2728 lines
96 KiB
Python
2728 lines
96 KiB
Python
|
from __future__ import annotations
|
||
|
|
||
|
import base64
|
||
|
import copyreg
|
||
|
import dataclasses
|
||
|
import functools
|
||
|
import hashlib
|
||
|
import importlib
|
||
|
import io
|
||
|
import json
|
||
|
import logging
|
||
|
import multiprocessing
|
||
|
import os
|
||
|
import pathlib
|
||
|
import pickle
|
||
|
import pkgutil
|
||
|
import platform
|
||
|
import re
|
||
|
import shlex
|
||
|
import shutil
|
||
|
import signal
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import sysconfig
|
||
|
import tempfile
|
||
|
import textwrap
|
||
|
import threading
|
||
|
import warnings
|
||
|
import weakref
|
||
|
from bisect import bisect_right
|
||
|
from concurrent.futures import Future, ProcessPoolExecutor, ThreadPoolExecutor
|
||
|
from copy import copy
|
||
|
from ctypes import c_void_p, cdll, CDLL
|
||
|
from functools import partial
|
||
|
from pathlib import Path
|
||
|
from threading import Thread
|
||
|
from time import sleep, time
|
||
|
from types import ModuleType
|
||
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from torch._dynamo.device_interface import (
|
||
|
get_interface_for_device,
|
||
|
get_registered_device_interfaces,
|
||
|
)
|
||
|
from torch._dynamo.utils import counters, dynamo_timed
|
||
|
from torch._inductor import config, exc, metrics
|
||
|
from torch._inductor.codegen.cuda import cuda_env
|
||
|
from torch._inductor.utils import cache_dir, developer_warning, is_linux
|
||
|
from torch._subclasses.fake_tensor import (
|
||
|
extract_tensor_metadata,
|
||
|
FakeTensor,
|
||
|
TensorMetadata,
|
||
|
)
|
||
|
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from torch._inductor.graph import GraphLowering
|
||
|
from torch._inductor.select_algorithm import ChoiceCaller
|
||
|
|
||
|
from torch.hub import _Faketqdm, tqdm
|
||
|
|
||
|
_HERE = os.path.abspath(__file__)
|
||
|
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
|
||
|
_LINKER_SCRIPT = os.path.join(_TORCH_PATH, "_inductor/script.ld")
|
||
|
|
||
|
if config.is_fbcode():
|
||
|
from triton.fb import build_paths
|
||
|
from triton.fb.build import _run_build_command
|
||
|
|
||
|
from torch._inductor.fb.utils import (
|
||
|
log_global_cache_errors,
|
||
|
log_global_cache_stats,
|
||
|
log_global_cache_vals,
|
||
|
use_global_cache,
|
||
|
)
|
||
|
else:
|
||
|
|
||
|
def log_global_cache_errors(*args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def log_global_cache_stats(*args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def log_global_cache_vals(*args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
def use_global_cache() -> bool:
|
||
|
return False
|
||
|
|
||
|
|
||
|
LOCK_TIMEOUT = 600
|
||
|
|
||
|
# timing metrics for time spent in the compilation
|
||
|
_cumulative_compile_time = 0.0
|
||
|
_t0: Optional[float] = None
|
||
|
|
||
|
|
||
|
def _compile_start() -> None:
|
||
|
global _t0
|
||
|
if _t0 is None:
|
||
|
_t0 = time()
|
||
|
|
||
|
|
||
|
def _compile_end() -> None:
|
||
|
global _cumulative_compile_time, _t0
|
||
|
if _t0 is not None:
|
||
|
t1 = time()
|
||
|
_cumulative_compile_time += t1 - _t0
|
||
|
_t0 = None
|
||
|
# print("CUMULATIVE COMPILE TIME", _cumulative_compile_time)
|
||
|
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def cpp_wrapper_cache_dir(name: str) -> str:
|
||
|
cu_str = (
|
||
|
"cpu"
|
||
|
if torch.version.cuda is None
|
||
|
else f'cu{torch.version.cuda.replace(".", "")}'
|
||
|
)
|
||
|
python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
|
||
|
build_folder = f"{python_version}_{cu_str}"
|
||
|
|
||
|
cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
|
||
|
cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
|
||
|
os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
|
||
|
return cpp_wrapper_build_directory
|
||
|
|
||
|
|
||
|
def get_cpp_wrapper_cubin_path_name():
|
||
|
return "cubin_path" if torch.version.hip is None else "hsaco_path"
|
||
|
|
||
|
|
||
|
class CacheBase:
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def get_system() -> Dict[str, Any]:
|
||
|
try:
|
||
|
import triton
|
||
|
|
||
|
triton_version = triton.__version__
|
||
|
except ModuleNotFoundError:
|
||
|
triton_version = None
|
||
|
|
||
|
try:
|
||
|
system: Dict[str, Any] = {
|
||
|
"device": {
|
||
|
"name": torch.cuda.get_device_properties(
|
||
|
torch.cuda.current_device()
|
||
|
).name,
|
||
|
},
|
||
|
"version": {
|
||
|
"cuda": torch.version.cuda,
|
||
|
"triton": triton_version,
|
||
|
},
|
||
|
}
|
||
|
except (AssertionError, RuntimeError):
|
||
|
# If cuda is not installed, none of the above config is relevant.
|
||
|
system = {}
|
||
|
|
||
|
system["hash"] = hashlib.sha256(
|
||
|
json.dumps(system, sort_keys=True).encode("utf-8")
|
||
|
).hexdigest()
|
||
|
|
||
|
return system
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def get_local_cache_path() -> Path:
|
||
|
return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def get_global_cache_path() -> Optional[Path]:
|
||
|
return (
|
||
|
Path(os.path.join(config.global_cache_dir, CacheBase.get_system()["hash"]))
|
||
|
if config.global_cache_dir is not None
|
||
|
else None
|
||
|
)
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
if not torch.cuda.is_available():
|
||
|
return
|
||
|
|
||
|
self.system = CacheBase.get_system()
|
||
|
|
||
|
self.local_cache_path = CacheBase.get_local_cache_path()
|
||
|
self.global_cache_path = CacheBase.get_global_cache_path()
|
||
|
|
||
|
def get_local_cache(self) -> Dict[str, Any]:
|
||
|
if not self.local_cache_path.is_file():
|
||
|
return {}
|
||
|
with open(self.local_cache_path) as local_cache_fp:
|
||
|
local_cache = json.load(local_cache_fp)
|
||
|
return local_cache["cache"]
|
||
|
|
||
|
def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
|
||
|
if not os.path.exists(self.local_cache_path.parent):
|
||
|
os.makedirs(self.local_cache_path.parent, exist_ok=True)
|
||
|
|
||
|
write_atomic(
|
||
|
str(self.local_cache_path),
|
||
|
json.dumps({"system": self.system, "cache": local_cache}, indent=4),
|
||
|
)
|
||
|
|
||
|
|
||
|
class LocalCache(CacheBase):
|
||
|
def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
|
||
|
cache = self.get_local_cache()
|
||
|
|
||
|
sub_cache = cache
|
||
|
for key in keys:
|
||
|
if key in cache:
|
||
|
sub_cache = cache[key]
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
return sub_cache
|
||
|
|
||
|
def set_value(self, *keys: str, value: Any) -> None:
|
||
|
cache = self.get_local_cache()
|
||
|
|
||
|
sub_cache = cache
|
||
|
for key in keys[0:-1]:
|
||
|
sub_cache.setdefault(key, {})
|
||
|
sub_cache = sub_cache[key]
|
||
|
sub_cache[keys[-1]] = value
|
||
|
|
||
|
self.update_local_cache(cache)
|
||
|
|
||
|
|
||
|
class PersistentCache(CacheBase):
|
||
|
@functools.lru_cache(None)
|
||
|
def get_global_cache(self):
|
||
|
if self.global_cache_path is None or not self.global_cache_path.is_file():
|
||
|
return {}
|
||
|
with open(self.global_cache_path) as global_cache_fp:
|
||
|
global_cache = json.load(global_cache_fp)
|
||
|
return global_cache["cache"]
|
||
|
|
||
|
def lookup(
|
||
|
self,
|
||
|
choices: List[ChoiceCaller],
|
||
|
op: str,
|
||
|
inputs: str,
|
||
|
benchmark: Callable[[Any], Dict[ChoiceCaller, float]],
|
||
|
) -> Dict[ChoiceCaller, float]:
|
||
|
"""
|
||
|
Check to see if we have benchmarked the given choice callers. For each
|
||
|
choice caller:
|
||
|
|
||
|
1. Check global_cache[op][inputs][choice][precision], return benchmark if cached.
|
||
|
2. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
|
||
|
3.
|
||
|
a. `max_autotune_gemm=True`: benchmark the choice, update
|
||
|
local_cache[op][inputs][choice], and return the benchmark.
|
||
|
b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
|
||
|
"""
|
||
|
precision = torch.get_float32_matmul_precision()
|
||
|
|
||
|
log_stats = partial(log_global_cache_stats, self.system, op, inputs, precision)
|
||
|
log_vals = partial(log_global_cache_vals, self.system, op, inputs, precision)
|
||
|
log_errors = partial(
|
||
|
log_global_cache_errors, self.system, op, inputs, precision
|
||
|
)
|
||
|
timings = {}
|
||
|
|
||
|
def check_cache(cache, callback=None) -> bool:
|
||
|
"""Check if `cache` contains data for all the choices"""
|
||
|
hit = True
|
||
|
for choice in choices:
|
||
|
choice_hash = choice.hash_key()
|
||
|
if choice_hash in cache.get(op, {}).get(inputs, {}).get(precision, {}):
|
||
|
# cache hit
|
||
|
timings[choice] = cache[op][inputs][precision][choice_hash]
|
||
|
else:
|
||
|
# cache miss
|
||
|
hit = False
|
||
|
break
|
||
|
if callback:
|
||
|
callback(cached=hit)
|
||
|
return hit
|
||
|
|
||
|
if config.max_autotune or config.max_autotune_gemm:
|
||
|
local_cache = self.get_local_cache()
|
||
|
# check local cache first since it is data specific to the current machine
|
||
|
if not check_cache(local_cache) and not (
|
||
|
use_global_cache()
|
||
|
and check_cache(self.get_global_cache(), callback=log_stats)
|
||
|
):
|
||
|
try:
|
||
|
# re-benchmark everything to try to get consistent numbers from the same machine
|
||
|
timings = benchmark(choices)
|
||
|
assert all(choice in timings for choice in choices)
|
||
|
local_cache.setdefault(op, {})
|
||
|
local_cache[op].setdefault(inputs, {}).setdefault(precision, {})
|
||
|
for choice, timing in timings.items():
|
||
|
local_cache[op][inputs][precision][choice.hash_key()] = timing
|
||
|
except RuntimeError as e:
|
||
|
# catch and log autotuning failures
|
||
|
log_errors(e)
|
||
|
raise e
|
||
|
|
||
|
self.update_local_cache(local_cache)
|
||
|
|
||
|
timings_to_log = {
|
||
|
choice.hash_key(): timings[choice] for choice in choices
|
||
|
}
|
||
|
log_vals(timings_to_log)
|
||
|
elif use_global_cache():
|
||
|
# only check global cache, not local one
|
||
|
check_cache(self.get_global_cache(), callback=log_stats)
|
||
|
# may have a partial cache hit, where not everything is benchmarked
|
||
|
|
||
|
return timings
|
||
|
|
||
|
|
||
|
def get_lock_dir() -> str:
|
||
|
lock_dir = os.path.join(cache_dir(), "locks")
|
||
|
if not os.path.exists(lock_dir):
|
||
|
os.makedirs(lock_dir, exist_ok=True)
|
||
|
return lock_dir
|
||
|
|
||
|
|
||
|
def sha256_hash(data: bytes) -> str:
|
||
|
# [:51] to strip off the "Q====" suffix common to every hash value.
|
||
|
return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()
|
||
|
|
||
|
|
||
|
def code_hash(code: Union[str, bytes], extra: str = ""):
|
||
|
hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
|
||
|
if extra != "":
|
||
|
hashing_str = hashing_str + b"||" + extra.encode("utf-8")
|
||
|
return "c" + sha256_hash(hashing_str)
|
||
|
|
||
|
|
||
|
def get_path(
|
||
|
basename: str, extension: str, specified_dir: str = ""
|
||
|
) -> Tuple[str, str, str]:
|
||
|
if specified_dir:
|
||
|
if os.path.isabs(specified_dir):
|
||
|
subdir = specified_dir
|
||
|
else:
|
||
|
subdir = os.path.join(cache_dir(), specified_dir)
|
||
|
else:
|
||
|
subdir = os.path.join(cache_dir(), basename[1:3])
|
||
|
path = os.path.join(subdir, f"{basename}.{extension}")
|
||
|
return basename, subdir, path
|
||
|
|
||
|
|
||
|
def get_hash(content: Union[str, bytes], extra: str = "", hash_type: str = "code"):
|
||
|
if hash_type == "code":
|
||
|
return code_hash(content, extra)
|
||
|
if hash_type in ["cubin", "hsaco"]:
|
||
|
return code_hash(repr(content))
|
||
|
raise AssertionError(f"Unknown hash type {hash_type}")
|
||
|
|
||
|
|
||
|
def write(
|
||
|
content: Union[str, bytes],
|
||
|
extension: str,
|
||
|
extra: str = "",
|
||
|
hash_type: str = "code",
|
||
|
specified_dir: str = "",
|
||
|
) -> Tuple[str, str]:
|
||
|
# use striped content to compute hash so we don't end up with different
|
||
|
# hashes just because the content begins/ends with differnet number of
|
||
|
# spaces.
|
||
|
key: str = get_hash(content.strip(), extra, hash_type)
|
||
|
basename, subdir, path = get_path(key, extension, specified_dir)
|
||
|
if not os.path.exists(subdir):
|
||
|
os.makedirs(subdir, exist_ok=True)
|
||
|
if not os.path.exists(path):
|
||
|
write_atomic(path, content)
|
||
|
return basename, path
|
||
|
|
||
|
|
||
|
def write_atomic(path: str, content: Union[str, bytes]) -> None:
|
||
|
# Write into temporary file first to avoid conflicts between threads
|
||
|
# Avoid using a named temporary file, as those have restricted permissions
|
||
|
assert isinstance(
|
||
|
content, (str, bytes)
|
||
|
), "Only strings and byte arrays can be saved in the cache"
|
||
|
path = pathlib.Path(path)
|
||
|
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
|
||
|
write_mode = "w" if isinstance(content, str) else "wb"
|
||
|
with tmp_path.open(write_mode) as f:
|
||
|
f.write(content)
|
||
|
tmp_path.rename(path)
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class TensorMetadataAndValues:
|
||
|
"""
|
||
|
TensorMetadata plus the elements as a list of raw values.
|
||
|
Used for hashing inlined constants.
|
||
|
"""
|
||
|
|
||
|
tensor_metadata: TensorMetadata
|
||
|
values: List[Any]
|
||
|
|
||
|
|
||
|
def _ident(x: Any) -> Any:
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _reduce_fake_tensor(t):
|
||
|
"""
|
||
|
See FxGraphCachePickler. Custom reducer to pickle FakeTensors.
|
||
|
"""
|
||
|
metadata = extract_tensor_metadata(t)
|
||
|
return (_ident, (metadata,))
|
||
|
|
||
|
|
||
|
def _reduce_tensor(t):
|
||
|
"""
|
||
|
See FxGraphCachePickler. Custom reducer to pickle Tensors.
|
||
|
"""
|
||
|
if t.is_mkldnn:
|
||
|
# TODO: These tensors don't currently pickle, so we can't cache a
|
||
|
# compiled graph containing them. Just fail now. If mkldnn tensors
|
||
|
# get pickling support, we can remove this.
|
||
|
raise BypassFxGraphCache()
|
||
|
|
||
|
# If we see tensors, we know they're constants stored as attributes on
|
||
|
# the GraphModule. See tensor lowering; small constants are inlined. If
|
||
|
# we see a small tensor, therefore, no reference will ultimately remain
|
||
|
# in the generated code. So we need to include its value in the cache key.
|
||
|
# Large constants are effectively treated as inputs and we consider only
|
||
|
# their metadata.
|
||
|
metadata = extract_tensor_metadata(t)
|
||
|
if len(t.shape) == 0 or torch._inductor.graph.GraphLowering.can_inline_constant(t):
|
||
|
return (_ident, (TensorMetadataAndValues(metadata, t.tolist()),))
|
||
|
else:
|
||
|
return (_ident, (metadata,))
|
||
|
|
||
|
|
||
|
def _reduce_symint(s):
|
||
|
"""
|
||
|
See FxGraphCachePickler. Custom reducer to pickle SymInts.
|
||
|
"""
|
||
|
# For hashing purposes, we only care about the name of the symbol and
|
||
|
# not the backed value. We evaluate guards stored with a cached graph
|
||
|
# to ensure a cached entity with SymInt args is safe to reuse.
|
||
|
return (_ident, (str(s),))
|
||
|
|
||
|
|
||
|
class FxGraphCachePickler(pickle.Pickler):
|
||
|
"""
|
||
|
Custom pickler to customize the pickling of some objects (Tensors), only for the
|
||
|
purpose of computing a hash for keying into the FxGraphCache. Tensors contain
|
||
|
objects that don't pickle and/or vary between runs, and we want to capture the
|
||
|
data that allow us to compute a stable, but safe hash.
|
||
|
"""
|
||
|
|
||
|
dispatch_table = copyreg.dispatch_table.copy()
|
||
|
dispatch_table[FakeTensor] = _reduce_fake_tensor
|
||
|
dispatch_table[torch.Tensor] = _reduce_tensor
|
||
|
dispatch_table[torch.SymInt] = _reduce_symint
|
||
|
|
||
|
@staticmethod
|
||
|
def dumps(obj) -> bytes:
|
||
|
"""
|
||
|
Pickle an object using the FxGraphCachePickler.
|
||
|
"""
|
||
|
with io.BytesIO() as stream:
|
||
|
pickler = FxGraphCachePickler(stream)
|
||
|
pickler.dump(obj)
|
||
|
return stream.getvalue()
|
||
|
|
||
|
@staticmethod
|
||
|
def get_hash(obj: Any) -> str:
|
||
|
"""
|
||
|
Serialize an object using the FxGraphCachePickler and return a hash
|
||
|
of the pickled object.
|
||
|
"""
|
||
|
serialized_data = FxGraphCachePickler.dumps(obj)
|
||
|
return sha256_hash(serialized_data)
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def get_inductor_code_hash() -> bytes:
|
||
|
"""
|
||
|
Compute a hash of all inductor code modules. Used by the FxGraph cache
|
||
|
so any inductor code changes would result in new cache keys.
|
||
|
"""
|
||
|
inductor_root = os.path.dirname(__file__)
|
||
|
|
||
|
contents: Dict[str, bytes] = {}
|
||
|
for lib in pkgutil.iter_modules([inductor_root]):
|
||
|
spec = lib.module_finder.find_spec(lib.name, None)
|
||
|
assert spec is not None
|
||
|
module = spec.origin
|
||
|
assert module is not None
|
||
|
with open(module, "rb") as f:
|
||
|
contents[module] = f.read()
|
||
|
|
||
|
return hashlib.sha256(pickle.dumps(contents)).digest()
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class OrderedSetHolder:
|
||
|
"""
|
||
|
See FxGraphHashDetails. Holds a sorted list to support stable hashing
|
||
|
of set kwargs.
|
||
|
"""
|
||
|
|
||
|
items: List[Any]
|
||
|
|
||
|
|
||
|
class BypassFxGraphCache(Exception):
|
||
|
"""
|
||
|
Exception to indicate that the FxGraphCache should be bypassed.
|
||
|
"""
|
||
|
|
||
|
pass
|
||
|
|
||
|
|
||
|
class FxGraphHashDetails:
|
||
|
"""
|
||
|
Object to capture all the details for a compiled FX graph relevant to computing
|
||
|
a safe and stable cache key.
|
||
|
"""
|
||
|
|
||
|
# Excluded kwargs param that are not stable between runs
|
||
|
EXCLUDED_KWARGS = ["graph_id"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
gm: torch.fx.GraphModule,
|
||
|
example_inputs: List[torch.Tensor],
|
||
|
fx_kwargs: Dict[str, Any],
|
||
|
):
|
||
|
self.gm = gm
|
||
|
self.example_inputs = example_inputs
|
||
|
|
||
|
# Order kwargs so hashing is stable to changes in kwarg order.
|
||
|
self.fx_kwargs = {}
|
||
|
for k in sorted(fx_kwargs):
|
||
|
if k not in self.EXCLUDED_KWARGS:
|
||
|
if type(fx_kwargs[k]) is set:
|
||
|
# Special case to handle set params. Python sets can't be
|
||
|
# ordered, so sort the elements and store them in a proxy.
|
||
|
self.fx_kwargs[k] = OrderedSetHolder(sorted(fx_kwargs[k]))
|
||
|
else:
|
||
|
self.fx_kwargs[k] = fx_kwargs[k]
|
||
|
|
||
|
# 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
|
||
|
self.deterministic_algorithms_settings = (
|
||
|
torch.are_deterministic_algorithms_enabled(),
|
||
|
torch.is_deterministic_algorithms_warn_only_enabled(),
|
||
|
torch.utils.deterministic.fill_uninitialized_memory, # type: ignore[attr-defined]
|
||
|
)
|
||
|
|
||
|
# Global settings affecting matmul codegen.
|
||
|
self.cuda_matmul_settings = (
|
||
|
torch.backends.cuda.matmul.allow_tf32,
|
||
|
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
|
||
|
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
|
||
|
)
|
||
|
|
||
|
# Also hash on various system info (including the triton compiler version).
|
||
|
self.torch_version = torch.__version__
|
||
|
self.system_info = CacheBase.get_system()
|
||
|
|
||
|
# And the inductor configuration and code.
|
||
|
self.inductor_code_hash = get_inductor_code_hash()
|
||
|
try:
|
||
|
self.inductor_config = config.save_config()
|
||
|
except TypeError as e:
|
||
|
# Some configs options are callables, e.g., post_grad_custom_pre_pass,
|
||
|
# and may not pickle.
|
||
|
log.debug("Can't pickle inductor config: %s", e)
|
||
|
raise BypassFxGraphCache() from e
|
||
|
|
||
|
def debug_str(self) -> str:
|
||
|
"""
|
||
|
Get a printable string describing in more detail all the attributes
|
||
|
comprising this object. Useful for debugging when one graph hashes
|
||
|
to a different value than another.
|
||
|
"""
|
||
|
|
||
|
def get_str(obj) -> str:
|
||
|
if isinstance(obj, torch.Tensor):
|
||
|
return str(extract_tensor_metadata(obj))
|
||
|
elif isinstance(obj, bytes):
|
||
|
return "<bytes>"
|
||
|
else:
|
||
|
return str(obj)
|
||
|
|
||
|
lines = []
|
||
|
for attr, obj in vars(self).items():
|
||
|
if isinstance(obj, list):
|
||
|
for ii in range(len(obj)):
|
||
|
h = FxGraphCachePickler.get_hash(obj[ii])
|
||
|
lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
|
||
|
elif isinstance(obj, dict):
|
||
|
for k, v in obj.items():
|
||
|
h = FxGraphCachePickler.get_hash(v)
|
||
|
lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
|
||
|
else:
|
||
|
h = FxGraphCachePickler.get_hash(obj)
|
||
|
lines.append(f"[{h}] {attr}: {get_str(obj)}")
|
||
|
return "\n".join(lines)
|
||
|
|
||
|
|
||
|
def compiled_fx_graph_hash(
|
||
|
gm: torch.fx.GraphModule,
|
||
|
example_inputs: List[torch.Tensor],
|
||
|
fx_kwargs: Dict[str, Any],
|
||
|
) -> str:
|
||
|
"""
|
||
|
Generate a unique hash of the FX graph for caching.
|
||
|
"""
|
||
|
details = FxGraphHashDetails(gm, example_inputs, fx_kwargs)
|
||
|
# The prefix distinguishes among the other kinds of objects we
|
||
|
# cache in this module.
|
||
|
key = "f" + FxGraphCachePickler.get_hash(details)
|
||
|
log.debug("FX graph cache hash details for key %s:\n%s", key, details.debug_str())
|
||
|
return key
|
||
|
|
||
|
|
||
|
class FxGraphCache:
|
||
|
"""
|
||
|
Supports caching and reusing compiled Fx graphs.
|
||
|
|
||
|
The overall strategy is as follows:
|
||
|
- This cache stores entries on disk. When saving an entry, we can't
|
||
|
serialize callables (that could be C++, Triton, etc.), so we serialize
|
||
|
their own disk cache location. We then recreate the compiled artifact
|
||
|
after fetching from disk.
|
||
|
- For indexing the cache, we gather the fields relevant to identifying an
|
||
|
FxGraph (the graph module, graph inputs, system settings etc.) into an
|
||
|
FxGraphCacheDetails object, pickle it, and compute a hash for the key.
|
||
|
See FxGraphCachePickler.
|
||
|
- Among the metadata we store, we also include a guards expression that's
|
||
|
appropriate for validating any symbols for Tensor arguments that have
|
||
|
symbolic bounds. On cache lookup then, we evaluate those guards in the
|
||
|
current context to validate that a cached entry can be served.
|
||
|
- A given graph could have multiple compiled versions, corresponding to
|
||
|
different sets of guards. Therefore, we store cache entries in the form:
|
||
|
<temp dir>/<fx graph hash>/<serialized metatdata>
|
||
|
- On lookup, we compute the key from the graph details, iterate over all
|
||
|
leaf files in the corresponding subdirectory, deserialize the entry, and
|
||
|
evaluate its guards expression. If the evaluation succeeds, we have a
|
||
|
cache hit. If it fails, we compile the graph and store a new entry.
|
||
|
- Finally, on a cache hit, we need to make sure any guards that would
|
||
|
have been created during compilation are added to the current context.
|
||
|
"""
|
||
|
|
||
|
# TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
|
||
|
# in an in-memory cache after loading from disk.
|
||
|
@staticmethod
|
||
|
def _get_tmp_dir() -> str:
|
||
|
"""
|
||
|
Get the toplevel temporary directory for storing compiled graphs.
|
||
|
"""
|
||
|
return os.path.join(cache_dir(), "fxgraph")
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_tmp_dir_for_key(key: str) -> str:
|
||
|
"""
|
||
|
Return the disk location for a given cache key.
|
||
|
"""
|
||
|
return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)
|
||
|
|
||
|
@staticmethod
|
||
|
def _filter_symints(inputs: List[Any]) -> List[torch.SymInt]:
|
||
|
"""
|
||
|
Get the SymInt objects from the input list.
|
||
|
"""
|
||
|
return [s for s in inputs if isinstance(s, torch.SymInt)]
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_shape_env() -> Optional[ShapeEnv]:
|
||
|
"""
|
||
|
Helper to get the shape env from the tracing context.
|
||
|
"""
|
||
|
ctx = torch._guards.TracingContext.try_get()
|
||
|
if not ctx:
|
||
|
return None
|
||
|
return ctx.fake_mode.shape_env
|
||
|
|
||
|
@staticmethod
|
||
|
def _lookup_graph(
|
||
|
key: str,
|
||
|
example_inputs: List[torch.Tensor],
|
||
|
) -> Optional[CompiledFxGraph]:
|
||
|
"""
|
||
|
Lookup a compiled graph in the cache by key. On a hit, return the
|
||
|
deserialized CompiledFxGraph object. On a miss, return None.
|
||
|
"""
|
||
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
||
|
if not os.path.exists(subdir):
|
||
|
return None
|
||
|
|
||
|
shape_env = FxGraphCache._get_shape_env()
|
||
|
assert shape_env is not None
|
||
|
|
||
|
# Iterate over any entries in the subdir for this key and evaluate
|
||
|
# their guards to determine whether there's a hit.
|
||
|
graph = None
|
||
|
|
||
|
for path in sorted(os.listdir(subdir)):
|
||
|
with open(os.path.join(subdir, path), "rb") as f:
|
||
|
candidate: CompiledFxGraph = pickle.load(f)
|
||
|
|
||
|
guards_expr = candidate.guards_expr
|
||
|
if not guards_expr:
|
||
|
# No guards to evaluate, so this is a hit.
|
||
|
graph = candidate
|
||
|
break
|
||
|
|
||
|
# Evaluate the guard expression in the current context.
|
||
|
symints = FxGraphCache._filter_symints(example_inputs)
|
||
|
|
||
|
# If there's not a cache hit, we don't want the evaluation to
|
||
|
# affect the current env, e.g., cause the creation of new guards,
|
||
|
# so we evaluate with the hints instead of the symbols.
|
||
|
assert all(has_hint(s) for s in symints)
|
||
|
hints = [hint_int(s) for s in symints]
|
||
|
hit = bool(shape_env.evaluate_guards_expression(guards_expr, hints))
|
||
|
log.debug(
|
||
|
"fx graph cache key %s evaluating guards for %s with values %s => %s",
|
||
|
key,
|
||
|
guards_expr,
|
||
|
hints,
|
||
|
hit,
|
||
|
)
|
||
|
if hit:
|
||
|
# Now re-evaluate with the symints to add any guards to the current env.
|
||
|
check = bool(shape_env.evaluate_guards_expression(guards_expr, symints))
|
||
|
assert check is True
|
||
|
log.debug(
|
||
|
"fx graph cache key %s post-load guards: %s", key, shape_env.guards
|
||
|
)
|
||
|
graph = candidate
|
||
|
break
|
||
|
|
||
|
# Increment the cached metrics by the amounts recorded when the FX
|
||
|
# graph was compiled for this cache entry. Pretending these counters
|
||
|
# were incremented normally is useful for testing with the cache enabled.
|
||
|
if graph is not None:
|
||
|
metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)
|
||
|
|
||
|
return graph
|
||
|
|
||
|
@staticmethod
|
||
|
def _save_graph(
|
||
|
key: str, compiled_graph: CompiledFxGraph, example_inputs: List[torch.Tensor]
|
||
|
):
|
||
|
"""
|
||
|
Store a serialized CompiledFxGraph on disk.
|
||
|
"""
|
||
|
disk_compiled_graph = copy(compiled_graph)
|
||
|
# Important as compiled models are not pickleable:
|
||
|
disk_compiled_graph.compiled_artifact = None
|
||
|
|
||
|
# Before serializing, compute the guard expression that will be used to
|
||
|
# ensure that a CompiledFxGraph is valid when loaded from the cache. It's
|
||
|
# sufficient to consider only the SymInt args to the fx graph since the
|
||
|
# Tensor shapes are already captured in the hash for the cache key. Any
|
||
|
# Tensor arg with a symbolic shape will have a SymInt arg for the graph.
|
||
|
shape_env = FxGraphCache._get_shape_env()
|
||
|
assert shape_env is not None
|
||
|
symints = FxGraphCache._filter_symints(example_inputs)
|
||
|
disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(symints)
|
||
|
|
||
|
try:
|
||
|
content = pickle.dumps(disk_compiled_graph)
|
||
|
except Exception as e:
|
||
|
log.debug("fx graph cache unable to serialize compiled graph: %s", e)
|
||
|
counters["inductor"]["fxgraph_cache_pickle_error"] += 1
|
||
|
return
|
||
|
|
||
|
subdir = FxGraphCache._get_tmp_dir_for_key(key)
|
||
|
if not os.path.exists(subdir):
|
||
|
os.makedirs(subdir, exist_ok=True)
|
||
|
|
||
|
# Use a hash of the serialized CompiledFxGraph to get a unique file
|
||
|
# name. The specific name doesn't matter since a lookup involves
|
||
|
# iterating over all entries in the parent subdir.
|
||
|
path = os.path.join(subdir, sha256_hash(content))
|
||
|
write_atomic(path, content)
|
||
|
|
||
|
@staticmethod
|
||
|
def _check_can_cache():
|
||
|
"""
|
||
|
Check some conditions that would preclude caching and raise BypassFxGraphCache
|
||
|
to bypass in case caching is not possible.
|
||
|
"""
|
||
|
if config.freezing or config.aot_inductor.use_runtime_constant_folding:
|
||
|
# Freezing can embed constants that wouldn't be static across runs.
|
||
|
raise BypassFxGraphCache()
|
||
|
|
||
|
if FxGraphCache._get_shape_env() is None:
|
||
|
# The treatment of guards in the caching implementation requires that
|
||
|
# we have a shape env.
|
||
|
log.debug("fx graph cache no shape env")
|
||
|
raise BypassFxGraphCache()
|
||
|
|
||
|
@staticmethod
|
||
|
def load(
|
||
|
compile_fx_fn: Callable[..., Any],
|
||
|
gm: torch.fx.GraphModule,
|
||
|
example_inputs: List[torch.Tensor],
|
||
|
fx_kwargs: Dict[str, Any],
|
||
|
):
|
||
|
"""
|
||
|
Load a compiled graph from the cache. If a cached entry does not exist,
|
||
|
compile the graph and save it to the cache.
|
||
|
"""
|
||
|
from filelock import FileLock
|
||
|
|
||
|
compiled_graph = None
|
||
|
try:
|
||
|
FxGraphCache._check_can_cache()
|
||
|
key = compiled_fx_graph_hash(gm, example_inputs, fx_kwargs)
|
||
|
|
||
|
lock_path = os.path.join(get_lock_dir(), key + ".lock")
|
||
|
with FileLock(lock_path, timeout=LOCK_TIMEOUT):
|
||
|
compiled_graph = FxGraphCache._lookup_graph(key, example_inputs)
|
||
|
if compiled_graph is None:
|
||
|
log.debug("fx graph cache miss for key %s", key)
|
||
|
counters["inductor"]["fxgraph_cache_miss"] += 1
|
||
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
||
|
FxGraphCache._save_graph(key, compiled_graph, example_inputs)
|
||
|
else:
|
||
|
log.debug("fx graph cache hit for key %s", key)
|
||
|
counters["inductor"]["fxgraph_cache_hit"] += 1
|
||
|
except BypassFxGraphCache:
|
||
|
counters["inductor"]["fxgraph_cache_bypass"] += 1
|
||
|
|
||
|
if not compiled_graph:
|
||
|
compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
|
||
|
|
||
|
return compiled_graph
|
||
|
|
||
|
@staticmethod
|
||
|
def clear():
|
||
|
"""
|
||
|
Clear out the on-disk cache.
|
||
|
"""
|
||
|
try:
|
||
|
shutil.rmtree(FxGraphCache._get_tmp_dir())
|
||
|
except FileNotFoundError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class CompiledFxGraph:
|
||
|
"""
|
||
|
Class holding a compiled FX graph. This is the object serialized on disk
|
||
|
to support FxGraph caching.
|
||
|
"""
|
||
|
|
||
|
compiled_artifact: Optional[Callable[..., Any]]
|
||
|
current_callable: Optional[Callable[..., Any]]
|
||
|
cache_key: Optional[str]
|
||
|
artifact_path: Optional[str]
|
||
|
cache_linemap: Optional[List[Tuple[int, str]]]
|
||
|
device_types: Set[str]
|
||
|
device_idxs: Set[int]
|
||
|
mutated_inputs: Set[str]
|
||
|
mutated_input_idxs: Set[int]
|
||
|
constants: Dict[str, torch.Tensor]
|
||
|
output_strides: Optional[List[Optional[Tuple[int, ...]]]]
|
||
|
disabled_cudagraphs_reason: Optional[str]
|
||
|
metrics_deltas: metrics.CachedMetricsDeltas
|
||
|
# This is a string representation of an expression we serialize
|
||
|
# with the object so the guards can be evaluated in a different
|
||
|
# context in order to verify the validity of serving a cached
|
||
|
# fx graph. The expression must be generated by:
|
||
|
# ShapeEnv.produce_guards_expression()
|
||
|
guards_expr: Optional[str]
|
||
|
|
||
|
_boxed_call: Optional[bool] = None
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
compiled_artifact: Optional[Callable[..., Any]],
|
||
|
graph: GraphLowering,
|
||
|
output_strides: List[Optional[Tuple[int, ...]]],
|
||
|
disabled_cudagraphs_reason: Optional[str],
|
||
|
metrics_deltas: metrics.CachedMetricsDeltas,
|
||
|
):
|
||
|
self.compiled_artifact = compiled_artifact
|
||
|
self.current_callable = None
|
||
|
self.cache_key = graph.cache_key
|
||
|
self.artifact_path = graph.cache_path
|
||
|
self.cache_linemap = graph.cache_linemap
|
||
|
self.device_types = graph.device_types
|
||
|
self.device_idxs = graph.device_idxs
|
||
|
self.mutated_inputs = graph.mutated_inputs
|
||
|
self.mutated_input_idxs = set(graph.mutated_input_idxs)
|
||
|
self.constants = graph.constants
|
||
|
self.output_strides = output_strides
|
||
|
self.disabled_cudagraphs_reason = disabled_cudagraphs_reason
|
||
|
self.metrics_deltas = metrics_deltas
|
||
|
self.guards_expr = None
|
||
|
|
||
|
def __call__(self, inputs: List[Any]) -> Any:
|
||
|
return self.get_current_callable()(inputs)
|
||
|
|
||
|
def get_current_callable(self) -> Callable[..., Any]:
|
||
|
if self.current_callable is None:
|
||
|
# This prevents a circular reference that makes CompiledFxGraph
|
||
|
# get stuck without getting garbage collected
|
||
|
return functools.partial(_run_from_cache, weakref.proxy(self))
|
||
|
else:
|
||
|
return self.current_callable
|
||
|
|
||
|
|
||
|
def _run_from_cache(compiled_graph: CompiledFxGraph, inputs: List[Any]) -> Any:
|
||
|
# We can't really serialize callables that may be C++/Triton/etc.,
|
||
|
# so we serialize their disk cache location instead
|
||
|
# TODO: When making an API that can save compiled models e2e to disk
|
||
|
# this will need to be better
|
||
|
if compiled_graph.compiled_artifact is None:
|
||
|
from .codecache import PyCodeCache
|
||
|
|
||
|
assert compiled_graph.cache_key
|
||
|
assert compiled_graph.artifact_path
|
||
|
compiled_graph.compiled_artifact = PyCodeCache.load_by_key_path(
|
||
|
compiled_graph.cache_key,
|
||
|
compiled_graph.artifact_path,
|
||
|
compiled_graph.cache_linemap,
|
||
|
compiled_graph.constants,
|
||
|
).call
|
||
|
|
||
|
return compiled_graph.compiled_artifact(inputs)
|
||
|
|
||
|
|
||
|
def cpp_compiler() -> str:
|
||
|
if config.is_fbcode():
|
||
|
return build_paths.cc()
|
||
|
if isinstance(config.cpp.cxx, (list, tuple)):
|
||
|
search = tuple(config.cpp.cxx)
|
||
|
else:
|
||
|
search = (config.cpp.cxx,)
|
||
|
return cpp_compiler_search(search)
|
||
|
|
||
|
|
||
|
@functools.lru_cache(1)
|
||
|
def cpp_compiler_search(search: str) -> str:
|
||
|
for cxx in search:
|
||
|
try:
|
||
|
if cxx is None:
|
||
|
# gxx package is only available for Linux
|
||
|
# according to https://anaconda.org/conda-forge/gxx/
|
||
|
if sys.platform != "linux":
|
||
|
continue
|
||
|
# Do not install GXX by default
|
||
|
if not os.getenv("TORCH_INDUCTOR_INSTALL_GXX"):
|
||
|
continue
|
||
|
from filelock import FileLock
|
||
|
|
||
|
lock_dir = get_lock_dir()
|
||
|
lock = FileLock(
|
||
|
os.path.join(lock_dir, "g++.lock"), timeout=LOCK_TIMEOUT
|
||
|
)
|
||
|
with lock:
|
||
|
cxx = install_gcc_via_conda()
|
||
|
subprocess.check_output([cxx, "--version"])
|
||
|
return cxx
|
||
|
except (subprocess.SubprocessError, FileNotFoundError, ImportError):
|
||
|
continue
|
||
|
raise exc.InvalidCxxCompiler()
|
||
|
|
||
|
|
||
|
def install_gcc_via_conda() -> str:
|
||
|
"""On older systems, this is a quick way to get a modern compiler"""
|
||
|
prefix = os.path.join(cache_dir(), "gcc")
|
||
|
cxx_path = os.path.join(prefix, "bin", "g++")
|
||
|
if not os.path.exists(cxx_path):
|
||
|
log.info("Downloading GCC via conda")
|
||
|
conda = os.environ.get("CONDA_EXE", "conda")
|
||
|
if conda is None:
|
||
|
conda = shutil.which("conda")
|
||
|
if conda is not None:
|
||
|
subprocess.check_call(
|
||
|
[
|
||
|
conda,
|
||
|
"create",
|
||
|
f"--prefix={prefix}",
|
||
|
"--channel=conda-forge",
|
||
|
"--quiet",
|
||
|
"-y",
|
||
|
"python=3.8",
|
||
|
"gxx",
|
||
|
],
|
||
|
stdout=subprocess.PIPE,
|
||
|
)
|
||
|
return cxx_path
|
||
|
|
||
|
|
||
|
def is_gcc() -> bool:
|
||
|
return bool(re.search(r"(gcc|g\+\+)", cpp_compiler()))
|
||
|
|
||
|
|
||
|
def is_clang() -> bool:
|
||
|
return bool(re.search(r"(clang|clang\+\+)", cpp_compiler()))
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def is_apple_clang() -> bool:
|
||
|
cxx = cpp_compiler()
|
||
|
version_string = subprocess.check_output([cxx, "--version"]).decode("utf8")
|
||
|
return "Apple" in version_string.splitlines()[0]
|
||
|
|
||
|
|
||
|
class VecISA:
|
||
|
_bit_width: int
|
||
|
_macro: str
|
||
|
_arch_flags: str
|
||
|
_dtype_nelements: Dict[torch.dtype, int]
|
||
|
|
||
|
# Note [Checking for Vectorized Support in Inductor]
|
||
|
# TorchInductor CPU vectorization reuses PyTorch vectorization utility functions
|
||
|
# Hence, TorchInductor would depend on Sleef* to accelerate mathematical functions
|
||
|
# like exp, pow, sin, cos and etc.
|
||
|
# But PyTorch and TorchInductor might use different compilers to build code. If
|
||
|
# PyTorch uses gcc-7/g++-7 to build the release package, the libtorch_cpu.so
|
||
|
# will not expose the Sleef* AVX512 symbols since gcc-7/g++-7 cannot pass
|
||
|
# avx512 check in CMake - FindAVX.cmake. But TorchInductor install the latest
|
||
|
# gcc/g++ compiler by default while it could support the AVX512 compilation.
|
||
|
# Therefore, there would be a conflict sleef version between PyTorch and
|
||
|
# TorchInductor. Hence, we dry-compile the following code to check whether current
|
||
|
# HW platform and PyTorch both could support AVX512 or AVX2. And suppose ARM
|
||
|
# also needs the logic
|
||
|
# In fbcode however, we are using the same compiler for pytorch and for inductor codegen,
|
||
|
# making the runtime check unnecessary.
|
||
|
_avx_code = """
|
||
|
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR)
|
||
|
#include <ATen/cpu/vec/functional.h>
|
||
|
#include <ATen/cpu/vec/vec.h>
|
||
|
#endif
|
||
|
|
||
|
__attribute__((aligned(64))) float in_out_ptr0[16] = {0.0};
|
||
|
|
||
|
extern "C" void __avx_chk_kernel() {
|
||
|
auto tmp0 = at::vec::Vectorized<float>(1);
|
||
|
auto tmp1 = tmp0.exp();
|
||
|
tmp1.store(in_out_ptr0);
|
||
|
}
|
||
|
""" # noqa: B950
|
||
|
|
||
|
_avx_py_load = """
|
||
|
import torch
|
||
|
from ctypes import cdll
|
||
|
cdll.LoadLibrary("__lib_path__")
|
||
|
"""
|
||
|
|
||
|
def bit_width(self) -> int:
|
||
|
return self._bit_width
|
||
|
|
||
|
def nelements(self, dtype: torch.dtype = torch.float) -> int:
|
||
|
return self._dtype_nelements[dtype]
|
||
|
|
||
|
def build_macro(self) -> str:
|
||
|
return self._macro
|
||
|
|
||
|
def build_arch_flags(self) -> str:
|
||
|
return self._arch_flags
|
||
|
|
||
|
def __hash__(self) -> int:
|
||
|
return hash(str(self))
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def __bool__(self) -> bool:
|
||
|
if config.cpp.vec_isa_ok is not None:
|
||
|
return config.cpp.vec_isa_ok
|
||
|
|
||
|
if config.is_fbcode():
|
||
|
return True
|
||
|
|
||
|
key, input_path = write(VecISA._avx_code, "cpp")
|
||
|
from filelock import FileLock
|
||
|
|
||
|
lock_dir = get_lock_dir()
|
||
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
||
|
with lock:
|
||
|
output_path = input_path[:-3] + "so"
|
||
|
build_cmd = shlex.split(
|
||
|
cpp_compile_command(
|
||
|
input_path, output_path, warning_all=False, vec_isa=self
|
||
|
)
|
||
|
)
|
||
|
try:
|
||
|
# Check build result
|
||
|
compile_file(input_path, output_path, build_cmd)
|
||
|
subprocess.check_call(
|
||
|
[
|
||
|
sys.executable,
|
||
|
"-c",
|
||
|
VecISA._avx_py_load.replace("__lib_path__", output_path),
|
||
|
],
|
||
|
stderr=subprocess.DEVNULL,
|
||
|
env={**os.environ, "PYTHONPATH": ":".join(sys.path)},
|
||
|
)
|
||
|
except Exception as e:
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class VecAVX512(VecISA):
|
||
|
_bit_width = 512
|
||
|
_macro = "-DCPU_CAPABILITY_AVX512"
|
||
|
_arch_flags = "-mavx512f -mavx512dq -mavx512vl -mavx512bw -mfma"
|
||
|
_dtype_nelements = {torch.float: 16, torch.bfloat16: 32, torch.float16: 32}
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return "avx512"
|
||
|
|
||
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class VecAVX2(VecISA):
|
||
|
_bit_width = 256
|
||
|
_macro = "-DCPU_CAPABILITY_AVX2"
|
||
|
_arch_flags = "-mavx2 -mfma"
|
||
|
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return "avx2"
|
||
|
|
||
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
||
|
|
||
|
|
||
|
@dataclasses.dataclass
|
||
|
class VecZVECTOR(VecISA):
|
||
|
_bit_width = 256
|
||
|
_macro = "-DCPU_CAPABILITY_ZVECTOR -DCPU_CAPABILITY=ZVECTOR -DHAVE_ZVECTOR_CPU_DEFINITION"
|
||
|
_arch_flags = "-mvx -mzvector"
|
||
|
_dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return "zvector"
|
||
|
|
||
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
||
|
|
||
|
|
||
|
class InvalidVecISA(VecISA):
|
||
|
_bit_width = 0
|
||
|
_macro = ""
|
||
|
_arch_flags = ""
|
||
|
_dtype_nelements = {}
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return "INVALID_VEC_ISA"
|
||
|
|
||
|
def __bool__(self) -> bool: # type: ignore[override]
|
||
|
return False
|
||
|
|
||
|
__hash__: Callable[[VecISA], Any] = VecISA.__hash__
|
||
|
|
||
|
|
||
|
invalid_vec_isa = InvalidVecISA()
|
||
|
supported_vec_isa_list = [VecAVX512(), VecAVX2()]
|
||
|
|
||
|
|
||
|
# Cache the cpuinfo to avoid I/O overhead. Meanwhile, the cpuinfo content
|
||
|
# might have too much redundant content that is useless for ISA check. Hence,
|
||
|
# we only cache some key isa information.
|
||
|
@functools.lru_cache(None)
|
||
|
def valid_vec_isa_list() -> List[VecISA]:
|
||
|
if sys.platform != "linux":
|
||
|
return []
|
||
|
|
||
|
if platform.machine() == "s390x":
|
||
|
return [VecZVECTOR()]
|
||
|
|
||
|
isa_list = []
|
||
|
with open("/proc/cpuinfo") as _cpu_info:
|
||
|
_cpu_info_content = _cpu_info.read()
|
||
|
for isa in supported_vec_isa_list:
|
||
|
if str(isa) in _cpu_info_content and isa:
|
||
|
isa_list.append(isa)
|
||
|
return isa_list
|
||
|
|
||
|
|
||
|
def pick_vec_isa() -> VecISA:
|
||
|
if config.is_fbcode():
|
||
|
return VecAVX2()
|
||
|
|
||
|
_valid_vec_isa_list: List[VecISA] = valid_vec_isa_list()
|
||
|
if not _valid_vec_isa_list:
|
||
|
return invalid_vec_isa
|
||
|
|
||
|
# If the simdlen is None, it indicates determin the vectorization length automatically
|
||
|
if config.cpp.simdlen is None:
|
||
|
assert _valid_vec_isa_list
|
||
|
return _valid_vec_isa_list[0]
|
||
|
|
||
|
for isa in _valid_vec_isa_list:
|
||
|
if config.cpp.simdlen == isa.bit_width():
|
||
|
return isa
|
||
|
|
||
|
return invalid_vec_isa
|
||
|
|
||
|
|
||
|
def get_compile_only(compile_only: bool = True) -> str:
|
||
|
return "-c" if compile_only else ""
|
||
|
|
||
|
|
||
|
def get_shared(shared: bool = True, compile_only: bool = False) -> str:
|
||
|
if not shared:
|
||
|
return ""
|
||
|
if compile_only:
|
||
|
return "-fPIC"
|
||
|
if platform.system() == "Darwin" and "clang" in cpp_compiler():
|
||
|
# This causes undefined symbols to behave the same as linux
|
||
|
return "-shared -fPIC -undefined dynamic_lookup"
|
||
|
else:
|
||
|
return "-shared -fPIC"
|
||
|
|
||
|
|
||
|
def get_warning_all_flag(warning_all: bool = True) -> str:
|
||
|
return "-Wall" if warning_all else ""
|
||
|
|
||
|
|
||
|
def get_glibcxx_abi_build_flags() -> str:
|
||
|
return "-D_GLIBCXX_USE_CXX11_ABI=" + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))
|
||
|
|
||
|
|
||
|
def cpp_flags() -> str:
|
||
|
flags = ["-std=c++17", "-Wno-unused-variable", "-Wno-unknown-pragmas"]
|
||
|
if is_clang():
|
||
|
flags.append("-Werror=ignored-optimization-argument")
|
||
|
return " ".join(flags)
|
||
|
|
||
|
|
||
|
def cpp_wrapper_flags() -> str:
|
||
|
return "-DTORCH_INDUCTOR_CPP_WRAPPER"
|
||
|
|
||
|
|
||
|
def optimization_flags() -> str:
|
||
|
base_flags = "-O0 -g" if config.aot_inductor.debug_compile else "-O3 -DNDEBUG"
|
||
|
base_flags += " -ffast-math -fno-finite-math-only"
|
||
|
if not config.cpp.enable_unsafe_math_opt_flag:
|
||
|
base_flags += " -fno-unsafe-math-optimizations"
|
||
|
if not config.cpp.enable_floating_point_contract_flag:
|
||
|
base_flags += " -ffp-contract=off"
|
||
|
|
||
|
if config.is_fbcode():
|
||
|
# FIXME: passing `-fopenmp` adds libgomp.so to the generated shared library's dependencies.
|
||
|
# This causes `ldopen` to fail in fbcode, because libgomp does not exist in the default paths.
|
||
|
# We will fix it later by exposing the lib path.
|
||
|
return base_flags
|
||
|
|
||
|
if sys.platform == "darwin":
|
||
|
# Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang`
|
||
|
# Also, `-march=native` is unrecognized option on M1
|
||
|
base_flags += " -Xclang"
|
||
|
else:
|
||
|
if platform.machine() == "ppc64le":
|
||
|
base_flags += " -mcpu=native"
|
||
|
else:
|
||
|
base_flags += " -march=native"
|
||
|
|
||
|
# Internal cannot find libgomp.so
|
||
|
if not config.is_fbcode():
|
||
|
base_flags += " -fopenmp"
|
||
|
return base_flags
|
||
|
|
||
|
|
||
|
def use_custom_generated_macros() -> str:
|
||
|
return "-D C10_USING_CUSTOM_GENERATED_MACROS"
|
||
|
|
||
|
|
||
|
def use_fb_internal_macros() -> str:
|
||
|
if config.is_fbcode():
|
||
|
openmp_lib = build_paths.openmp_lib()
|
||
|
preprocessor_flags = " ".join(
|
||
|
(
|
||
|
"-D C10_USE_GLOG",
|
||
|
"-D C10_USE_MINIMAL_GLOG",
|
||
|
"-D C10_DISABLE_TENSORIMPL_EXTENSIBILITY",
|
||
|
)
|
||
|
)
|
||
|
return f"-Wp,-fopenmp {openmp_lib} {preprocessor_flags}"
|
||
|
else:
|
||
|
return ""
|
||
|
|
||
|
|
||
|
def use_standard_sys_dir_headers() -> str:
|
||
|
if config.is_fbcode():
|
||
|
return "-nostdinc"
|
||
|
else:
|
||
|
return ""
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def is_conda_llvm_openmp_installed() -> bool:
|
||
|
try:
|
||
|
command = "conda list llvm-openmp --json"
|
||
|
output = subprocess.check_output(command.split()).decode("utf8")
|
||
|
return len(json.loads(output)) > 0
|
||
|
except subprocess.SubprocessError:
|
||
|
return False
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def homebrew_libomp() -> Tuple[bool, str]:
|
||
|
try:
|
||
|
# check if `brew` is installed
|
||
|
subprocess.check_output(["which", "brew"])
|
||
|
# get the location of `libomp` if it is installed
|
||
|
# this is the location that `libomp` **would** be installed
|
||
|
# see https://github.com/Homebrew/brew/issues/10261#issuecomment-756563567 for details
|
||
|
libomp_path = (
|
||
|
subprocess.check_output(["brew", "--prefix", "libomp"])
|
||
|
.decode("utf8")
|
||
|
.strip()
|
||
|
)
|
||
|
# check if `libomp` is installed
|
||
|
omp_available = os.path.exists(libomp_path)
|
||
|
return omp_available, libomp_path
|
||
|
except subprocess.SubprocessError:
|
||
|
return False, ""
|
||
|
|
||
|
|
||
|
def get_include_and_linking_paths(
|
||
|
include_pytorch: bool = False,
|
||
|
vec_isa: VecISA = invalid_vec_isa,
|
||
|
cuda: bool = False,
|
||
|
aot_mode: bool = False,
|
||
|
) -> Tuple[List[str], str, str, str, str]:
|
||
|
if (
|
||
|
config.is_fbcode()
|
||
|
and "CUDA_HOME" not in os.environ
|
||
|
and "CUDA_PATH" not in os.environ
|
||
|
):
|
||
|
os.environ["CUDA_HOME"] = os.path.dirname(build_paths.cuda())
|
||
|
from torch.utils import cpp_extension
|
||
|
|
||
|
macros = ""
|
||
|
build_arch_flags = ""
|
||
|
if sys.platform == "linux" and (
|
||
|
include_pytorch
|
||
|
or vec_isa != invalid_vec_isa
|
||
|
or cuda
|
||
|
or config.cpp.enable_kernel_profile
|
||
|
):
|
||
|
# Note - We include pytorch only on linux right now. There is more work
|
||
|
# to do to enable OMP build on darwin where PyTorch is built with IOMP
|
||
|
# and we need a way to link to what PyTorch links.
|
||
|
ipaths = cpp_extension.include_paths(cuda) + [sysconfig.get_path("include")]
|
||
|
lpaths = cpp_extension.library_paths(cuda) + [
|
||
|
sysconfig.get_config_var("LIBDIR")
|
||
|
]
|
||
|
|
||
|
libs = []
|
||
|
|
||
|
# No need to manually specify libraries in fbcode.
|
||
|
if not config.is_fbcode():
|
||
|
libs += ["torch", "torch_cpu"]
|
||
|
libs += ["gomp"]
|
||
|
if not aot_mode:
|
||
|
libs += ["torch_python"]
|
||
|
else:
|
||
|
# internal remote execution is able to find omp, but not gomp
|
||
|
libs += ["omp"]
|
||
|
if aot_mode:
|
||
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
||
|
if cuda:
|
||
|
# This is a special treatment for Meta internal cuda-12 where all libs
|
||
|
# are in lib/cuda-12 and lib/cuda-12/stubs
|
||
|
for i, path in enumerate(lpaths):
|
||
|
if path.startswith(
|
||
|
os.environ["CUDA_HOME"]
|
||
|
) and not os.path.exists(f"{path}/libcudart_static.a"):
|
||
|
for root, dirs, files in os.walk(path):
|
||
|
if "libcudart_static.a" in files:
|
||
|
lpaths[i] = os.path.join(path, root)
|
||
|
lpaths.append(os.path.join(lpaths[i], "stubs"))
|
||
|
break
|
||
|
macros = vec_isa.build_macro()
|
||
|
if macros:
|
||
|
if config.is_fbcode() and vec_isa != invalid_vec_isa:
|
||
|
cap = str(vec_isa).upper()
|
||
|
macros = " ".join(
|
||
|
[
|
||
|
vec_isa.build_arch_flags(),
|
||
|
f"-D CPU_CAPABILITY={cap}",
|
||
|
f"-D CPU_CAPABILITY_{cap}",
|
||
|
f"-D HAVE_{cap}_CPU_DEFINITION",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
if cuda:
|
||
|
if macros is None:
|
||
|
macros = ""
|
||
|
macros += " -D USE_ROCM" if torch.version.hip else " -D USE_CUDA"
|
||
|
|
||
|
if cuda:
|
||
|
if torch.version.hip is not None:
|
||
|
libs += ["c10_hip", "torch_hip"]
|
||
|
macros += " -D __HIP_PLATFORM_AMD__"
|
||
|
else:
|
||
|
if config.is_fbcode():
|
||
|
libs += ["cuda"]
|
||
|
else:
|
||
|
libs += ["c10_cuda", "cuda", "torch_cuda"]
|
||
|
build_arch_flags = vec_isa.build_arch_flags()
|
||
|
else:
|
||
|
# Note - this is effectively a header only inclusion. Usage of some header files may result in
|
||
|
# symbol not found, if those header files require a library.
|
||
|
# For those cases, include the lpath and libs command as we do for pytorch above.
|
||
|
# This approach allows us to only pay for what we use.
|
||
|
ipaths = cpp_extension.include_paths(cuda) + [sysconfig.get_path("include")]
|
||
|
if aot_mode:
|
||
|
ipaths += [os.path.dirname(cpp_prefix_path())]
|
||
|
lpaths = []
|
||
|
if sys.platform == "darwin":
|
||
|
# only Apple builtin compilers (Apple Clang++) require openmp
|
||
|
omp_available = not is_apple_clang()
|
||
|
|
||
|
# check the `OMP_PREFIX` environment first
|
||
|
if os.getenv("OMP_PREFIX") is not None:
|
||
|
header_path = os.path.join(os.getenv("OMP_PREFIX"), "include", "omp.h") # type: ignore[arg-type]
|
||
|
valid_env = os.path.exists(header_path)
|
||
|
if valid_env:
|
||
|
ipaths.append(os.path.join(os.getenv("OMP_PREFIX"), "include")) # type: ignore[arg-type]
|
||
|
lpaths.append(os.path.join(os.getenv("OMP_PREFIX"), "lib")) # type: ignore[arg-type]
|
||
|
else:
|
||
|
warnings.warn("environment variable `OMP_PREFIX` is invalid.")
|
||
|
omp_available = omp_available or valid_env
|
||
|
|
||
|
libs = [] if omp_available else ["omp"]
|
||
|
|
||
|
# prefer to use openmp from `conda install llvm-openmp`
|
||
|
if not omp_available and os.getenv("CONDA_PREFIX") is not None:
|
||
|
omp_available = is_conda_llvm_openmp_installed()
|
||
|
if omp_available:
|
||
|
conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib") # type: ignore[arg-type]
|
||
|
ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include")) # type: ignore[arg-type]
|
||
|
lpaths.append(conda_lib_path)
|
||
|
# Prefer Intel OpenMP on x86 machine
|
||
|
if os.uname().machine == "x86_64" and os.path.exists(
|
||
|
os.path.join(conda_lib_path, "libiomp5.dylib")
|
||
|
):
|
||
|
libs = ["iomp5"]
|
||
|
|
||
|
# next, try to use openmp from `brew install libomp`
|
||
|
if not omp_available:
|
||
|
omp_available, libomp_path = homebrew_libomp()
|
||
|
if omp_available:
|
||
|
ipaths.append(os.path.join(libomp_path, "include"))
|
||
|
lpaths.append(os.path.join(libomp_path, "lib"))
|
||
|
|
||
|
# if openmp is still not available, we let the compiler to have a try,
|
||
|
# and raise error together with instructions at compilation error later
|
||
|
else:
|
||
|
libs = ["omp"] if config.is_fbcode() else ["gomp"]
|
||
|
|
||
|
# Unconditionally import c10 for non-abi-compatible mode to use TORCH_CHECK - See PyTorch #108690
|
||
|
if not config.abi_compatible:
|
||
|
libs += ["c10"]
|
||
|
lpaths += [cpp_extension.TORCH_LIB_PATH]
|
||
|
|
||
|
# third party libs
|
||
|
if config.is_fbcode():
|
||
|
ipaths.append(build_paths.sleef())
|
||
|
ipaths.append(build_paths.openmp())
|
||
|
ipaths.append(build_paths.cc_include())
|
||
|
ipaths.append(build_paths.libgcc())
|
||
|
ipaths.append(build_paths.libgcc_arch())
|
||
|
ipaths.append(build_paths.libgcc_backward())
|
||
|
ipaths.append(build_paths.glibc())
|
||
|
ipaths.append(build_paths.linux_kernel())
|
||
|
ipaths.append(build_paths.cuda())
|
||
|
# We also need to bundle includes with absolute paths into a remote directory
|
||
|
# (later on, we copy the include paths from cpp_extensions into our remote dir)
|
||
|
ipaths.append("include")
|
||
|
|
||
|
static_link_libs = []
|
||
|
if aot_mode and cuda and config.is_fbcode():
|
||
|
# For Meta internal cuda-12, it is recommended to static link cudart
|
||
|
static_link_libs = ["-Wl,-Bstatic", "-lcudart_static", "-Wl,-Bdynamic"]
|
||
|
|
||
|
lpaths_str = " ".join(["-L" + p for p in lpaths])
|
||
|
libs_str = " ".join(static_link_libs + ["-l" + p for p in libs])
|
||
|
return ipaths, lpaths_str, libs_str, macros, build_arch_flags
|
||
|
|
||
|
|
||
|
def cpp_compile_command(
|
||
|
input: Union[str, List[str]],
|
||
|
output: str,
|
||
|
warning_all: bool = True,
|
||
|
shared: bool = True,
|
||
|
include_pytorch: bool = False,
|
||
|
vec_isa: VecISA = invalid_vec_isa,
|
||
|
cuda: bool = False,
|
||
|
aot_mode: bool = False,
|
||
|
compile_only: bool = False,
|
||
|
use_absolute_path: bool = False,
|
||
|
) -> str:
|
||
|
ipaths, lpaths, libs, macros, build_arch_flags = get_include_and_linking_paths(
|
||
|
include_pytorch, vec_isa, cuda, aot_mode
|
||
|
)
|
||
|
if isinstance(input, str):
|
||
|
input = [input]
|
||
|
ipaths_str = " ".join(["-I" + p for p in ipaths])
|
||
|
clang_flags = ""
|
||
|
if config.is_fbcode():
|
||
|
if aot_mode and not use_absolute_path:
|
||
|
inp_name = input
|
||
|
out_name = output
|
||
|
linker_script = _LINKER_SCRIPT
|
||
|
else:
|
||
|
# We need to copy any absolute-path torch includes
|
||
|
inp_name = [os.path.basename(i) for i in input]
|
||
|
out_name = os.path.basename(output)
|
||
|
linker_script = os.path.basename(_LINKER_SCRIPT)
|
||
|
assert is_clang()
|
||
|
# Use clang runtime instead of libgcc
|
||
|
clang_flags += " --rtlib=compiler-rt"
|
||
|
clang_flags += " -fuse-ld=lld"
|
||
|
clang_flags += f" -Wl,--script={linker_script}"
|
||
|
linker_paths = "-B" + build_paths.glibc_lib()
|
||
|
linker_paths += " -L" + build_paths.glibc_lib()
|
||
|
else:
|
||
|
inp_name = input
|
||
|
out_name = output
|
||
|
linker_paths = "" # let the compiler pick
|
||
|
if compile_only:
|
||
|
libs, lpaths = "", ""
|
||
|
inp_name_str = " ".join(inp_name)
|
||
|
return re.sub(
|
||
|
r"[ \n]+",
|
||
|
" ",
|
||
|
f"""
|
||
|
{cpp_compiler()} {inp_name_str} {get_shared(shared, compile_only)}
|
||
|
{get_warning_all_flag(warning_all)} {cpp_flags()}
|
||
|
{get_glibcxx_abi_build_flags()}
|
||
|
{ipaths_str} {lpaths} {libs} {build_arch_flags}
|
||
|
{macros} {linker_paths} {clang_flags}
|
||
|
{optimization_flags()}
|
||
|
{use_custom_generated_macros()}
|
||
|
{use_fb_internal_macros()}
|
||
|
{use_standard_sys_dir_headers()}
|
||
|
{get_compile_only(compile_only)}
|
||
|
-o {out_name}
|
||
|
""",
|
||
|
).strip()
|
||
|
|
||
|
|
||
|
def run_command_and_check(cmd: str):
|
||
|
cmd = shlex.split(cmd)
|
||
|
try:
|
||
|
subprocess.check_call(cmd)
|
||
|
except subprocess.CalledProcessError as e:
|
||
|
raise exc.CppCompileError(cmd, e.output) from e
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
|
||
|
"""Returns the path where the AOT Inductor compiled kernels are stored."""
|
||
|
if path.endswith(".so"):
|
||
|
return os.path.split(path)
|
||
|
else:
|
||
|
return path, ""
|
||
|
|
||
|
|
||
|
class CudaKernelParamCache:
|
||
|
cache: Dict[str, Dict[str, str]] = dict()
|
||
|
clear = staticmethod(cache.clear)
|
||
|
|
||
|
@classmethod
|
||
|
def set(cls, key: str, params: Dict[str, str], cubin: str) -> None:
|
||
|
bin_type = "cubin" if torch.version.hip is None else "hsaco"
|
||
|
_, path = write(
|
||
|
cubin,
|
||
|
bin_type,
|
||
|
hash_type=bin_type,
|
||
|
specified_dir=split_aot_inductor_output_path(
|
||
|
config.aot_inductor.output_path
|
||
|
)[0],
|
||
|
)
|
||
|
|
||
|
params[get_cpp_wrapper_cubin_path_name()] = path
|
||
|
|
||
|
cls.cache[key] = params
|
||
|
|
||
|
@classmethod
|
||
|
def get(cls, key: str) -> Optional[Dict[str, str]]:
|
||
|
return cls.cache.get(key, None)
|
||
|
|
||
|
@classmethod
|
||
|
def get_keys(cls):
|
||
|
return cls.cache.keys()
|
||
|
|
||
|
|
||
|
class AotCodeCompiler:
|
||
|
@classmethod
|
||
|
def compile(
|
||
|
cls,
|
||
|
graph: GraphLowering,
|
||
|
source_code: str,
|
||
|
serialized_extern_kernel_nodes: Optional[str],
|
||
|
cuda: bool,
|
||
|
) -> str:
|
||
|
picked_vec_isa = pick_vec_isa()
|
||
|
cpp_command = repr(
|
||
|
cpp_compile_command(
|
||
|
"i", "o", vec_isa=picked_vec_isa, cuda=cuda, aot_mode=graph.aot_mode
|
||
|
)
|
||
|
)
|
||
|
fbcode_aot_cpu_re = False
|
||
|
use_absolute_path = False
|
||
|
if config.is_fbcode():
|
||
|
ld_command = build_paths.ld()
|
||
|
if not cuda and graph.aot_mode: # Meta internal AOTInductor CPU
|
||
|
objcopy_command = build_paths.objcopy_fallback()
|
||
|
fbcode_aot_cpu_re = True
|
||
|
use_absolute_path = True
|
||
|
else:
|
||
|
objcopy_command = build_paths.objcopy()
|
||
|
else:
|
||
|
ld_command = "ld"
|
||
|
objcopy_command = "objcopy"
|
||
|
|
||
|
(
|
||
|
specified_output_path,
|
||
|
specified_so_name,
|
||
|
) = split_aot_inductor_output_path(config.aot_inductor.output_path)
|
||
|
key, input_path = write(
|
||
|
source_code,
|
||
|
"cpp",
|
||
|
extra=cpp_command,
|
||
|
specified_dir=specified_output_path,
|
||
|
)
|
||
|
|
||
|
def _compile_consts_linux(consts: bytes) -> str:
|
||
|
_, consts_path = write(
|
||
|
consts,
|
||
|
"bin",
|
||
|
specified_dir=specified_output_path,
|
||
|
)
|
||
|
|
||
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
||
|
if fbcode_aot_cpu_re:
|
||
|
cmd = f"{ld_command} -r -b binary -o {os.path.basename(consts_o)} {os.path.basename(consts_path)}"
|
||
|
compile_file(consts_path, consts_o, cmd.split())
|
||
|
os.chmod(consts_o, 0o644)
|
||
|
else:
|
||
|
cmd = f"{ld_command} -r -b binary -o {consts_o} {consts_path}"
|
||
|
run_command_and_check(cmd)
|
||
|
log.debug("aot constant binary command: %s", cmd)
|
||
|
|
||
|
cmd = (
|
||
|
f"{objcopy_command} --rename-section"
|
||
|
" .data=.lrodata,alloc,load,readonly,data,contents"
|
||
|
f" {consts_o} {consts_o}"
|
||
|
)
|
||
|
log.debug("aot constant obj command: %s", cmd)
|
||
|
run_command_and_check(cmd)
|
||
|
|
||
|
cmd = f"rm {consts_path}"
|
||
|
log.debug("aot constant bin removal command: %s", cmd)
|
||
|
run_command_and_check(cmd)
|
||
|
|
||
|
if fbcode_aot_cpu_re:
|
||
|
body = re.sub(r"[\W]", "_", os.path.basename(consts_path))
|
||
|
else:
|
||
|
body = re.sub(r"[\W]", "_", consts_path)
|
||
|
|
||
|
symbol_list = []
|
||
|
symbol_list.append(
|
||
|
f"{objcopy_command} --redefine-sym _binary_{body}_start=_binary_constants_bin_start {consts_o}"
|
||
|
)
|
||
|
symbol_list.append(
|
||
|
f"{objcopy_command} --redefine-sym _binary_{body}_size=_binary_constants_bin_size {consts_o}"
|
||
|
)
|
||
|
symbol_list.append(
|
||
|
f"{objcopy_command} --redefine-sym _binary_{body}_end=_binary_constants_bin_end {consts_o}"
|
||
|
)
|
||
|
log.debug("aot constant binary redefine symbol: %s", " ".join(symbol_list))
|
||
|
for cmd in symbol_list:
|
||
|
run_command_and_check(cmd)
|
||
|
return consts_o
|
||
|
|
||
|
def _compile_consts_darwin(consts: bytes) -> str:
|
||
|
is_large_consts = len(consts) > 1024
|
||
|
consts_asm = "\t.section\t__TEXT,__const\n"
|
||
|
consts_asm += "\t.globl\t__binary_constants_bin_start\n"
|
||
|
consts_asm += "__binary_constants_bin_start:\n"
|
||
|
if not is_large_consts:
|
||
|
for c in consts:
|
||
|
consts_asm += f"\t.byte {c}\n"
|
||
|
# Add one element even if constants are empty
|
||
|
# Otherwise assembler will not put them in data section
|
||
|
if not consts:
|
||
|
consts_asm += "\t.space 1\n"
|
||
|
else:
|
||
|
consts_asm += "\t.quad 0x1234567899abcdef\n"
|
||
|
consts_asm += f"\t.space {len(consts) - 8}\n"
|
||
|
consts_asm += ".globl\t__binary_constants_bin_end\n"
|
||
|
consts_asm += "__binary_constants_bin_end:\n"
|
||
|
_, consts_path = write(
|
||
|
consts_asm,
|
||
|
"S",
|
||
|
specified_dir=specified_output_path,
|
||
|
)
|
||
|
consts_o = os.path.splitext(consts_path)[0] + ".o"
|
||
|
cmd = f"{cpp_compiler()} -c -o {consts_o} {consts_path}"
|
||
|
run_command_and_check(cmd)
|
||
|
if is_large_consts:
|
||
|
with open(consts_o, "r+b") as f:
|
||
|
f.seek(0)
|
||
|
hdr = f.read(1024)
|
||
|
# Search for magic number and write the actual data over it
|
||
|
start_idx = hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
|
||
|
assert start_idx != -1
|
||
|
f.seek(start_idx)
|
||
|
pos = 0
|
||
|
while pos < len(consts):
|
||
|
rc = f.write(consts[pos:])
|
||
|
pos += rc
|
||
|
return consts_o
|
||
|
|
||
|
from filelock import FileLock
|
||
|
|
||
|
lock_dir = get_lock_dir()
|
||
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
||
|
with lock:
|
||
|
# Currently, this only support serializing extern nodes in fbcode
|
||
|
# Eventually, we should also have a serializer for OSS.
|
||
|
if config.is_fbcode() and serialized_extern_kernel_nodes:
|
||
|
output_json = os.path.splitext(input_path)[0] + ".json"
|
||
|
with open(output_json, "w") as f:
|
||
|
f.write(serialized_extern_kernel_nodes)
|
||
|
|
||
|
output_so = (
|
||
|
config.aot_inductor.output_path
|
||
|
if specified_so_name
|
||
|
else os.path.splitext(input_path)[0] + ".so"
|
||
|
)
|
||
|
|
||
|
output_o = os.path.splitext(input_path)[0] + ".o"
|
||
|
cmd = cpp_compile_command(
|
||
|
input=input_path,
|
||
|
output=output_o,
|
||
|
vec_isa=picked_vec_isa,
|
||
|
cuda=cuda,
|
||
|
aot_mode=graph.aot_mode,
|
||
|
compile_only=True,
|
||
|
use_absolute_path=use_absolute_path,
|
||
|
)
|
||
|
log.debug("aot compilation command: %s", cmd)
|
||
|
if fbcode_aot_cpu_re:
|
||
|
compile_file(input_path, output_o, cmd.split())
|
||
|
os.chmod(output_o, 0o644)
|
||
|
else:
|
||
|
run_command_and_check(cmd)
|
||
|
|
||
|
def _to_bytes(t: torch.Tensor) -> bytes:
|
||
|
# This serializes the tensor's untyped_storage to bytes by accessing
|
||
|
# the raw data of the underlying structure.
|
||
|
import ctypes
|
||
|
|
||
|
if t.numel() == 0:
|
||
|
return b""
|
||
|
|
||
|
t_cpu = t.untyped_storage().cpu()
|
||
|
raw_array = ctypes.cast(
|
||
|
t_cpu.data_ptr(),
|
||
|
ctypes.POINTER(ctypes.c_ubyte * t_cpu.nbytes()),
|
||
|
)
|
||
|
|
||
|
return bytes(raw_array.contents)
|
||
|
|
||
|
aot_constants = b"".join(
|
||
|
_to_bytes(tensor)
|
||
|
for name, tensor in graph.constants.items()
|
||
|
if name not in graph.folded_constants
|
||
|
)
|
||
|
consts_o = {
|
||
|
"linux": _compile_consts_linux,
|
||
|
"darwin": _compile_consts_darwin,
|
||
|
}[sys.platform](aot_constants)
|
||
|
|
||
|
cmd = cpp_compile_command(
|
||
|
input=[output_o, consts_o],
|
||
|
output=output_so,
|
||
|
vec_isa=picked_vec_isa,
|
||
|
cuda=cuda,
|
||
|
aot_mode=graph.aot_mode,
|
||
|
use_absolute_path=use_absolute_path,
|
||
|
)
|
||
|
log.debug("aot linkage command: %s", cmd)
|
||
|
if fbcode_aot_cpu_re:
|
||
|
compile_file([output_o, consts_o], output_so, cmd.split())
|
||
|
os.chmod(output_so, 0o755)
|
||
|
else:
|
||
|
run_command_and_check(cmd)
|
||
|
|
||
|
return output_so
|
||
|
|
||
|
|
||
|
# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
|
||
|
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
|
||
|
# Cycle goes:
|
||
|
# - CppCodeCache.load()
|
||
|
# - pick_vec_isa()
|
||
|
# - valid_vec_isa_list()
|
||
|
# - VecISA.__bool__() <-- takes out a lock
|
||
|
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
|
||
|
@functools.lru_cache
|
||
|
def cpp_prefix_path() -> str:
|
||
|
path = Path(__file__).parent / "codegen/cpp_prefix.h"
|
||
|
with path.open() as f:
|
||
|
content = f.read()
|
||
|
_, filename = write(
|
||
|
content,
|
||
|
"h",
|
||
|
)
|
||
|
return filename
|
||
|
|
||
|
|
||
|
def cpp_prefix() -> str:
|
||
|
filename = cpp_prefix_path()
|
||
|
if config.is_fbcode():
|
||
|
# We need relative paths, since we bundle up
|
||
|
# everything that we compile into a folder for remote compilation.
|
||
|
return f'#include "{os.path.basename(filename)}"'
|
||
|
else:
|
||
|
return f'#include "{filename}"'
|
||
|
|
||
|
|
||
|
# Given a path to an input cpp file and an output path,
|
||
|
# Attempts to compile the file, storing the output in "output_path"
|
||
|
@dynamo_timed
|
||
|
def compile_file(
|
||
|
input_path: Union[str, List[str]], output_path: str, cmd: List[str]
|
||
|
) -> None:
|
||
|
input_paths = [input_path] if isinstance(input_path, str) else input_path
|
||
|
input_files = [
|
||
|
os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
|
||
|
]
|
||
|
try:
|
||
|
if config.is_fbcode():
|
||
|
# Need to copy our header into the same folder as the sourcecode.
|
||
|
header_path = cpp_prefix_path()
|
||
|
header_name = os.path.basename(header_path)
|
||
|
output_name = os.path.basename(output_path)
|
||
|
# When we build remotely, we need to make sure to carefully copy any files
|
||
|
# that are required during the compilation process into our build directly.
|
||
|
# This is where all of the ATen/c10/Torch includes come from.
|
||
|
torch_includes_path = os.path.join(_TORCH_PATH, "include")
|
||
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
||
|
# Copy everything to tmp compilation folder
|
||
|
shutil.copy(header_path, os.path.join(tmp_dir, header_name))
|
||
|
shutil.copy(_LINKER_SCRIPT, os.path.join(tmp_dir, "script.ld"))
|
||
|
for p, f in zip(input_paths, input_files):
|
||
|
shutil.copy(p, os.path.join(tmp_dir, f))
|
||
|
dest_include_path = os.path.join(tmp_dir, "include")
|
||
|
shutil.copytree(torch_includes_path, dest_include_path)
|
||
|
# Run the build
|
||
|
output_file_path = _run_build_command(cmd, tmp_dir, output_name)
|
||
|
# Copy output from the build
|
||
|
if os.path.exists(output_path):
|
||
|
os.remove(output_path)
|
||
|
shutil.copy(output_file_path, output_path)
|
||
|
else:
|
||
|
subprocess.check_output(cmd, stderr=subprocess.STDOUT)
|
||
|
except subprocess.CalledProcessError as e:
|
||
|
output = e.output.decode("utf-8")
|
||
|
openmp_problem = "'omp.h' file not found" in output or "libomp" in output
|
||
|
if openmp_problem and sys.platform == "darwin":
|
||
|
instruction = (
|
||
|
"\n\nOpenMP support not found. Please try one of the following solutions:\n"
|
||
|
"(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
|
||
|
"that has builtin OpenMP support;\n"
|
||
|
"(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
|
||
|
"(3) install libomp via brew: `brew install libomp`;\n"
|
||
|
"(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
|
||
|
" with `include/omp.h` under it."
|
||
|
)
|
||
|
output += instruction
|
||
|
raise exc.CppCompileError(cmd, output) from e
|
||
|
|
||
|
|
||
|
_libgomp: Optional[CDLL] = None
|
||
|
|
||
|
|
||
|
class CppCodeCache:
|
||
|
cache: Dict[str, Union[CDLL, ModuleType]] = {}
|
||
|
clear = staticmethod(cache.clear)
|
||
|
cpp_compile_command_flags: Dict[str, Any] = {}
|
||
|
|
||
|
@staticmethod
|
||
|
def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
|
||
|
return cdll.LoadLibrary(path)
|
||
|
|
||
|
@classmethod
|
||
|
def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
|
||
|
try:
|
||
|
return cls._load_library_inner(path, key)
|
||
|
except (ImportError, OSError) as e:
|
||
|
if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
|
||
|
# hacky workaround for fbcode/buck
|
||
|
global _libgomp
|
||
|
_libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
|
||
|
return cls._load_library_inner(path, key)
|
||
|
if "failed to map segment from shared object" in str(e):
|
||
|
raise OSError(
|
||
|
f"{e}. The most common reason this may occur is if the {tempfile.gettempdir()} folder "
|
||
|
"is mounted with noexec (e.g., by default Docker mounts tmp file systems "
|
||
|
f"as noexec). Please remount {tempfile.gettempdir()} with exec enabled, or set another "
|
||
|
"temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
|
||
|
) from e
|
||
|
raise
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, source_code: str, cuda: bool = False) -> Union[CDLL, ModuleType]:
|
||
|
cls.cpp_compile_command_flags.update({"cuda": cuda})
|
||
|
picked_vec_isa = pick_vec_isa()
|
||
|
cpp_command = repr(
|
||
|
cpp_compile_command(
|
||
|
"i", "o", vec_isa=picked_vec_isa, **cls.cpp_compile_command_flags
|
||
|
)
|
||
|
)
|
||
|
key, input_path = write(source_code, "cpp", extra=cpp_command)
|
||
|
if key not in cls.cache:
|
||
|
from filelock import FileLock
|
||
|
|
||
|
lock_dir = get_lock_dir()
|
||
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
||
|
with lock:
|
||
|
output_path = input_path[:-3] + "so"
|
||
|
if not os.path.exists(output_path):
|
||
|
cmd = shlex.split(
|
||
|
cpp_compile_command(
|
||
|
input=input_path,
|
||
|
output=output_path,
|
||
|
vec_isa=picked_vec_isa,
|
||
|
**cls.cpp_compile_command_flags,
|
||
|
)
|
||
|
)
|
||
|
compile_file(input_path, output_path, cmd)
|
||
|
cls.cache[key] = cls._load_library(output_path, key)
|
||
|
cls.cache[key].key = key # type: ignore[union-attr]
|
||
|
|
||
|
return cls.cache[key]
|
||
|
|
||
|
|
||
|
# Customized Python binding for cpp kernels
|
||
|
class CppPythonBindingsCodeCache(CppCodeCache):
|
||
|
cache: Dict[str, Union[CDLL, ModuleType]] = {}
|
||
|
clear = staticmethod(cache.clear)
|
||
|
cpp_compile_command_flags = {
|
||
|
# kernels have no dependency on libtorch
|
||
|
"include_pytorch": False,
|
||
|
"shared": True,
|
||
|
}
|
||
|
entry_function = "kernel"
|
||
|
call_entry_function = "kernel(%s);Py_RETURN_NONE;"
|
||
|
extra_parse_arg = ""
|
||
|
suffix_template = textwrap.dedent(
|
||
|
"""
|
||
|
// Python bindings to call %s():
|
||
|
#define PY_SSIZE_T_CLEAN
|
||
|
#include <Python.h>
|
||
|
#include <sstream>
|
||
|
#include <cstdlib>
|
||
|
|
||
|
// This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
|
||
|
// We manually link it below to workaround issues with fbcode build.
|
||
|
static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);
|
||
|
|
||
|
template <typename T> static inline T parse_arg(PyObject* args, size_t n) {
|
||
|
static_assert(std::is_pointer<T>::value, "arg type must be pointer or long");
|
||
|
return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
|
||
|
}
|
||
|
template <> inline long parse_arg<long>(PyObject* args, size_t n) {
|
||
|
auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
|
||
|
if(result == -1 && PyErr_Occurred())
|
||
|
[[unlikely]] throw std::runtime_error("expected int arg");
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
%s
|
||
|
|
||
|
static PyObject* %s_py(PyObject* self, PyObject* args) {
|
||
|
try {
|
||
|
if(!PyTuple_CheckExact(args))
|
||
|
[[unlikely]] throw std::runtime_error("tuple args required");
|
||
|
if(PyTuple_GET_SIZE(args) != %s)
|
||
|
[[unlikely]] throw std::runtime_error("requires %s args");
|
||
|
%s
|
||
|
} catch(std::exception const& e) {
|
||
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
||
|
return nullptr;
|
||
|
} catch(...) {
|
||
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
||
|
return nullptr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static PyMethodDef py_methods[] = {
|
||
|
{"%s", %s_py, METH_VARARGS, ""},
|
||
|
{NULL, NULL, 0, NULL}};
|
||
|
|
||
|
static struct PyModuleDef py_module =
|
||
|
{PyModuleDef_HEAD_INIT, "%s", NULL, -1, py_methods};
|
||
|
|
||
|
PyMODINIT_FUNC PyInit_%s(void) {
|
||
|
const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
|
||
|
if(!str_addr) {
|
||
|
PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
|
||
|
return nullptr;
|
||
|
}
|
||
|
std::istringstream iss(str_addr);
|
||
|
uintptr_t addr = 0;
|
||
|
iss >> addr;
|
||
|
_torchinductor_pyobject_tensor_data_ptr =
|
||
|
reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
|
||
|
return PyModule_Create(&py_module);
|
||
|
}
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def _load_library_inner(cls, path: str, key: str) -> ModuleType:
|
||
|
os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
|
||
|
torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr # type: ignore[attr-defined]
|
||
|
)
|
||
|
return importlib.machinery.ExtensionFileLoader(
|
||
|
f"{key}.{cls.entry_function}", path
|
||
|
).load_module() # type: ignore[call-arg]
|
||
|
|
||
|
@classmethod
|
||
|
def load_pybinding(
|
||
|
cls,
|
||
|
argtypes: List[str],
|
||
|
source_code: str,
|
||
|
cuda: bool = False,
|
||
|
num_outputs: int = -1,
|
||
|
) -> Any:
|
||
|
"""
|
||
|
Wrap a C++ function in fast Python bindings.
|
||
|
|
||
|
Args:
|
||
|
argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
|
||
|
source_code: C++ source code containing a ENTRY_FUNCTION() function
|
||
|
|
||
|
Returns:
|
||
|
A python version of ENTRY_FUNCTION()
|
||
|
"""
|
||
|
parseargs = ", ".join(
|
||
|
f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
|
||
|
for n, argtype in enumerate(argtypes)
|
||
|
)
|
||
|
suffix = cls.suffix_template % (
|
||
|
cls.entry_function,
|
||
|
cls.extra_parse_arg % num_outputs if cls.extra_parse_arg else "",
|
||
|
cls.entry_function,
|
||
|
len(argtypes),
|
||
|
len(argtypes),
|
||
|
cls.call_entry_function % parseargs,
|
||
|
cls.entry_function,
|
||
|
cls.entry_function,
|
||
|
cls.entry_function,
|
||
|
cls.entry_function,
|
||
|
)
|
||
|
result = cls.load(source_code + suffix, cuda)
|
||
|
assert isinstance(result, ModuleType)
|
||
|
return getattr(result, cls.entry_function)
|
||
|
|
||
|
|
||
|
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
|
||
|
cache: Dict[str, Union[CDLL, ModuleType]] = {}
|
||
|
clear = staticmethod(cache.clear)
|
||
|
cpp_compile_command_flags = {
|
||
|
"include_pytorch": True,
|
||
|
"shared": True,
|
||
|
}
|
||
|
entry_function = "inductor_entry_cpp"
|
||
|
call_entry_function = "return THPVariable_WrapList(inductor_entry_cpp(%s));"
|
||
|
extra_parse_arg = textwrap.dedent(
|
||
|
"""
|
||
|
#include <torch/csrc/autograd/python_variable.h>
|
||
|
#include <torch/csrc/inductor/aoti_torch/tensor_converter.h>
|
||
|
|
||
|
template <> inline std::vector<at::Tensor> parse_arg<std::vector<at::Tensor>>(PyObject* args, size_t n) {
|
||
|
return THPVariable_UnpackList(PyTuple_GET_ITEM(args, n));
|
||
|
}
|
||
|
|
||
|
std::vector<at::Tensor> inductor_entry_cpp(std::vector<at::Tensor>&& inputs) {
|
||
|
auto input_handles = unsafe_alloc_new_handles_from_tensors(inputs);
|
||
|
// For outputs, we only allocate a vector to hold returned tensor handles,
|
||
|
// not allocating the actual output tensor storage here
|
||
|
std::vector<AtenTensorHandle> output_handles(%s);
|
||
|
|
||
|
try {
|
||
|
inductor_entry_impl(input_handles.data(), output_handles.data());
|
||
|
} catch(std::exception const& e) {
|
||
|
PyErr_SetString(PyExc_RuntimeError, e.what());
|
||
|
return {};
|
||
|
} catch(...) {
|
||
|
PyErr_SetString(PyExc_RuntimeError, "unhandled error");
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
return alloc_tensors_by_stealing_from_handles(output_handles.data(), output_handles.size());
|
||
|
}
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
|
||
|
class PyCodeCache:
|
||
|
cache: Dict[str, ModuleType] = dict()
|
||
|
linemaps: Dict[str, List[Tuple[Any, ...]]] = dict()
|
||
|
clear = staticmethod(cache.clear)
|
||
|
|
||
|
@classmethod
|
||
|
def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
|
||
|
return write(source_code, "py", extra=extra)
|
||
|
|
||
|
@classmethod
|
||
|
def load(
|
||
|
cls,
|
||
|
source_code: str,
|
||
|
extra: str = "",
|
||
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
||
|
attrs: Optional[Dict[str, Any]] = None,
|
||
|
) -> ModuleType:
|
||
|
key, path = write(source_code, "py", extra=extra)
|
||
|
return cls.load_by_key_path(key, path, linemap, attrs)
|
||
|
|
||
|
@classmethod
|
||
|
def load_by_key_path(
|
||
|
cls,
|
||
|
key: str,
|
||
|
path: str,
|
||
|
linemap: Optional[List[Tuple[int, str]]] = None,
|
||
|
attrs: Optional[Dict[str, Any]] = None,
|
||
|
) -> ModuleType:
|
||
|
if linemap is None:
|
||
|
linemap = []
|
||
|
if key not in cls.cache:
|
||
|
with open(path) as f:
|
||
|
try:
|
||
|
code = compile(f.read(), path, "exec")
|
||
|
except Exception as e:
|
||
|
raise RuntimeError(
|
||
|
f"Failed to import {path}\n{type(e).__name__}: {e}"
|
||
|
) from None
|
||
|
mod = ModuleType(f"{__name__}.{key}")
|
||
|
mod.__file__ = path
|
||
|
mod.key = key # type: ignore[attr-defined]
|
||
|
exec(code, mod.__dict__, mod.__dict__)
|
||
|
sys.modules[mod.__name__] = mod
|
||
|
# another thread might set this first
|
||
|
cls.cache.setdefault(key, mod)
|
||
|
# unzip into separate lines/nodes lists
|
||
|
cls.linemaps[path] = list(zip(*linemap))
|
||
|
|
||
|
if attrs is not None:
|
||
|
for k, v in attrs.items():
|
||
|
setattr(mod, k, v)
|
||
|
|
||
|
return cls.cache[key]
|
||
|
|
||
|
@classmethod
|
||
|
@functools.lru_cache(None)
|
||
|
def stack_frames_for_code(
|
||
|
cls, path: str, lineno: int
|
||
|
) -> Optional[List[Dict[str, Any]]]:
|
||
|
if path not in cls.linemaps:
|
||
|
return None
|
||
|
# [(starting_line, <fx node>), ...]
|
||
|
lines, nodes = cls.linemaps[path]
|
||
|
p = bisect_right(lines, lineno)
|
||
|
if p == 0:
|
||
|
return None
|
||
|
entry = nodes[p - 1]
|
||
|
if not entry:
|
||
|
return None
|
||
|
|
||
|
def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
|
||
|
# ideally fx stores stack traces as data rather than a string
|
||
|
# but this is not along a performance critical path
|
||
|
regex = r'File "(.+)", line (\d+), in (.+)\n'
|
||
|
matches = re.findall(regex, stack_trace)
|
||
|
return [
|
||
|
{"filename": f, "line": int(l), "name": n}
|
||
|
for f, l, n in reversed(matches)
|
||
|
]
|
||
|
|
||
|
return parse_stack_trace(entry)
|
||
|
|
||
|
|
||
|
class TritonCodeCache:
|
||
|
@classmethod
|
||
|
def load(cls, kernel_name: str, source_code: str) -> ModuleType:
|
||
|
mod = PyCodeCache.load(source_code)
|
||
|
return getattr(mod, kernel_name)
|
||
|
|
||
|
|
||
|
def _cuda_compiler() -> Optional[str]:
|
||
|
if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
|
||
|
return config.cuda.cuda_cxx
|
||
|
if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
|
||
|
return os.getenv("CUDACXX", "")
|
||
|
if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
|
||
|
return os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc")
|
||
|
return "nvcc"
|
||
|
|
||
|
|
||
|
def _cutlass_include_paths() -> List[str]:
|
||
|
cutlass_path = config.cuda.cutlass_dir
|
||
|
return [
|
||
|
os.path.join(cutlass_path, "include"),
|
||
|
os.path.join(cutlass_path, "tools/library/include"),
|
||
|
os.path.join(cutlass_path, "tools/library/src"),
|
||
|
os.path.join(cutlass_path, "tools/util/include"),
|
||
|
]
|
||
|
|
||
|
|
||
|
def _cuda_lib_options() -> List[str]:
|
||
|
from torch.utils import cpp_extension
|
||
|
|
||
|
extra_ldflags: List[str] = []
|
||
|
if is_linux():
|
||
|
extra_lib_dir = "lib64"
|
||
|
if not os.path.exists(
|
||
|
cpp_extension._join_cuda_home(extra_lib_dir)
|
||
|
) and os.path.exists(cpp_extension._join_cuda_home("lib")):
|
||
|
# 64-bit CUDA may be installed in "lib"
|
||
|
# Note that it's also possible both don't exist (see _find_cuda_home) - in that case we stay with "lib64"
|
||
|
extra_lib_dir = "lib"
|
||
|
extra_ldflags.append(f"-L{cpp_extension._join_cuda_home(extra_lib_dir)}")
|
||
|
extra_ldflags.append(
|
||
|
f'-L{cpp_extension._join_cuda_home(extra_lib_dir, "stubs")}'
|
||
|
)
|
||
|
extra_ldflags.append("-lcuda")
|
||
|
extra_ldflags.append("-lcudart")
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"Unsupported env, failed to find cuda libs! Currently only Linux is supported."
|
||
|
)
|
||
|
return extra_ldflags
|
||
|
|
||
|
|
||
|
def _nvcc_host_compiler_options() -> List[str]:
|
||
|
return [
|
||
|
"-fPIC",
|
||
|
"-fno-strict-aliasing",
|
||
|
"-fvisibility=hidden",
|
||
|
"-Wconversion",
|
||
|
]
|
||
|
|
||
|
|
||
|
def _nvcc_compiler_options() -> List[str]:
|
||
|
arch = cuda_env.get_cuda_arch()
|
||
|
if arch == "90":
|
||
|
# Required by cutlass compilation.
|
||
|
arch = "90a"
|
||
|
code = [f"sm_{arch}", f"compute_{arch}"]
|
||
|
if config.cuda.enable_cuda_lto:
|
||
|
code += [f"lto_{arch}"]
|
||
|
options = [
|
||
|
"-t=0",
|
||
|
"-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
|
||
|
"-w",
|
||
|
f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
|
||
|
config.cuda.compile_opt_level,
|
||
|
"-std=c++17",
|
||
|
"--expt-relaxed-constexpr",
|
||
|
"-DNDEBUG",
|
||
|
]
|
||
|
if config.cuda.enable_debug_info:
|
||
|
options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
|
||
|
if config.cuda.enable_ptxas_info:
|
||
|
options.extend(
|
||
|
[
|
||
|
"--keep", # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
|
||
|
"--ptxas-options=--warn-on-local-memory-usage", # warn us if local memory is used in CUDA Kernels
|
||
|
"--ptxas-options=--warn-on-spills", # warn us if register spilling happens in CUDA Kernels
|
||
|
"--resource-usage", # Report on CUDA resource usage (shared mem, registers etc.)
|
||
|
"--source-in-ptx",
|
||
|
]
|
||
|
) # Annotate the ptx file with source information
|
||
|
if config.cuda.use_fast_math:
|
||
|
options.extend(
|
||
|
[
|
||
|
"--use_fast_math",
|
||
|
"-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
|
||
|
]
|
||
|
)
|
||
|
return options
|
||
|
|
||
|
|
||
|
def cuda_compile_command(
|
||
|
src_files: List[str],
|
||
|
dst_file: str,
|
||
|
dst_file_ext: str,
|
||
|
) -> str:
|
||
|
include_paths = _cutlass_include_paths()
|
||
|
cuda_lib_options = _cuda_lib_options()
|
||
|
nvcc_host_compiler_options = _nvcc_host_compiler_options()
|
||
|
nvcc_compiler_options = _nvcc_compiler_options()
|
||
|
options = (
|
||
|
nvcc_compiler_options
|
||
|
+ [
|
||
|
f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
|
||
|
for opt in nvcc_host_compiler_options
|
||
|
]
|
||
|
+ ["-I" + path for path in include_paths]
|
||
|
+ cuda_lib_options
|
||
|
)
|
||
|
src_file = " ".join(src_files)
|
||
|
res = ""
|
||
|
if dst_file_ext == "o":
|
||
|
res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
|
||
|
elif dst_file_ext == "so":
|
||
|
options.append("-shared")
|
||
|
res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
|
||
|
else:
|
||
|
raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
|
||
|
log.debug("CUDA command: %s", res)
|
||
|
return res
|
||
|
|
||
|
|
||
|
class DLLWrapper:
|
||
|
"""A wrapper for a dynamic library."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
lib_path: str,
|
||
|
):
|
||
|
self.lib_path = lib_path
|
||
|
self.DLL = cdll.LoadLibrary(lib_path)
|
||
|
self.is_open = True
|
||
|
|
||
|
def close(self):
|
||
|
if self.is_open:
|
||
|
self._dlclose()
|
||
|
self.is_open = False
|
||
|
|
||
|
def _dlclose(self):
|
||
|
f_dlclose = None
|
||
|
|
||
|
if is_linux():
|
||
|
syms = CDLL(None)
|
||
|
if not hasattr(syms, "dlclose"):
|
||
|
# Apline Linux
|
||
|
syms = CDLL("libc.so")
|
||
|
|
||
|
if hasattr(syms, "dlclose"):
|
||
|
f_dlclose = syms.dlclose
|
||
|
else:
|
||
|
raise NotImplementedError("Unsupported env, failed to do dlclose!")
|
||
|
|
||
|
if f_dlclose is not None:
|
||
|
f_dlclose.argtypes = [c_void_p]
|
||
|
f_dlclose(self.DLL._handle)
|
||
|
else:
|
||
|
log.warning(
|
||
|
"dll unloading function was not found, library may not be unloaded properly!"
|
||
|
)
|
||
|
|
||
|
def __getattr__(self, name):
|
||
|
if not self.is_open:
|
||
|
raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")
|
||
|
|
||
|
method = getattr(self.DLL, name)
|
||
|
|
||
|
def _wrapped_func(*args):
|
||
|
err = method(*args)
|
||
|
if err:
|
||
|
raise RuntimeError(f"Error in function: {method.__name__}")
|
||
|
|
||
|
return _wrapped_func
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, *args):
|
||
|
self.close()
|
||
|
|
||
|
def __del__(self):
|
||
|
self.close()
|
||
|
|
||
|
|
||
|
class CUDACodeCache:
|
||
|
@dataclasses.dataclass
|
||
|
class CacheEntry:
|
||
|
input_path: str
|
||
|
output_path: str
|
||
|
|
||
|
cache: Dict[str, CacheEntry] = dict()
|
||
|
clear = staticmethod(cache.clear)
|
||
|
_SOURCE_CODE_SUFFIX = "cu"
|
||
|
|
||
|
@classmethod
|
||
|
def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
|
||
|
"""
|
||
|
Writes source code into a file with dst_file_ext as the file extension.
|
||
|
Returns the hash key of source code, and the path to the file.
|
||
|
"""
|
||
|
|
||
|
cuda_command = repr(
|
||
|
cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
|
||
|
)
|
||
|
key, input_path = write(
|
||
|
source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
|
||
|
)
|
||
|
return key, input_path
|
||
|
|
||
|
@classmethod
|
||
|
def compile(cls, source_code, dst_file_ext) -> Tuple[str, str, str]:
|
||
|
"""
|
||
|
Compiles CUDA source_code into a file with dst_file_ext extension.
|
||
|
Returns a tuple of dst_file_path, hash_key, source_code_path
|
||
|
"""
|
||
|
|
||
|
key, input_path = cls.write(source_code, dst_file_ext)
|
||
|
if key not in cls.cache:
|
||
|
from filelock import FileLock
|
||
|
|
||
|
lock_dir = get_lock_dir()
|
||
|
lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
|
||
|
with lock:
|
||
|
output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
|
||
|
if not os.path.exists(output_path):
|
||
|
cmd = cuda_compile_command(
|
||
|
[input_path], output_path, dst_file_ext
|
||
|
).split(" ")
|
||
|
try:
|
||
|
subprocess.check_output(
|
||
|
cmd, stderr=subprocess.STDOUT, env=os.environ
|
||
|
)
|
||
|
except subprocess.CalledProcessError as error:
|
||
|
raise exc.CUDACompileError(cmd, error.output) from error
|
||
|
cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)
|
||
|
|
||
|
return (cls.cache[key].output_path, key, input_path)
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
|
||
|
"""
|
||
|
Compiles source code and loads the generated .so file.
|
||
|
Returns a tuple of DLLWrapper, hash_key, source_code_path
|
||
|
"""
|
||
|
|
||
|
if dst_file_ext != "so":
|
||
|
raise RuntimeError(
|
||
|
f"Only support loading a .so file for now. "
|
||
|
f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
|
||
|
)
|
||
|
dst_file_path, hash_key, source_code_path = cls.compile(
|
||
|
source_code, dst_file_ext
|
||
|
)
|
||
|
return (DLLWrapper(dst_file_path), hash_key, source_code_path)
|
||
|
|
||
|
|
||
|
def caching_device_properties():
|
||
|
for _, device_interface in get_registered_device_interfaces():
|
||
|
if device_interface.is_available():
|
||
|
device_interface.Worker.get_device_properties()
|
||
|
|
||
|
|
||
|
def _set_triton_ptxas_path() -> None:
|
||
|
if os.environ.get("TRITON_PTXAS_PATH") is not None:
|
||
|
return
|
||
|
ptxas_path = os.path.abspath(
|
||
|
os.path.join(os.path.dirname(__file__), "..", "bin", "ptxas")
|
||
|
)
|
||
|
if not os.path.exists(ptxas_path):
|
||
|
return
|
||
|
if os.path.isfile(ptxas_path) and os.access(ptxas_path, os.X_OK):
|
||
|
os.environ["TRITON_PTXAS_PATH"] = ptxas_path
|
||
|
else:
|
||
|
warnings.warn(f"{ptxas_path} exists but is not an executable")
|
||
|
|
||
|
|
||
|
def _worker_compile(
|
||
|
kernel_name: str, source_code: str, cc: int, device: torch.device
|
||
|
) -> None:
|
||
|
device_interface = get_interface_for_device(device.type)
|
||
|
device_interface.Worker.set_device(device.index)
|
||
|
kernel = TritonCodeCache.load(kernel_name, source_code)
|
||
|
kernel.precompile(warm_cache_only_with_cc=cc)
|
||
|
|
||
|
|
||
|
def _load_kernel(kernel_name: str, source_code: str) -> ModuleType:
|
||
|
_set_triton_ptxas_path()
|
||
|
kernel = TritonCodeCache.load(kernel_name, source_code)
|
||
|
kernel.precompile()
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
class TritonFuture:
|
||
|
kernel: ModuleType
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
kernel_name: str,
|
||
|
source_code: str,
|
||
|
future: Future[Any],
|
||
|
) -> None:
|
||
|
self.kernel_name = kernel_name
|
||
|
self.source_code = source_code
|
||
|
self.future = future
|
||
|
|
||
|
# @dynamo_utils.dynamo_timed
|
||
|
def result(self) -> ModuleType:
|
||
|
t0 = time()
|
||
|
if hasattr(self, "kernel"):
|
||
|
return self.kernel
|
||
|
# If the worker failed this will throw an exception.
|
||
|
self.future.result()
|
||
|
kernel = self.kernel = _load_kernel(self.kernel_name, self.source_code)
|
||
|
latency = time() - t0
|
||
|
if latency > 50:
|
||
|
developer_warning(
|
||
|
f"Detected long compilation time of {latency} seconds for kernel name {self.kernel_name}"
|
||
|
)
|
||
|
developer_warning(self.source_code)
|
||
|
del self.kernel_name, self.source_code, self.future
|
||
|
return kernel
|
||
|
|
||
|
|
||
|
# If this process dies abnormally (e.g. segfault)
|
||
|
# it will not shut down the workers. Instead
|
||
|
# the workers will have their parent reassigned to the
|
||
|
# init process. This launches a separate thread to
|
||
|
# watch for the worker getting reassigned,
|
||
|
# and cleans it up in this case.
|
||
|
#
|
||
|
# This function cannot be an inner function since otherwise mp_context="spawn" would
|
||
|
# not work for ProcessPoolExecutor since inner functions cannot be pickled.
|
||
|
def _async_compile_initializer(orig_ppid) -> None:
|
||
|
def run() -> None:
|
||
|
while True:
|
||
|
sleep(1)
|
||
|
if orig_ppid != os.getppid():
|
||
|
os.kill(os.getpid(), signal.SIGKILL)
|
||
|
|
||
|
global _watchdog_thread
|
||
|
_watchdog_thread = Thread(target=run, daemon=True)
|
||
|
_watchdog_thread.start()
|
||
|
# Ignore Ctrl-C (i.e. SIGINT) sent to pool workers to avoid meaningless log spam.
|
||
|
signal.signal(signal.SIGINT, signal.SIG_IGN)
|
||
|
|
||
|
|
||
|
_watchdog_thread: Optional[Thread] = None
|
||
|
|
||
|
# Used to keep track of all process pools invoked so far.
|
||
|
_pool_set: Set[ProcessPoolExecutor] = set()
|
||
|
|
||
|
|
||
|
def shutdown_compile_workers() -> None:
|
||
|
"""Shut down all outstanding compile-worker pools."""
|
||
|
global _pool_set
|
||
|
for pool in _pool_set:
|
||
|
pool.shutdown()
|
||
|
_pool_set.clear()
|
||
|
|
||
|
|
||
|
class AsyncCompile:
|
||
|
def __init__(self) -> None:
|
||
|
pass
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(1)
|
||
|
def pool() -> ThreadPoolExecutor:
|
||
|
assert config.compile_threads > 1
|
||
|
return ThreadPoolExecutor(config.compile_threads)
|
||
|
|
||
|
@staticmethod
|
||
|
@functools.lru_cache(1)
|
||
|
def process_pool() -> ProcessPoolExecutor:
|
||
|
# ensure properties have been calculated before processes
|
||
|
# are forked
|
||
|
caching_device_properties()
|
||
|
assert config.compile_threads > 1
|
||
|
orig_ppid = os.getpid()
|
||
|
|
||
|
ctx = multiprocessing.get_context(config.worker_start_method)
|
||
|
pool = ProcessPoolExecutor(
|
||
|
config.compile_threads,
|
||
|
mp_context=ctx,
|
||
|
initializer=partial(_async_compile_initializer, orig_ppid),
|
||
|
)
|
||
|
|
||
|
global _pool_set
|
||
|
_pool_set.add(pool)
|
||
|
|
||
|
# when this pool is created in a subprocess object, the normal exit handler
|
||
|
# doesn't run, and we need to register our own handler.
|
||
|
# exitpriority has to be high, because another one of the finalizers will
|
||
|
# kill the worker thread that sends the shutdown message to the workers...
|
||
|
multiprocessing.util.Finalize(None, pool.shutdown, exitpriority=sys.maxsize)
|
||
|
return pool
|
||
|
|
||
|
@classmethod
|
||
|
def warm_pool(cls) -> None:
|
||
|
if config.compile_threads <= 1:
|
||
|
return
|
||
|
_compile_start()
|
||
|
pool = cls.process_pool()
|
||
|
|
||
|
# We have to fork processes for compiler workers, but the more memory and other resources that are loaded, the
|
||
|
# slower the os.fork time is, quite drastically. It also holds the GIL so we can't put it on another thread.
|
||
|
|
||
|
# Examples:
|
||
|
# A simple x + x + x script: 10ms seconds in the middle of the program, 2ms at startup
|
||
|
# tf_efficientnet_b0 benchmark: 50ms! in the middle of the program , 3ms at startup
|
||
|
|
||
|
# So we want to start the workers early when it is still cheap, and also to allow the workers to get
|
||
|
# ready before we have work for them.
|
||
|
|
||
|
# ProcessPoolExecutor also does not launch the workers until it finds a point when all the workers are idle.
|
||
|
# But if we waited until then fork time will be long and we will be waiting for the processes to initialize.
|
||
|
|
||
|
# We force them to start here with some YOLOing of the internal methods.
|
||
|
if hasattr(pool, "_start_queue_management_thread"):
|
||
|
pool._start_queue_management_thread()
|
||
|
else:
|
||
|
for _ in range(config.compile_threads):
|
||
|
pool._adjust_process_count()
|
||
|
if hasattr(pool, "_start_executor_manager_thread"):
|
||
|
pool._start_executor_manager_thread()
|
||
|
_compile_end()
|
||
|
|
||
|
@classmethod
|
||
|
def submit(cls, task: Callable[..., Any]) -> Any:
|
||
|
if config.compile_threads <= 1:
|
||
|
return task()
|
||
|
return cls.pool().submit(task)
|
||
|
|
||
|
@classmethod
|
||
|
def map(cls, fn: Callable[..., Any], seq: List[Any]) -> List[Any]:
|
||
|
if config.compile_threads <= 1 or len(seq) <= 1:
|
||
|
return list(map(fn, seq))
|
||
|
return [t.result() for t in [cls.pool().submit(fn, x) for x in seq]]
|
||
|
|
||
|
def triton(
|
||
|
self, kernel_name: str, source_code: str, device_str: str = "cuda"
|
||
|
) -> Union[TritonFuture, ModuleType]:
|
||
|
_compile_start()
|
||
|
|
||
|
if config.compile_threads > 1:
|
||
|
device_interface = get_interface_for_device(device_str)
|
||
|
device = torch.device(device_str, device_interface.current_device())
|
||
|
cc = device_interface.get_compute_capability(device)
|
||
|
future = self.process_pool().submit(
|
||
|
_worker_compile, kernel_name, source_code, cc, device
|
||
|
)
|
||
|
return TritonFuture(kernel_name, source_code, future)
|
||
|
else:
|
||
|
return _load_kernel(kernel_name, source_code)
|
||
|
|
||
|
def multi_kernel(self, *args, **kwargs) -> ModuleType:
|
||
|
"""
|
||
|
Async compile the python shim for multi-kernel.
|
||
|
"""
|
||
|
|
||
|
def task():
|
||
|
from torch._inductor.codegen.multi_kernel import MultiKernelCall
|
||
|
|
||
|
return MultiKernelCall(*args, **kwargs)
|
||
|
|
||
|
return self.submit(task)
|
||
|
|
||
|
def cpp(self, source_code: str) -> ModuleType:
|
||
|
def task():
|
||
|
return CppCodeCache.load(source_code).kernel
|
||
|
|
||
|
return self.submit(task)
|
||
|
|
||
|
def cpp_pybinding(self, argtypes: List[str], source_code: str) -> ModuleType:
|
||
|
return self.submit(
|
||
|
functools.partial(
|
||
|
CppPythonBindingsCodeCache.load_pybinding, argtypes, source_code
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def cuda(self, source_code, dst_file_ext):
|
||
|
def task():
|
||
|
return CUDACodeCache.load(source_code, dst_file_ext)[0]
|
||
|
|
||
|
return self.submit(task)
|
||
|
|
||
|
def wait(self, scope: Dict[str, Any]) -> None:
|
||
|
num_kernels = len(
|
||
|
[
|
||
|
value
|
||
|
for key, value in scope.items()
|
||
|
if isinstance(value, (Future, TritonFuture))
|
||
|
]
|
||
|
)
|
||
|
pbar = tqdm(
|
||
|
total=num_kernels,
|
||
|
desc="Inductor Compilation",
|
||
|
disable=config.disable_progress,
|
||
|
delay=0,
|
||
|
)
|
||
|
if config.compile_threads > 1:
|
||
|
for key, result in scope.items():
|
||
|
if config.verbose_progress and not isinstance(pbar, _Faketqdm):
|
||
|
pbar.set_postfix_str(key)
|
||
|
if isinstance(result, (Future, TritonFuture)):
|
||
|
scope[key] = result.result()
|
||
|
pbar.update(1)
|
||
|
|
||
|
_compile_end()
|
||
|
|
||
|
|
||
|
if os.environ.get("TORCH_TNT_IN_USE", "0") == "1":
|
||
|
# When TorchTNT is used, calling warm_pool() here will cause the
|
||
|
# compile workers created not being able to be shut down inside
|
||
|
# shutdown_compile_workers(). This may cause significant QPS drop.
|
||
|
log.info("Do not call AsyncCompile.warm_pool() because TorchTNT is in use.")
|
||
|
else:
|
||
|
AsyncCompile.warm_pool()
|