyVariable(np.clip)
else:
fn = variables.TorchInGraphFunctionVariable(torch.clamp)
kwargs = {"min": b} if (self.fn is max) else {"max": b}
result = fn.call_function(tx, [a], kwargs)
else:
if isinstance(a, variables.NumpyNdarrayVariable):
import numpy as np
fn = {max: np.maximum, min: np.minimum}[self.fn]
fn = variables.NumpyVariable(fn)
else:
fn = {max: torch.maximum, min: torch.minimum}[self.fn]
fn = variables.TorchInGraphFunctionVariable(fn)
result = fn.call_function(tx, [a, b], {})
# return unspec if both a, b are unspec or const
if all(
isinstance(
i,
(
variables.UnspecializedPythonVariable,
variables.ConstantVariable,
),
)
for i in [a, b]
):
if any(isinstance(val, FakeItemVariable) for val in [a, b]):
return variables.FakeItemVariable.from_tensor_variable(result)
if b.is_python_constant():
raw_b = b.as_python_constant()
else:
raw_b = b.raw_value
if self.fn is max:
raw_res = max(a.raw_value, raw_b)
else:
raw_res = min(a.raw_value, raw_b)
need_unwrap = any(
x.need_unwrap
for x in [a, b]
if isinstance(x, variables.UnspecializedPythonVariable)
)
return variables.UnspecializedPythonVariable.from_tensor_variable(
result, raw_res, need_unwrap
)
# otherwise return tensor
else:
return result
elif isinstance(a, SymNodeVariable) or isinstance(b, SymNodeVariable):
fn = torch.sym_max if self.fn is max else torch.sym_min
proxy = tx.output.create_proxy(
"call_function", fn, *proxy_args_kwargs([a, b], {})
)
return SymNodeVariable.create(tx, proxy, None)
call_min = _call_min_max
call_max = _call_min_max
def call_abs(self, tx, arg: "VariableTracker"):
# Call arg.__abs__()
abs_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__abs__")], {}
)
return abs_method.call_function(tx, [], {})
def call_pos(self, tx, arg: "VariableTracker"):
# Call arg.__pos__()
pos_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__pos__")], {}
)
return pos_method.call_function(tx, [], {})
def call_round(self, tx, arg, *args, **kwargs):
# Call arg.__round__()
round_method = BuiltinVariable(getattr).call_function(
tx, [arg, ConstantVariable.create("__round__")], {}
)
return round_method.call_function(tx, args, kwargs)
def call_range(self, tx, *args):
if self.unspec_python_args(*args) or self.constant_args(*args):
return variables.RangeVariable(args)
elif self._dynamic_args(*args):
args = [
variables.ConstantVariable.create(guard_if_dyn(arg)) for arg in args
]
return variables.RangeVariable(args)
# None no-ops this handler and lets the driving function proceed
return None
def _dynamic_args(self, *args, **kwargs):
return any(isinstance(x, SymNodeVariable) for x in args) or any(
isinstance(x, SymNodeVariable) for x in kwargs.values()
)
def call_slice(self, tx, *args):
return variables.SliceVariable(args)
def _dyn_proxy(self, tx, *args, **kwargs):
from .builder import wrap_fx_proxy
return wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function", self.fn, *proxy_args_kwargs(args, kwargs)
),
)
def _call_iter_tuple_list(self, tx, obj=None, *args, **kwargs):
if self._dynamic_args(*args, **kwargs):
return self._dyn_proxy(tx, *args, **kwargs)
if isinstance(obj, variables.IteratorVariable):
# For non-list iterators, we will guard on vars that
# determine the control flow
return obj
cls = variables.BaseListVariable.cls_for(self.fn)
if obj is None:
return cls(
[],
mutable_local=MutableLocal(),
)
elif obj.has_unpack_var_sequence(tx):
if obj.source and not is_constant_source(obj.source):
if isinstance(obj, TupleIteratorVariable):
install_guard(
obj.source.make_guard(GuardBuilder.TUPLE_ITERATOR_LEN)
)
else:
install_guard(obj.source.make_guard(GuardBuilder.SEQUENCE_LENGTH))
return cls(
list(obj.unpack_var_sequence(tx)),
mutable_local=MutableLocal(),
)
def call_iter(self, tx, obj, *args, **kwargs):
# Handle the case where we are iterating over a tuple, list or iterator
ret = self._call_iter_tuple_list(tx, obj, *args, **kwargs)
if ret is None:
# If the object doesn't implement a __iter__ method, it will be an error in eager mode when calling iter on it anyway.
# If the object implements a __iter__ method, inlining effectively forwards the call to another iter call
# (e.g. when __iter__ just returns iter(self.list)) or return a user-defined iterator.
return obj.call_method(tx, "__iter__", args, kwargs)
return ret
call_tuple = _call_iter_tuple_list
call_list = _call_iter_tuple_list
def call_callable(self, tx, arg):
from .functions import BaseUserFunctionVariable
if isinstance(
arg, (variables.UserDefinedClassVariable, BaseUserFunctionVariable)
):
return variables.ConstantVariable.create(True)
elif isinstance(arg, UserDefinedVariable):
return variables.ConstantVariable.create(callable(arg.value))
elif isinstance(arg, (ConstantVariable, SymNodeVariable, TensorVariable)):
return variables.ConstantVariable.create(False)
def call_cast(self, _, *args, **kwargs):
if len(args) == 2:
return args[1]
unimplemented(f"unsupported args to builtin cast(): {args} {kwargs}")
def call_dict(self, tx, *args, **kwargs):
return BuiltinVariable.call_custom_dict(tx, dict, *args, **kwargs)
@staticmethod
def call_custom_dict(tx, user_cls, *args, **kwargs):
if not kwargs:
if not args:
args = ({},)
assert len(args) == 1
arg = args[0]
if isinstance(arg, dict):
return ConstDictVariable(arg, user_cls, mutable_local=MutableLocal())
elif isinstance(arg, variables.ConstDictVariable):
return arg.clone(user_cls=user_cls, mutable_local=MutableLocal())
elif isinstance(
arg,
(
ListVariable,
TupleVariable,
ListIteratorVariable,
),
):
items = dict(
x.unpack_var_sequence(tx) for x in arg.unpack_var_sequence(tx)
)
return ConstDictVariable(items, user_cls, mutable_local=MutableLocal())
elif not args and kwargs:
items = {ConstantVariable.create(k): v for k, v in kwargs.items()}
return variables.ConstDictVariable(
items, user_cls=user_cls, mutable_local=MutableLocal()
)
unimplemented(f"{user_cls.__name__}(): {args} {kwargs}")
@staticmethod
def call_custom_dict_fromkeys(tx, user_cls, *args, **kwargs):
assert user_cls in {dict, OrderedDict, defaultdict}
if kwargs:
# Only `OrderedDict.fromkeys` accepts `value` passed by keyword
assert user_cls is OrderedDict
assert len(args) == 1 and len(kwargs) == 1 and "value" in kwargs
args = (*args, kwargs.pop("value"))
if len(args) == 0:
raise UserError(TypeError, "fromkeys expected at least 1 argument, got 0")
if len(args) == 1:
args = (*args, ConstantVariable.create(None))
assert len(args) == 2
arg, value = args
DictVariableType = (
ConstDictVariable if user_cls is not defaultdict else DefaultDictVariable
)
if isinstance(arg, dict):
arg = [ConstantVariable.create(k) for k in arg.keys()]
return DictVariableType(
dict.fromkeys(arg, value), user_cls, mutable_local=MutableLocal()
)
elif arg.has_unpack_var_sequence(tx) and all(
is_hashable(v) for v in arg.unpack_var_sequence(tx)
):
keys = arg.unpack_var_sequence(tx)
return DictVariableType(
dict.fromkeys(keys, value), user_cls, mutable_local=MutableLocal()
)
unimplemented(f"{user_cls.__name__}.fromkeys(): {args} {kwargs}")
def call_set(self, tx, *args, **kwargs):
# Can we merge this implementation and call_dict's one?
assert not kwargs
if not args:
return SetVariable([], mutable_local=MutableLocal())
assert len(args) == 1
arg = args[0]
if isinstance(arg, variables.SetVariable):
return arg.clone(mutable_local=MutableLocal())
elif arg.has_unpack_var_sequence(tx):
items = arg.unpack_var_sequence(tx)
return SetVariable(items, mutable_local=MutableLocal())
else:
unimplemented(f"set(): {args} {kwargs}")
def call_zip(self, tx, *args, **kwargs):
if kwargs:
assert len(kwargs) == 1 and "strict" in kwargs
if all(x.has_unpack_var_sequence(tx) for x in args):
unpacked = [arg.unpack_var_sequence(tx) for arg in args]
if kwargs.pop("strict", False) and len(unpacked) > 0:
if not all(len(u) == len(unpacked[0]) for u in unpacked):
raise UserError(
ValueError,
"zip() has one argument of len differing from others",
)
items = [variables.TupleVariable(list(item)) for item in zip(*unpacked)]
return variables.TupleVariable(items)
def call_enumerate(self, tx, *args):
if len(args) == 1:
start = 0
else:
assert len(args) == 2
assert isinstance(args[1], variables.ConstantVariable)
start = args[1].as_python_constant()
if args[0].has_unpack_var_sequence(tx):
items = [
variables.TupleVariable(
[variables.ConstantVariable.create(idx), var],
)
for idx, var in enumerate(args[0].unpack_var_sequence(tx), start)
]
return variables.TupleVariable(items)
def call_len(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__len__", args[1:], kwargs)
def call_getitem(self, tx, *args, **kwargs):
return args[0].call_method(tx, "__getitem__", args[1:], kwargs)
def call_isinstance(self, tx, arg, isinstance_type):
try:
arg_type = arg.python_type()
except NotImplementedError:
unimplemented(
f"isinstance({arg}, {isinstance_type}): can't determine type of {arg}"
)
isinstance_type = isinstance_type.as_python_constant()
if isinstance(arg, variables.TensorVariable) and arg.dtype is not None:
def _tensor_isinstance(tensor_var, tensor_type):
def check_type(ty):
if ty not in tensortype_to_dtype:
return issubclass(arg.python_type(), ty)
dtypes = tensortype_to_dtype[ty]
return arg.dtype in dtypes
if type(tensor_type) is tuple:
return any(check_type(ty) for ty in tensor_type)
else:
return check_type(tensor_type)
return variables.ConstantVariable.create(
_tensor_isinstance(arg, isinstance_type)
)
# UserDefinedObject with C extensions can have torch.Tensor attributes,
# so break graph.
if isinstance(arg, variables.UserDefinedObjectVariable) and isinstance(
arg.value, types.MemberDescriptorType
):
unimplemented(
f"isinstance called on UserDefinedClass {arg} {isinstance_type}"
)
# handle __instancecheck__ defined in user class
if (
isinstance(arg, variables.UserDefinedObjectVariable)
and "__instancecheck__" in isinstance_type.__class__.__dict__
):
return variables.ConstantVariable.create(
isinstance_type.__class__.__instancecheck__(isinstance_type, arg.value)
)
try:
val = issubclass(arg_type, isinstance_type)
except TypeError:
val = arg_type is isinstance_type
return variables.ConstantVariable.create(val)
def call_issubclass(self, tx, left_ty, right_ty):
"""Checks if first arg is subclass of right arg"""
left_ty = left_ty.as_python_constant()
right_ty = right_ty.as_python_constant()
return variables.ConstantVariable(issubclass(left_ty, right_ty))
def call_super(self, tx, a, b):
return variables.SuperVariable(a, b)
def call_next(self, tx, arg):
if isinstance(
arg, (variables.ListIteratorVariable, variables.IteratorVariable)
):
val, next_iter = arg.next_variables(tx)
return val
elif isinstance(arg, variables.BaseListVariable):
return arg.items[0]
def call_hasattr(self, tx, obj, attr):
if attr.is_python_constant():
name = attr.as_python_constant()
return obj.call_hasattr(tx, name)
def call_map(self, tx, fn, seq):
if seq.has_unpack_var_sequence(tx):
items = [fn.call_function(tx, [x], {}) for x in seq.unpack_var_sequence(tx)]
return variables.TupleVariable(items)
def call_sum(self, tx, seq, start=_SENTINEL):
# Special case for sum on tuple of floats and ints
if isinstance(seq, (variables.ListVariable, variables.TupleVariable)) and all(
isinstance(x, variables.ConstantVariable)
and isinstance(x.value, (int, float))
for x in seq.items
):
if start is self._SENTINEL:
return variables.ConstantVariable.create(
sum(x.value for x in seq.items),
)
if isinstance(start, variables.ConstantVariable) and isinstance(
start.value, (int, float)
):
return variables.ConstantVariable.create(
sum((x.value for x in seq.items), start=start.value),
)
if seq.has_unpack_var_sequence(tx):
if start is self._SENTINEL:
start = variables.ConstantVariable.create(0)
items = seq.unpack_var_sequence(tx)
return BuiltinVariable(functools.reduce).call_function(
tx,
[
BuiltinVariable(operator.add),
variables.TupleVariable(items),
start,
],
{},
)
def call_reduce(self, tx, function, iterable, initial=_SENTINEL):
if iterable.has_unpack_var_sequence(tx):
items = iterable.unpack_var_sequence(tx)
if initial is self._SENTINEL:
value, items = items[0], items[1:]
else:
value = initial
for element in items:
value = function.call_function(tx, [value, element], {})
return value
def call_getattr(
self, tx, obj: VariableTracker, name_var: VariableTracker, default=None
):
from .. import trace_rules
from . import (
ConstantVariable,
GetAttrVariable,
PythonModuleVariable,
TorchInGraphFunctionVariable,
UserFunctionVariable,
)
from .builder import SourcelessBuilder, VariableBuilder
name = name_var.as_python_constant()
if not name_var.is_python_constant():
unimplemented("non-const getattr() name")
if tx.output.side_effects.is_attribute_mutation(obj):
try:
# re-read a pending side effect?
return tx.output.side_effects.load_attr(obj, name)
except KeyError:
pass
if default is not None:
hasattr_var = self.call_hasattr(tx, obj, name_var)
assert hasattr_var.as_python_constant() in (True, False)
if not hasattr_var.as_python_constant():
return default
options = {}
if obj.source:
source = AttrSource(obj.source, name)
options["source"] = source
else:
source = None
if name == "__bases__":
try:
value = obj.as_python_constant()
if isinstance(value, type):
bases = value.__bases__
if source is not None:
tuple_args = [
VariableBuilder(tx, GetItemSource(source, i))(b)
for i, b in enumerate(bases)
]
else:
tuple_args = [SourcelessBuilder()(tx, b) for b in bases]
return variables.TupleVariable(tuple_args, **options)
except NotImplementedError:
pass
if isinstance(obj, variables.NNModuleVariable):
return obj.var_getattr(tx, name)
elif isinstance(
obj,
(
variables.TensorVariable,
variables.NamedTupleVariable,
variables.ConstantVariable,
variables.UserDefinedClassVariable,
variables.UserDefinedObjectVariable,
),
):
try:
return obj.var_getattr(tx, name)
except NotImplementedError:
return GetAttrVariable(obj, name, **options)
elif isinstance(obj, TorchInGraphFunctionVariable):
# Get OpOverload from an OpOverloadPacket, e.g., torch.ops.aten.add.default.
member = getattr(obj.value, name)
if isinstance(
member, (torch._ops.OpOverloadPacket, torch._ops.OpOverload)
) and trace_rules.is_aten_op_or_tensor_method(member):
return TorchInGraphFunctionVariable(member, **options)
elif isinstance(obj, (PythonModuleVariable, DummyModule)):
if obj.is_torch:
member = getattr(obj.value, name)
else:
member = obj.value.__dict__[name]
if config.replay_record_enabled:
tx.exec_recorder.record_module_access(obj.value, name, member)
if source is not None:
return VariableBuilder(tx, source)(member)
else:
return SourcelessBuilder()(tx, member)
elif istype(obj, UserFunctionVariable) and name in ("__name__", "__module__"):
return ConstantVariable.create(getattr(obj.fn, name))
else:
try:
return obj.var_getattr(tx, name)
except NotImplementedError:
return GetAttrVariable(obj, name, **options)
def call_setattr(
self, tx, obj: VariableTracker, name_var: VariableTracker, val: VariableTracker
):
from .distributed import PlacementVariable
if isinstance(
obj,
(
variables.DataClassVariable,
variables.CustomizedDictVariable,
PlacementVariable,
),
):
return obj.call_method(tx, "__setattr__", [name_var, val], {})
elif (
tx.output.side_effects.is_attribute_mutation(obj)
and name_var.is_python_constant()
):
name = name_var.as_python_constant()
if isinstance(obj, variables.TensorVariable):
from .builder import wrap_fx_proxy
if name == "requires_grad":
# TODO(voz): Make it work properly
unimplemented(
"mutating requires_grad can introduce a new leaf from non-leaf or vice versa in "
"the middle of the graph, which aot_autograd does not currently know how to handle. "
)
if name == "data":
# Remove the old reference in tracked fakes - if we don't do this
# new .data value size and shape differences will cause
# tracked fakes to produce incorrect guards. This is sound because the TensorVariable
# coming out of set_() below will be a new one, and get
# installed in tracked fakes.
to_remove = []
for tf in tx.output.tracked_fakes:
if tf.source == obj.source:
to_remove.append(tf)
for tf in to_remove:
tx.output.tracked_fakes.remove(tf)
# Step 1 - disable grads
with dynamo_disable_grad(tx), torch.no_grad():
# Step 2 - call `set_`
out = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
torch.Tensor.set_,
*proxy_args_kwargs([obj, val], {}),
),
)
# Step 3 - drop the version counter - this is a step required to get
# .data setting to play correctly with the autograd engine.
# Esentially, dynamo is trying to faithful preserve the (absurd)
# behavior of .data= from eager mode
def _lower_version_count_by_1(x):
version = x._version
if version > 0:
version = version - 1
torch._C._autograd._unsafe_set_version_counter(x, version)
return x
tx.output.create_proxy(
"call_function",
_lower_version_count_by_1,
(out.as_proxy(),),
{},
)
_lower_version_count_by_1(obj.as_proxy().node.meta["example_value"])
# This handles options prop, guards and ends with a clone
# Step 4 - replace all reference to the current object with the new one
return out
tx.output.side_effects.store_attr(obj, name, val)
return val
elif isinstance(obj, variables.UserDefinedObjectVariable):
unimplemented(
f"setattr(UserDefinedObjectVariable) {type(obj.value).__setattr__}"
)
elif isinstance(obj, variables.NNModuleVariable):
if not tx.output.is_root_tracer():
raise AttributeMutationError(
"Can't inplace modify module params/buffers inside HigherOrderOp"
)
if name_var.is_python_constant() and isinstance(
val, variables.TensorVariable
):
assigning_fake_val = get_fake_value(val.as_proxy().node, tx)
try:
getattr_var = obj.var_getattr(tx, name_var.as_python_constant())
except AttributeError:
getattr_var = None
if isinstance(getattr_var, variables.TensorVariable):
# get_fake_val will get the same fake tensor
existing_fake_attr = get_fake_value(getattr_var.as_proxy().node, tx)
# same tensor identiy, setattr is a no-op
mod_setattr = inspect.getattr_static(obj.module_type, "__setattr__")
if (
existing_fake_attr is assigning_fake_val
and mod_setattr is torch.nn.Module.__setattr__
):
return getattr_var
obj.convert_to_unspecialized(tx)
# FIXME (tmanlaibaatar) this is utter hack to unblock HuggingFace export
# Export generally doesn't want to allow mutations on objects directly,
# but we don't have good way to do this rn. For now, we make it an undefined
# behaviour and just set attributes directly on the PretrainedConfig object
# for now.
elif isinstance(obj, variables.dicts.HFPretrainedConfigVariable) and tx.export:
if name_var.is_python_constant() and isinstance(
val, variables.ConstantVariable
):
setattr(
obj.obj, name_var.as_python_constant(), val.as_python_constant()
)
return ConstantVariable(None)
def call_delattr(self, tx, obj: VariableTracker, name_var: VariableTracker):
return self.call_setattr(tx, obj, name_var, variables.DeletedVariable())
def call_type(self, tx, obj: VariableTracker):
from .builder import SourcelessBuilder, VariableBuilder
try:
py_type = obj.python_type()
except NotImplementedError as error:
raise UserError(
UserErrorType.INVALID_INPUT,
str(error),
case_name="unknown_python_type",
) from None
if obj.source is None:
return SourcelessBuilder()(tx, py_type)
else:
return VariableBuilder(tx, TypeSource(obj.source))(py_type)
def call_reversed(self, tx, obj: VariableTracker):
if obj.has_unpack_var_sequence(tx):
items = list(reversed(obj.unpack_var_sequence(tx)))
return variables.TupleVariable(items)
def call_sorted(self, tx, obj: VariableTracker, **kwargs):
if (
obj.has_unpack_var_sequence(tx)
and not isinstance(obj, variables.TensorVariable)
and all(x.is_python_constant() for x in obj.unpack_var_sequence(tx))
):
function = kwargs.pop("key", None)
reverse = kwargs.pop(
"reverse", ConstantVariable.create(False)
).as_python_constant()
assert len(kwargs) == 0
if function:
items = sorted(
obj.unpack_var_sequence(tx),
key=lambda x: function.call_function(
tx, [x], {}
).as_python_constant(),
reverse=reverse,
)
else:
items = sorted(
obj.unpack_var_sequence(tx),
key=lambda x: x.as_python_constant(),
reverse=reverse,
)
return variables.ListVariable(items)
def call_chain(self, tx, *args):
if all(obj.has_unpack_var_sequence(tx) for obj in args):
items = []
for obj in args:
items.extend(obj.unpack_var_sequence(tx))
return variables.TupleVariable(items)
def call_islice(self, tx, iterable, *args):
if iterable.has_unpack_var_sequence(tx) and all(
x.is_python_constant() for x in args
):
const_args = [x.as_python_constant() for x in args]
items = iterable.unpack_var_sequence(tx)
items = list(itertools.islice(items, *const_args))
return variables.TupleVariable(items)
# neg is a constant fold function, so we only get here if constant fold is not valid
def call_neg(self, tx, a):
if isinstance(a, SymNodeVariable):
return SymNodeVariable.create(
tx,
(operator.neg)(a.as_proxy()),
sym_num=None,
)
# None no-ops this handler and lets the driving function proceed
return None
def call_format(self, tx, _format_string, *args, **kwargs):
format_string = _format_string.as_python_constant()
return variables.StringFormatVariable.create(format_string, args, kwargs)
def call_id(self, tx, *args):
if len(args) > 0 and isinstance(args[0], variables.NNModuleVariable):
nn_mod_variable = args[0]
mod = tx.output.get_submodule(nn_mod_variable.module_key)
return variables.ConstantVariable.create(id(mod))
else:
unimplemented(f"call_id with args {args}")
def call_deepcopy(self, tx, x):
unimplemented(f"copy.deepcopy {repr(x)}")
def _comparison(self, tx, left, right):
"""
Used to implement comparison operators for different types.
For example, list1 < list2 is implemented differently from tensor1 < tensor2
"""
from . import (
BaseListVariable,
ConstantVariable,
NNModuleVariable,
TensorVariable,
UserDefinedObjectVariable,
UserFunctionVariable,
)
from .lists import SizeVariable
from .tensor import (
supported_const_comparison_ops,
supported_tensor_comparison_ops,
)
op = self.fn
def _unimplemented():
unimplemented(f"comparison {typestr(left)} {op} {typestr(right)}")
if (
all(
isinstance(x, (NNModuleVariable, ConstantVariable))
for x in [left, right]
)
and op in supported_const_comparison_ops.values()
):
left = (
tx.output.get_submodule(left.module_key)
if isinstance(left, NNModuleVariable)
else left.as_python_constant()
)
right = (
tx.output.get_submodule(right.module_key)
if isinstance(right, NNModuleVariable)
else right.as_python_constant()
)
return ConstantVariable.create(op(left, right))
if isinstance(left, UserFunctionVariable):
if op not in supported_const_comparison_ops.values():
_unimplemented()
if not isinstance(right, UserFunctionVariable):
_unimplemented()
return ConstantVariable.create(op(left.fn, right.fn))
# Note, we have a rare BaseListVariable subtype mismatch with valid comparison
# x = torch.randn([3, 3])
# x.size() == (3, 3) # True
# (3, 3) == x.size() # True
if isinstance(left, (SizeVariable, TupleVariable)) and isinstance(
right, (TupleVariable, SizeVariable)
):
return BaseListVariable.list_compare(tx, op, left, right)
if isinstance(left, BaseListVariable):
if not type(left) == type(right): # Mismatch in BaseListVariable subclasses
_unimplemented()
return BaseListVariable.list_compare(tx, op, left, right)
# If they implement set semantics (e.g. SetVariable or DictKeys)
if hasattr(left, "set_items") and hasattr(right, "set_items"):
return ConstantVariable.create(op(left.set_items, right.set_items))
if isinstance(left, TensorVariable) or isinstance(right, TensorVariable):
from .builder import wrap_fx_proxy_cls
if op in [operator.is_, operator.is_not]:
is_result = (
isinstance(left, TensorVariable)
and isinstance(right, TensorVariable)
and id(extract_fake_example_value(left.as_proxy().node))
== id(extract_fake_example_value(right.as_proxy().node))
)
if op is operator.is_:
return ConstantVariable.create(is_result)
else:
return ConstantVariable.create(not is_result)
if op not in supported_tensor_comparison_ops.values():
_unimplemented()
if (
isinstance(left, TensorVariable)
and isinstance(right, TensorVariable)
and (left.size and right.size) is not None
and left.size != right.size
):
try:
torch.broadcast_shapes(left.size, right.size)
except RuntimeError:
# not broadcastable, can't be compared
_unimplemented()
tensor_cls = left if isinstance(left, TensorVariable) else right
proxy = tx.output.create_proxy(
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
)
return wrap_fx_proxy_cls(
type(tensor_cls), # handle Ndarrays and Tensors
tx,
proxy,
)
if isinstance(left, SymNodeVariable) or isinstance(right, SymNodeVariable):
if op not in supported_tensor_comparison_ops.values():
_unimplemented()
proxy = tx.output.create_proxy(
"call_function", op, (left.as_proxy(), right.as_proxy()), {}
)
return SymNodeVariable.create(
tx,
proxy,
sym_num=None,
)
if isinstance(left, UserDefinedObjectVariable) and isinstance(
right, UserDefinedObjectVariable
):
return ConstantVariable.create(op(left.value, right.value))
if isinstance(left, (StreamVariable, EventVariable)) or isinstance(
right, (StreamVariable, EventVariable)
):
if type(left) == type(right) and op is operator.eq:
return ConstantVariable(op(left.value, right.value))
if isinstance(right, ConstantVariable) or isinstance(
left, ConstantVariable
):
return ConstantVariable(op(left.value, right.value))
if op.__name__.startswith("is_"):
# If the two objects are of different type, we can safely return False and True for `is` and `is not`, respectively
if type(left) is not type(right):
return ConstantVariable.create(op.__name__ != "is_")
if isinstance(left, BuiltinVariable) and isinstance(right, BuiltinVariable):
return ConstantVariable.create(op(left.fn, right.fn))
_unimplemented()
def call_and_(self, tx, a, b):
# Rely on constant_handler
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
return None
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
b, (SymNodeVariable, ConstantVariable)
):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.and_, *proxy_args_kwargs([a, b], {})
),
sym_num=None,
)
if hasattr(a, "set_items") and hasattr(b, "set_items"):
return SetVariable(list(a.set_items & b.set_items))
# None no-ops this handler and lets the driving function proceed
def call_or_(self, tx, a, b):
# Rely on constant_handler
if isinstance(a, ConstantVariable) and isinstance(b, ConstantVariable):
return None
if isinstance(a, (SymNodeVariable, ConstantVariable)) and isinstance(
b, (SymNodeVariable, ConstantVariable)
):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.or_, *proxy_args_kwargs([a, b], {})
),
sym_num=None,
)
if hasattr(a, "set_items") and hasattr(b, "set_items"):
return SetVariable(list(a.set_items | b.set_items))
# None no-ops this handler and lets the driving function proceed
return None
def call_not_(self, tx, a):
if isinstance(a, SymNodeVariable):
return SymNodeVariable.create(
tx,
tx.output.create_proxy(
"call_function", operator.not_, *proxy_args_kwargs([a], {})
),
sym_num=None,
)
# Unwrap the underlying ConstDictVariable
if isinstance(a, DictView):
a = a.dv_dict
if isinstance(a, (ListVariable, ConstDictVariable)):
return ConstantVariable.create(len(a.items) == 0)
return None
call_eq = _comparison
call_gt = _comparison
call_lt = _comparison
call_ge = _comparison
call_le = _comparison
call_ne = _comparison
call_is_ = _comparison
call_is_not = _comparison
call_all = _polyfill_call_impl("all")
call_any = _polyfill_call_impl("any")
@contextlib.contextmanager
def dynamo_disable_grad(tx):
from . import GradModeVariable
org_value = torch.is_grad_enabled()
gmv = GradModeVariable.create(tx, False)
try:
gmv.enter(tx)
yield
finally:
gmv.exit(tx)