1086 lines
38 KiB
Python
1086 lines
38 KiB
Python
|
import functools
|
||
|
import hashlib
|
||
|
import itertools
|
||
|
import json
|
||
|
import logging
|
||
|
import os
|
||
|
import os.path
|
||
|
import re
|
||
|
import tempfile
|
||
|
from dataclasses import dataclass, field
|
||
|
from importlib import __import__
|
||
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||
|
from weakref import WeakSet
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
# This is a synthetic logger which doesn't correspond to an actual logger,
|
||
|
# but handles all of our "tracing" logging, which is structured and doesn't go
|
||
|
# to stderr but always goes to a dedicated log file. We don't put these
|
||
|
# loggers in the classic module hierarchy, because we don't want a suppression
|
||
|
# of logs to also cause a trace to get suppressed (traces typically are not
|
||
|
# collected, unless we are in prod, in which case they always are collected.)
|
||
|
#
|
||
|
# TODO: Maybe we should allow for some sub-hierarchy so you can control which
|
||
|
# traces you want to collect, for performance reasons.
|
||
|
#
|
||
|
# See https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
|
||
|
trace_log = logging.getLogger("torch.__trace")
|
||
|
|
||
|
DEFAULT_LOG_LEVEL = logging.WARNING
|
||
|
LOG_ENV_VAR = "TORCH_LOGS"
|
||
|
LOG_OUT_ENV_VAR = "TORCH_LOGS_OUT"
|
||
|
LOG_FORMAT_ENV_VAR = "TORCH_LOGS_FORMAT"
|
||
|
TRACE_ENV_VAR = "TORCH_TRACE"
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LogRegistry:
|
||
|
# shorthand name to log qualified name
|
||
|
# Note: this only contains loggers registered
|
||
|
# from register_log
|
||
|
# e.g. "dynamo" -> "torch._dynamo"
|
||
|
log_alias_to_log_qnames: Dict[str, List[str]] = field(default_factory=dict)
|
||
|
|
||
|
# artifact logger qualified names,
|
||
|
# this is populated lazily, as calls to getArtifactLogger
|
||
|
# currently formatted as <module>.__<artifact_name>
|
||
|
# e.g. "torch._dynamo.convert_frame.__guards"
|
||
|
artifact_log_qnames: Set[str] = field(default_factory=set)
|
||
|
|
||
|
# child logs of registered logs if specified via open
|
||
|
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
|
||
|
# these need to be tracked so their levels can be reset properly
|
||
|
# e.g. "torch._dynamo.output_graph"
|
||
|
child_log_qnames: Set[str] = field(default_factory=set)
|
||
|
|
||
|
# artifact names, populated by register_artifact
|
||
|
# e.g. "guards"
|
||
|
artifact_names: Set[str] = field(default_factory=set)
|
||
|
|
||
|
# Artifacts that should be visible by default in the error message
|
||
|
visible_artifacts: Set[str] = field(default_factory=set)
|
||
|
|
||
|
# A short description of each artifact
|
||
|
artifact_descriptions: Dict[str, str] = field(default_factory=dict)
|
||
|
|
||
|
# artifacts which are not displayed unless explicitly named in the
|
||
|
# settings. Ex. output_code is NOT displayed even if the inductor
|
||
|
# log level is set to DEBUG. It must be explicitly named in the settings
|
||
|
off_by_default_artifact_names: Set[str] = field(default_factory=set)
|
||
|
|
||
|
# logging format string for artifacts
|
||
|
artifact_log_formatters: Dict[str, logging.Formatter] = field(default_factory=dict)
|
||
|
|
||
|
def is_artifact(self, name):
|
||
|
return name in self.artifact_names
|
||
|
|
||
|
def is_log(self, alias):
|
||
|
return alias in self.log_alias_to_log_qnames
|
||
|
|
||
|
# register a log with an alias
|
||
|
def register_log(self, alias, log_qnames: Union[str, List[str]]):
|
||
|
if isinstance(log_qnames, str):
|
||
|
log_qnames = [log_qnames]
|
||
|
self.log_alias_to_log_qnames[alias] = log_qnames
|
||
|
|
||
|
# register an artifact name
|
||
|
def register_artifact_name(
|
||
|
self, name, description, visible, off_by_default, log_format
|
||
|
):
|
||
|
self.artifact_names.add(name)
|
||
|
if visible:
|
||
|
self.visible_artifacts.add(name)
|
||
|
self.artifact_descriptions[name] = description
|
||
|
|
||
|
# if off by default, don't enable it
|
||
|
# when log_name's log_level is set to DEBUG
|
||
|
if off_by_default:
|
||
|
self.off_by_default_artifact_names.add(name)
|
||
|
|
||
|
if log_format is not None:
|
||
|
self.artifact_log_formatters[name] = logging.Formatter(log_format)
|
||
|
|
||
|
# register the qualified name of an artifact log
|
||
|
# this is needed to know which logs need to be reset
|
||
|
# whenever the log_state is changed
|
||
|
def register_artifact_log(self, artifact_log_qname):
|
||
|
self.artifact_log_qnames.add(artifact_log_qname)
|
||
|
|
||
|
def register_child_log(self, log_qname):
|
||
|
self.child_log_qnames.add(log_qname)
|
||
|
|
||
|
# flattens all the qnames together (TODO: consider memoizing?)
|
||
|
def get_log_qnames(self) -> Set[str]:
|
||
|
return {
|
||
|
qname
|
||
|
for qnames in self.log_alias_to_log_qnames.values()
|
||
|
for qname in qnames
|
||
|
}
|
||
|
|
||
|
def get_artifact_log_qnames(self):
|
||
|
return set(self.artifact_log_qnames)
|
||
|
|
||
|
def get_child_log_qnames(self):
|
||
|
return set(self.child_log_qnames)
|
||
|
|
||
|
def is_off_by_default(self, artifact_qname):
|
||
|
return artifact_qname in self.off_by_default_artifact_names
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class LogState:
|
||
|
# qualified log names -> currently set log level
|
||
|
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
|
||
|
|
||
|
# the set of currently enabled artifacts
|
||
|
artifact_names: Set[str] = field(default_factory=set)
|
||
|
|
||
|
def enable_artifact(self, artifact_name):
|
||
|
self.artifact_names.add(artifact_name)
|
||
|
|
||
|
def is_artifact_enabled(self, name):
|
||
|
return name in self.artifact_names
|
||
|
|
||
|
def enable_log(self, log_qnames, log_level):
|
||
|
if isinstance(log_qnames, str):
|
||
|
log_qnames = [log_qnames]
|
||
|
for log_qname in log_qnames:
|
||
|
self.log_qname_to_level[log_qname] = log_level
|
||
|
|
||
|
def get_log_level_pairs(self):
|
||
|
"""Returns all qualified module names for which the user requested
|
||
|
explicit logging settings.
|
||
|
|
||
|
.. warning:
|
||
|
|
||
|
This function used to return all loggers, regardless of whether
|
||
|
or not the user specified them or not; it now only returns logs
|
||
|
which were explicitly mentioned by the user (and torch, which
|
||
|
always is implicitly requested when we initialize our logging
|
||
|
subsystem.)
|
||
|
"""
|
||
|
return self.log_qname_to_level.items()
|
||
|
|
||
|
def clear(self):
|
||
|
self.log_qname_to_level.clear()
|
||
|
self.artifact_names.clear()
|
||
|
|
||
|
|
||
|
log_registry = LogRegistry()
|
||
|
log_state = LogState()
|
||
|
|
||
|
# sample usage: torch._logging.set_logs(**torch._logging.DEFAULT_LOGGING)
|
||
|
DEFAULT_LOGGING = {
|
||
|
"dynamo": logging.DEBUG,
|
||
|
"aot": logging.DEBUG,
|
||
|
"inductor": logging.DEBUG,
|
||
|
"ddp_graphs": True,
|
||
|
"graph_breaks": True,
|
||
|
"guards": True,
|
||
|
"recompiles": True,
|
||
|
"dynamic": logging.INFO,
|
||
|
}
|
||
|
|
||
|
|
||
|
def set_logs(
|
||
|
*,
|
||
|
all: Optional[int] = None,
|
||
|
dynamo: Optional[int] = None,
|
||
|
aot: Optional[int] = None,
|
||
|
autograd: Optional[int] = None,
|
||
|
dynamic: Optional[int] = None,
|
||
|
inductor: Optional[int] = None,
|
||
|
distributed: Optional[int] = None,
|
||
|
dist_c10d: Optional[int] = None,
|
||
|
dist_ddp: Optional[int] = None,
|
||
|
dist_fsdp: Optional[int] = None,
|
||
|
onnx: Optional[int] = None,
|
||
|
bytecode: bool = False,
|
||
|
aot_graphs: bool = False,
|
||
|
aot_joint_graph: bool = False,
|
||
|
ddp_graphs: bool = False,
|
||
|
graph: bool = False,
|
||
|
graph_code: bool = False,
|
||
|
graph_breaks: bool = False,
|
||
|
graph_sizes: bool = False,
|
||
|
guards: bool = False,
|
||
|
recompiles: bool = False,
|
||
|
recompiles_verbose: bool = False,
|
||
|
trace_source: bool = False,
|
||
|
trace_call: bool = False,
|
||
|
output_code: bool = False,
|
||
|
schedule: bool = False,
|
||
|
perf_hints: bool = False,
|
||
|
post_grad_graphs: bool = False,
|
||
|
onnx_diagnostics: bool = False,
|
||
|
fusion: bool = False,
|
||
|
overlap: bool = False,
|
||
|
export: Optional[int] = None,
|
||
|
modules: Optional[Dict[str, Union[int, bool]]] = None,
|
||
|
cudagraphs: bool = False,
|
||
|
sym_node: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
Sets the log level for individual components and toggles individual log
|
||
|
artifact types.
|
||
|
|
||
|
.. warning:: This feature is a prototype and may have compatibility
|
||
|
breaking changes in the future.
|
||
|
|
||
|
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
|
||
|
over this function, so if it was set, this function does nothing.
|
||
|
|
||
|
A component is a set of related features in PyTorch. All of the log
|
||
|
messages emitted from a given component have their own log levels. If the
|
||
|
log level of a particular message has priority greater than or equal to its
|
||
|
component's log level setting, it is emitted. Otherwise, it is suppressed.
|
||
|
This allows you to, for instance, silence large groups of log messages that
|
||
|
are not relevant to you and increase verbosity of logs for components that
|
||
|
are relevant. The expected log level values, ordered from highest to lowest
|
||
|
priority, are:
|
||
|
|
||
|
* ``logging.CRITICAL``
|
||
|
* ``logging.ERROR``
|
||
|
* ``logging.WARNING``
|
||
|
* ``logging.INFO``
|
||
|
* ``logging.DEBUG``
|
||
|
* ``logging.NOTSET``
|
||
|
|
||
|
See documentation for the Python ``logging`` module for more information on
|
||
|
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
|
||
|
|
||
|
An artifact is a particular type of log message. Each artifact is assigned
|
||
|
to a parent component. A component can emit many different kinds of
|
||
|
artifacts. In general, an artifact is emitted if either its corresponding
|
||
|
setting in the argument list below is turned on or if its parent component
|
||
|
is set to a log level less than or equal to the log level of the artifact.
|
||
|
|
||
|
Keyword args:
|
||
|
all (:class:`Optional[int]`):
|
||
|
The default log level for all components. Default: ``logging.WARN``
|
||
|
|
||
|
dynamo (:class:`Optional[int]`):
|
||
|
The log level for the TorchDynamo component. Default: ``logging.WARN``
|
||
|
|
||
|
aot (:class:`Optional[int]`):
|
||
|
The log level for the AOTAutograd component. Default: ``logging.WARN``
|
||
|
|
||
|
autograd (:class:`Optional[int]`):
|
||
|
The log level for autograd. Default: ``logging.WARN``
|
||
|
|
||
|
inductor (:class:`Optional[int]`):
|
||
|
The log level for the TorchInductor component. Default: ``logging.WARN``
|
||
|
|
||
|
dynamic (:class:`Optional[int]`):
|
||
|
The log level for dynamic shapes. Default: ``logging.WARN``
|
||
|
|
||
|
distributed (:class:`Optional[int]`):
|
||
|
Whether to log c10d communication operations and other debug info from PyTorch Distributed components.
|
||
|
Default: ``logging.WARN``
|
||
|
|
||
|
dist_c10d (:class:`Optional[int]`):
|
||
|
Whether to log c10d communication operations related debug info in PyTorch Distributed components.
|
||
|
Default: ``logging.WARN``
|
||
|
|
||
|
dist_ddp (:class:`Optional[int]`):
|
||
|
Whether to log debug info related to ``DistributedDataParallel``(DDP) from PyTorch Distributed components.
|
||
|
Default: ``logging.WARN``
|
||
|
|
||
|
dist_fsdp (:class:`Optional[int]`):
|
||
|
Whether to log debug info related to ``FullyShardedDataParallel``(FSDP) in PyTorch Distributed components.
|
||
|
Default: ``logging.WARN``
|
||
|
|
||
|
onnx (:class:`Optional[int]`):
|
||
|
The log level for the ONNX exporter component. Default: ``logging.WARN``
|
||
|
|
||
|
bytecode (:class:`bool`):
|
||
|
Whether to emit the original and generated bytecode from TorchDynamo.
|
||
|
Default: ``False``
|
||
|
|
||
|
aot_graphs (:class:`bool`):
|
||
|
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
|
||
|
|
||
|
aot_joint_graph (:class:`bool`):
|
||
|
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
|
||
|
|
||
|
inductor (:class:`Optional[int]`):
|
||
|
Whether to log information from inductor cudagraphs. Default: ``logging.WARN``
|
||
|
|
||
|
ddp_graphs (:class:`bool`):
|
||
|
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
|
||
|
|
||
|
graph (:class:`bool`):
|
||
|
Whether to emit the graph captured by TorchDynamo in tabular format.
|
||
|
Default: ``False``
|
||
|
|
||
|
graph_code (:class:`bool`):
|
||
|
Whether to emit the python source of the graph captured by TorchDynamo.
|
||
|
Default: ``False``
|
||
|
|
||
|
graph_breaks (:class:`bool`):
|
||
|
Whether to emit the graph breaks encountered by TorchDynamo.
|
||
|
Default: ``False``
|
||
|
|
||
|
graph_sizes (:class:`bool`):
|
||
|
Whether to emit tensor sizes of the graph captured by TorchDynamo.
|
||
|
Default: ``False``
|
||
|
|
||
|
guards (:class:`bool`):
|
||
|
Whether to emit the guards generated by TorchDynamo for each compiled
|
||
|
function. Default: ``False``
|
||
|
|
||
|
recompiles (:class:`bool`):
|
||
|
Whether to emit a guard failure reason and message every time
|
||
|
TorchDynamo recompiles a function. Default: ``False``
|
||
|
|
||
|
recompiles_verbose (:class:`bool`):
|
||
|
Whether to emit all guard failure reasons when TorchDynamo recompiles
|
||
|
a function, even those that are not actually run. Default: ``False``
|
||
|
|
||
|
trace_source (:class:`bool`):
|
||
|
Whether to emit when TorchDynamo begins tracing a new line. Default: ``False``
|
||
|
|
||
|
trace_call (:class:`bool`):
|
||
|
Whether to emit detailed line location when TorchDynamo creates an FX node
|
||
|
corresponding to function call. Python 3.11+ only. Default: ``False``
|
||
|
|
||
|
output_code (:class:`bool`):
|
||
|
Whether to emit the TorchInductor output code. Default: ``False``
|
||
|
|
||
|
schedule (:class:`bool`):
|
||
|
Whether to emit the TorchInductor schedule. Default: ``False``
|
||
|
|
||
|
perf_hints (:class:`bool`):
|
||
|
Whether to emit the TorchInductor perf hints. Default: ``False``
|
||
|
|
||
|
post_grad_graphs (:class:`bool`):
|
||
|
Whether to emit the graphs generated by after post grad passes. Default: ``False``
|
||
|
|
||
|
onnx_diagnostics (:class:`bool`):
|
||
|
Whether to emit the ONNX exporter diagnostics in logging. Default: ``False``
|
||
|
|
||
|
fusion (:class:`bool`):
|
||
|
Whether to emit detailed Inductor fusion decisions. Default: ``False``
|
||
|
|
||
|
overlap (:class:`bool`):
|
||
|
Whether to emit detailed Inductor compute/comm overlap decisions. Default: ``False``
|
||
|
|
||
|
sym_node (:class:`bool`):
|
||
|
Whether to emit debug info for various SymNode opterations. Default: ``False``
|
||
|
|
||
|
export (:class:`Optional[int]`):
|
||
|
The log level for export. Default: ``logging.WARN``
|
||
|
|
||
|
modules (dict):
|
||
|
This argument provides an alternate way to specify the above log
|
||
|
component and artifact settings, in the format of a keyword args
|
||
|
dictionary given as a single argument. There are two cases
|
||
|
where this is useful (1) if a new log component or artifact has
|
||
|
been registered but a keyword argument for it has not been added
|
||
|
to this function and (2) if the log level for an unregistered module
|
||
|
needs to be set. This can be done by providing the fully-qualified module
|
||
|
name as the key, with the log level as the value. Default: ``None``
|
||
|
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> import logging
|
||
|
|
||
|
# The following changes the "dynamo" component to emit DEBUG-level
|
||
|
# logs, and to emit "graph_code" artifacts.
|
||
|
|
||
|
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
|
||
|
|
||
|
# The following enables the logs for a different module
|
||
|
|
||
|
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
|
||
|
"""
|
||
|
# ignore if env var is set
|
||
|
if LOG_ENV_VAR in os.environ:
|
||
|
log.warning(
|
||
|
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
|
||
|
)
|
||
|
return
|
||
|
|
||
|
log_state.clear()
|
||
|
|
||
|
modules = modules or {}
|
||
|
|
||
|
def _set_logs(**kwargs):
|
||
|
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
|
||
|
if val is None:
|
||
|
continue
|
||
|
|
||
|
if log_registry.is_artifact(alias):
|
||
|
if not isinstance(val, bool):
|
||
|
raise ValueError(
|
||
|
f"Expected bool to enable artifact {alias}, received {val}"
|
||
|
)
|
||
|
|
||
|
if val:
|
||
|
log_state.enable_artifact(alias)
|
||
|
elif log_registry.is_log(alias) or alias in log_registry.child_log_qnames:
|
||
|
if val not in logging._levelToName:
|
||
|
raise ValueError(
|
||
|
f"Unrecognized log level for log {alias}: {val}, valid level values "
|
||
|
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
||
|
)
|
||
|
|
||
|
log_state.enable_log(
|
||
|
log_registry.log_alias_to_log_qnames.get(alias, alias), val
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Unrecognized log or artifact name passed to set_logs: {alias}"
|
||
|
)
|
||
|
|
||
|
_init_logs()
|
||
|
|
||
|
_set_logs(
|
||
|
torch=all,
|
||
|
dynamo=dynamo,
|
||
|
aot=aot,
|
||
|
autograd=autograd,
|
||
|
inductor=inductor,
|
||
|
dynamic=dynamic,
|
||
|
bytecode=bytecode,
|
||
|
aot_graphs=aot_graphs,
|
||
|
aot_joint_graph=aot_joint_graph,
|
||
|
ddp_graphs=ddp_graphs,
|
||
|
distributed=distributed,
|
||
|
dist_c10d=dist_c10d,
|
||
|
dist_ddp=dist_ddp,
|
||
|
dist_fsdp=dist_fsdp,
|
||
|
graph=graph,
|
||
|
graph_code=graph_code,
|
||
|
graph_breaks=graph_breaks,
|
||
|
graph_sizes=graph_sizes,
|
||
|
guards=guards,
|
||
|
recompiles=recompiles,
|
||
|
recompiles_verbose=recompiles_verbose,
|
||
|
trace_source=trace_source,
|
||
|
trace_call=trace_call,
|
||
|
output_code=output_code,
|
||
|
schedule=schedule,
|
||
|
perf_hints=perf_hints,
|
||
|
post_grad_graphs=post_grad_graphs,
|
||
|
onnx=onnx,
|
||
|
onnx_diagnostics=onnx_diagnostics,
|
||
|
fusion=fusion,
|
||
|
overlap=overlap,
|
||
|
sym_node=sym_node,
|
||
|
export=export,
|
||
|
cudagraphs=cudagraphs,
|
||
|
)
|
||
|
|
||
|
|
||
|
def get_loggers():
|
||
|
"""
|
||
|
Returns: a list of all registered loggers
|
||
|
"""
|
||
|
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
|
||
|
|
||
|
|
||
|
def register_log(setting_name, log_name):
|
||
|
"""
|
||
|
Enables a log to be controlled by the env var and user API with the setting_name
|
||
|
Args:
|
||
|
setting_name: the shorthand name used in the env var and user API
|
||
|
log_name: the log name that the setting_name is associated with
|
||
|
"""
|
||
|
log_registry.register_log(setting_name, log_name)
|
||
|
|
||
|
|
||
|
def register_artifact(
|
||
|
setting_name, description, visible=False, off_by_default=False, log_format=None
|
||
|
):
|
||
|
"""
|
||
|
Enables an artifact to be controlled by the env var and user API with name
|
||
|
Args:
|
||
|
setting_name: the shorthand name used in the env var and user API
|
||
|
description: A description of what this outputs
|
||
|
visible: Whether it gets suggested to users by default
|
||
|
off_by_default: whether this artifact should be logged when the ancestor loggers
|
||
|
are enabled at level DEBUG
|
||
|
"""
|
||
|
log_registry.register_artifact_name(
|
||
|
setting_name, description, visible, off_by_default, log_format
|
||
|
)
|
||
|
|
||
|
|
||
|
def getArtifactLogger(module_qname, artifact_name):
|
||
|
if artifact_name not in log_registry.artifact_names:
|
||
|
raise ValueError(
|
||
|
f"Artifact name: {repr(artifact_name)} not registered,"
|
||
|
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
|
||
|
)
|
||
|
qname = module_qname + f".__{artifact_name}"
|
||
|
log = logging.getLogger(qname)
|
||
|
log.artifact_name = artifact_name # type: ignore[attr-defined]
|
||
|
log_registry.register_artifact_log(qname)
|
||
|
configure_artifact_log(log)
|
||
|
return log
|
||
|
|
||
|
|
||
|
INCR_VERBOSITY_CHAR = "+"
|
||
|
DECR_VERBOSITY_CHAR = "-"
|
||
|
VERBOSITY_REGEX = (
|
||
|
"("
|
||
|
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
|
||
|
+ "?)"
|
||
|
)
|
||
|
|
||
|
|
||
|
def configure_artifact_log(log):
|
||
|
# If the artifact is off by default, then it should only be logged when explicitly
|
||
|
# enabled; set propagate to False so that this artifact is not propagated
|
||
|
# to its ancestor logger
|
||
|
if log_registry.is_off_by_default(log.artifact_name):
|
||
|
log.propagate = False
|
||
|
|
||
|
# enable artifact logging when explicitly enabled
|
||
|
if log_state.is_artifact_enabled(log.artifact_name):
|
||
|
log.setLevel(logging.DEBUG)
|
||
|
log.propagate = True
|
||
|
|
||
|
|
||
|
# match a comma separated list of loggable names (whitespace allowed after commas)
|
||
|
def _gen_settings_regex():
|
||
|
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
|
||
|
|
||
|
|
||
|
def _validate_settings(settings):
|
||
|
return re.fullmatch(_gen_settings_regex(), settings) is not None
|
||
|
|
||
|
|
||
|
def help_message(verbose=False):
|
||
|
def pad_to(s, length=30):
|
||
|
assert len(s) <= length
|
||
|
return s + " " * (length - len(s))
|
||
|
|
||
|
if verbose:
|
||
|
printed_artifacts = log_registry.artifact_names
|
||
|
else:
|
||
|
printed_artifacts = log_registry.visible_artifacts
|
||
|
|
||
|
if verbose:
|
||
|
heading = "All registered names"
|
||
|
else:
|
||
|
heading = "Visible registered names (use TORCH_LOGS='+help' for full list)"
|
||
|
lines = (
|
||
|
["all"]
|
||
|
+ sorted(log_registry.log_alias_to_log_qnames.keys())
|
||
|
+ sorted(
|
||
|
[
|
||
|
f"{pad_to(name)}\t{log_registry.artifact_descriptions[name]}"
|
||
|
for name in printed_artifacts
|
||
|
]
|
||
|
)
|
||
|
)
|
||
|
setting_info = " " + "\n ".join(lines)
|
||
|
examples = """
|
||
|
Examples:
|
||
|
TORCH_LOGS="+dynamo,aot" will set the log level of TorchDynamo to
|
||
|
logging.DEBUG and AOT to logging.INFO
|
||
|
|
||
|
TORCH_LOGS="-dynamo,+inductor" will set the log level of TorchDynamo to
|
||
|
logging.ERROR and TorchInductor to logging.DEBUG
|
||
|
|
||
|
TORCH_LOGS="aot_graphs" will enable the aot_graphs artifact
|
||
|
|
||
|
TORCH_LOGS="+dynamo,schedule" will enable set the log level of TorchDynamo
|
||
|
to logging.DEBUG and enable the schedule artifact
|
||
|
|
||
|
TORCH_LOGS="+some.random.module,schedule" will set the log level of
|
||
|
some.random.module to logging.DEBUG and enable the schedule artifact
|
||
|
|
||
|
TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" or any provided format
|
||
|
string will set the output format
|
||
|
Valid keys are "levelname", "message", "pathname", "levelno", "lineno",
|
||
|
"filename" and "name".
|
||
|
|
||
|
TORCH_LOGS_OUT=/tmp/output.txt will output the logs to /tmp/output.txt as
|
||
|
well. This is useful when the output is long.
|
||
|
""" # flake8: noqa: B950
|
||
|
msg = f"""
|
||
|
TORCH_LOGS Info
|
||
|
{examples}
|
||
|
|
||
|
{heading}
|
||
|
{setting_info}
|
||
|
"""
|
||
|
return msg
|
||
|
|
||
|
|
||
|
def _invalid_settings_err_msg(settings, verbose=False):
|
||
|
valid_settings = ", ".join(
|
||
|
["all"]
|
||
|
+ list(log_registry.log_alias_to_log_qnames.keys())
|
||
|
+ list(log_registry.artifact_names)
|
||
|
)
|
||
|
msg = f"""
|
||
|
Invalid log settings: {settings}, must be a comma separated list of fully
|
||
|
qualified module names, registered log names or registered artifact names.
|
||
|
For more info on various settings, try TORCH_LOGS="help"
|
||
|
Valid settings:
|
||
|
{valid_settings}
|
||
|
"""
|
||
|
return msg
|
||
|
|
||
|
|
||
|
@functools.lru_cache
|
||
|
def _parse_log_settings(settings):
|
||
|
if settings == "":
|
||
|
return dict()
|
||
|
|
||
|
if settings == "help":
|
||
|
raise ValueError(help_message(verbose=False))
|
||
|
elif settings == "+help":
|
||
|
raise ValueError(help_message(verbose=True))
|
||
|
if not _validate_settings(settings):
|
||
|
raise ValueError(_invalid_settings_err_msg(settings))
|
||
|
|
||
|
settings = re.sub(r"\s+", "", settings)
|
||
|
log_names = settings.split(",")
|
||
|
|
||
|
def get_name_level_pair(name):
|
||
|
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
|
||
|
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
|
||
|
|
||
|
if name[0] == INCR_VERBOSITY_CHAR:
|
||
|
level = logging.DEBUG
|
||
|
elif name[0] == DECR_VERBOSITY_CHAR:
|
||
|
level = logging.ERROR
|
||
|
else:
|
||
|
level = logging.INFO
|
||
|
|
||
|
return clean_name, level
|
||
|
|
||
|
log_state = LogState()
|
||
|
|
||
|
for name in log_names:
|
||
|
name, level = get_name_level_pair(name)
|
||
|
|
||
|
if name == "all":
|
||
|
name = "torch"
|
||
|
|
||
|
if log_registry.is_log(name):
|
||
|
assert level is not None
|
||
|
log_qnames = log_registry.log_alias_to_log_qnames[name]
|
||
|
log_state.enable_log(log_qnames, level)
|
||
|
elif log_registry.is_artifact(name):
|
||
|
log_state.enable_artifact(name)
|
||
|
elif _is_valid_module(name):
|
||
|
if not _has_registered_parent(name):
|
||
|
log_registry.register_log(name, name)
|
||
|
else:
|
||
|
log_registry.register_child_log(name)
|
||
|
log_state.enable_log(name, level)
|
||
|
else:
|
||
|
raise ValueError(_invalid_settings_err_msg(settings))
|
||
|
|
||
|
return log_state
|
||
|
|
||
|
|
||
|
def _is_valid_module(qname):
|
||
|
try:
|
||
|
__import__(qname)
|
||
|
return True
|
||
|
except ImportError:
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _update_log_state_from_env():
|
||
|
global log_state
|
||
|
log_setting = os.environ.get(LOG_ENV_VAR, None)
|
||
|
if log_setting is not None:
|
||
|
log_state = _parse_log_settings(log_setting)
|
||
|
|
||
|
|
||
|
def _has_registered_parent(log_qname):
|
||
|
cur_log = logging.getLogger(log_qname)
|
||
|
|
||
|
registered_log_qnames = log_registry.get_log_qnames()
|
||
|
|
||
|
while cur_log.parent:
|
||
|
if cur_log.name in registered_log_qnames:
|
||
|
return True
|
||
|
cur_log = cur_log.parent
|
||
|
|
||
|
return False
|
||
|
|
||
|
|
||
|
# apply custom formats to artifacts when necessary
|
||
|
class TorchLogsFormatter(logging.Formatter):
|
||
|
def __init__(self, *, trace: bool = False):
|
||
|
super().__init__()
|
||
|
self._is_trace = trace
|
||
|
|
||
|
def format(self, record):
|
||
|
artifact_name = getattr(logging.getLogger(record.name), "artifact_name", None)
|
||
|
if artifact_name is not None:
|
||
|
artifact_formatter = log_registry.artifact_log_formatters.get(
|
||
|
artifact_name, None
|
||
|
)
|
||
|
if artifact_formatter is not None:
|
||
|
return artifact_formatter.format(record)
|
||
|
|
||
|
record.message = record.getMessage()
|
||
|
record.asctime = self.formatTime(record, "%m%d %H:%M:%S")
|
||
|
|
||
|
# exception handling - copied from logging.Formatter.format
|
||
|
s = record.message
|
||
|
if record.exc_info:
|
||
|
# Cache the traceback text to avoid converting it multiple times
|
||
|
# (it's constant anyway)
|
||
|
if not record.exc_text:
|
||
|
record.exc_text = self.formatException(record.exc_info)
|
||
|
if record.exc_text:
|
||
|
if s[-1:] != "\n":
|
||
|
s = s + "\n"
|
||
|
s = s + record.exc_text
|
||
|
if record.stack_info:
|
||
|
if s[-1:] != "\n":
|
||
|
s = s + "\n"
|
||
|
s = s + self.formatStack(record.stack_info)
|
||
|
|
||
|
record.rankprefix = ""
|
||
|
if not self._is_trace and dist.is_available() and dist.is_initialized():
|
||
|
record.rankprefix = f"[rank{dist.get_rank()}]:"
|
||
|
|
||
|
record.traceid = ""
|
||
|
if (
|
||
|
not self._is_trace
|
||
|
and (trace_id := torch._guards.CompileContext.current_trace_id())
|
||
|
is not None
|
||
|
):
|
||
|
record.traceid = f" [{trace_id}]"
|
||
|
|
||
|
glog_level_to_abbr = {
|
||
|
"DEBUG": "V", # V is for VERBOSE in glog
|
||
|
"INFO": "I",
|
||
|
"WARNING": "W",
|
||
|
"ERROR": "E",
|
||
|
"CRITICAL": "C",
|
||
|
}
|
||
|
|
||
|
shortlevel = glog_level_to_abbr.get(record.levelname, record.levelname)
|
||
|
|
||
|
record.artifactprefix = ""
|
||
|
if artifact_name is not None:
|
||
|
record.artifactprefix = f" [__{artifact_name}]"
|
||
|
|
||
|
prefix = (
|
||
|
f"{record.rankprefix}{shortlevel}{record.asctime}.{int(record.msecs*1000):06d} {record.thread} "
|
||
|
f"{os.path.relpath(record.pathname, os.path.dirname(os.path.dirname(torch.__file__)))}:"
|
||
|
f"{record.lineno}]{record.traceid}{record.artifactprefix}"
|
||
|
)
|
||
|
if self._is_trace:
|
||
|
assert s == ""
|
||
|
r = f"{prefix} {json.dumps(record.metadata)}"
|
||
|
if record.payload is not None:
|
||
|
r += "".join(f"\n\t{l}" for l in record.payload.split("\n"))
|
||
|
return r
|
||
|
else:
|
||
|
lines = s.split("\n")
|
||
|
return "\n".join(f"{prefix} {l}" for l in lines)
|
||
|
|
||
|
|
||
|
def _default_formatter():
|
||
|
fmt = os.environ.get(LOG_FORMAT_ENV_VAR, None)
|
||
|
if fmt is None:
|
||
|
return TorchLogsFormatter()
|
||
|
else:
|
||
|
if fmt in ("short", "basic"):
|
||
|
fmt = logging.BASIC_FORMAT
|
||
|
return logging.Formatter(fmt)
|
||
|
|
||
|
|
||
|
DEFAULT_FORMATTER = _default_formatter()
|
||
|
|
||
|
|
||
|
def _setup_handlers(create_handler_fn, log):
|
||
|
debug_handler = _track_handler(create_handler_fn())
|
||
|
debug_handler.setFormatter(DEFAULT_FORMATTER)
|
||
|
debug_handler.setLevel(logging.DEBUG)
|
||
|
log.addHandler(debug_handler)
|
||
|
|
||
|
|
||
|
handlers = WeakSet() # type: ignore[var-annotated]
|
||
|
|
||
|
|
||
|
# mark handlers that we've created
|
||
|
# so we don't modify user handlers
|
||
|
def _track_handler(handler):
|
||
|
handlers.add(handler)
|
||
|
return handler
|
||
|
|
||
|
|
||
|
def _is_torch_handler(handler):
|
||
|
return handler in handlers
|
||
|
|
||
|
|
||
|
# clears all torch handlers on specified loggers
|
||
|
def _clear_handlers(log):
|
||
|
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
|
||
|
for handler in to_remove:
|
||
|
log.removeHandler(handler)
|
||
|
|
||
|
|
||
|
def _reset_logs():
|
||
|
# reset all registered logs
|
||
|
for log_qname in log_registry.get_log_qnames():
|
||
|
log = logging.getLogger(log_qname)
|
||
|
log.setLevel(logging.WARNING)
|
||
|
log.propagate = False
|
||
|
_clear_handlers(log)
|
||
|
|
||
|
# reset all artifact and child logs
|
||
|
for artifact_log_qname in itertools.chain(
|
||
|
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
|
||
|
):
|
||
|
log = logging.getLogger(artifact_log_qname)
|
||
|
log.setLevel(logging.NOTSET)
|
||
|
log.propagate = True
|
||
|
|
||
|
trace_log.propagate = False
|
||
|
_clear_handlers(trace_log)
|
||
|
|
||
|
|
||
|
def _get_log_state():
|
||
|
return log_state
|
||
|
|
||
|
|
||
|
def _set_log_state(state):
|
||
|
global log_state
|
||
|
log_state = state
|
||
|
|
||
|
|
||
|
def _init_logs(log_file_name=None):
|
||
|
_reset_logs()
|
||
|
_update_log_state_from_env()
|
||
|
|
||
|
out = os.environ.get(LOG_OUT_ENV_VAR, None)
|
||
|
if out is not None:
|
||
|
log_file_name = out
|
||
|
|
||
|
# First, reset all known (registered) loggers to NOTSET, so that they
|
||
|
# respect their parent log level
|
||
|
for log_qname in log_registry.get_log_qnames():
|
||
|
# But not the top level torch level: this defaults to WARNING so
|
||
|
# that our log messages don't leak to the lower levels
|
||
|
if log_qname == "torch":
|
||
|
continue
|
||
|
log = logging.getLogger(log_qname)
|
||
|
log.setLevel(logging.NOTSET)
|
||
|
|
||
|
# Now, for all loggers which the user requested to have non-standard
|
||
|
# logging behavior, modify their log levels
|
||
|
for log_qname, level in log_state.get_log_level_pairs():
|
||
|
log = logging.getLogger(log_qname)
|
||
|
log.setLevel(level)
|
||
|
|
||
|
# Finally, setup handlers for all registered loggers
|
||
|
for log_qname in log_registry.get_log_qnames():
|
||
|
log = logging.getLogger(log_qname)
|
||
|
_setup_handlers(
|
||
|
logging.StreamHandler,
|
||
|
log,
|
||
|
)
|
||
|
|
||
|
if log_file_name is not None:
|
||
|
_setup_handlers(
|
||
|
lambda: logging.FileHandler(log_file_name),
|
||
|
log,
|
||
|
)
|
||
|
|
||
|
# configure artifact loggers, note: this must happen last
|
||
|
# since the levels of ancestor loggers are taken into account
|
||
|
for artifact_log_qname in log_registry.get_artifact_log_qnames():
|
||
|
log = logging.getLogger(artifact_log_qname)
|
||
|
configure_artifact_log(log)
|
||
|
|
||
|
# Setup handler for the special trace_log, with different default
|
||
|
# configuration
|
||
|
trace_dir_name = os.environ.get(TRACE_ENV_VAR, None)
|
||
|
# This handler may remove itself if trace_dir_name is None and we are not
|
||
|
# actually in an FB environment. This allows us to defer actually
|
||
|
# initializing it until we actually need to log anything. This is
|
||
|
# important because JK initializes a C++ singleton, which will pork our
|
||
|
# process if we subsequently fork.
|
||
|
handler = LazyTraceHandler(trace_dir_name)
|
||
|
# This log is ALWAYS at debug level. We will additionally test if there
|
||
|
# are any handlers before deciding to actually call logging on this. Do
|
||
|
# not manually call
|
||
|
trace_log.setLevel(logging.DEBUG)
|
||
|
trace_log_handler = _track_handler(handler)
|
||
|
trace_log_handler.setFormatter(TorchLogsFormatter(trace=True))
|
||
|
trace_log.addHandler(trace_log_handler)
|
||
|
|
||
|
|
||
|
class LazyTraceHandler(logging.StreamHandler):
|
||
|
"""Like FileHandler, but the file is allocated lazily only upon the first log message"""
|
||
|
|
||
|
def __init__(self, root_dir: Optional[str]):
|
||
|
# This is implemented in the same way that delay is implemented on
|
||
|
# FileHandler
|
||
|
self.root_dir = root_dir
|
||
|
logging.Handler.__init__(self)
|
||
|
self.stream = None
|
||
|
self._builtin_open = open
|
||
|
|
||
|
# cloned from FileHandler in cpython
|
||
|
def close(self):
|
||
|
self.acquire()
|
||
|
try:
|
||
|
try:
|
||
|
if self.stream:
|
||
|
try:
|
||
|
self.flush()
|
||
|
finally:
|
||
|
stream = self.stream
|
||
|
self.stream = None
|
||
|
if hasattr(stream, "close"):
|
||
|
stream.close()
|
||
|
finally:
|
||
|
# Issue #19523: call unconditionally to
|
||
|
# prevent a handler leak when delay is set
|
||
|
# Also see Issue #42378: we also rely on
|
||
|
# self._closed being set to True there
|
||
|
logging.StreamHandler.close(self)
|
||
|
finally:
|
||
|
self.release()
|
||
|
|
||
|
def emit(self, record):
|
||
|
if self.stream is None:
|
||
|
ok = False
|
||
|
if self.root_dir is None:
|
||
|
TRACE_LOG_DIR = "/logs"
|
||
|
open_func = self._builtin_open
|
||
|
|
||
|
import torch.version as torch_version
|
||
|
|
||
|
if hasattr(torch_version, "git_version"):
|
||
|
log.info("LazyTraceHandler: disabled because not fbcode")
|
||
|
elif not torch._utils_internal.justknobs_check("pytorch/trace:enable"):
|
||
|
log.info(
|
||
|
"LazyTraceHandler: disabled because justknobs_check('pytorch/trace:enable') returned False"
|
||
|
)
|
||
|
elif not os.path.exists(TRACE_LOG_DIR):
|
||
|
log.info(
|
||
|
"LazyTraceHandler: disabled because %s does not exist",
|
||
|
TRACE_LOG_DIR,
|
||
|
)
|
||
|
elif not os.access(TRACE_LOG_DIR, os.W_OK):
|
||
|
log.info(
|
||
|
"LazyTraceHandler: disabled because %s is not writeable",
|
||
|
TRACE_LOG_DIR,
|
||
|
)
|
||
|
else:
|
||
|
self.root_dir = TRACE_LOG_DIR
|
||
|
|
||
|
if self.root_dir is not None:
|
||
|
os.makedirs(self.root_dir, exist_ok=True)
|
||
|
ranksuffix = ""
|
||
|
if dist.is_available() and dist.is_initialized():
|
||
|
ranksuffix = f"rank_{dist.get_rank()}_"
|
||
|
self.stream = tempfile.NamedTemporaryFile(
|
||
|
mode="w+",
|
||
|
suffix=".log",
|
||
|
prefix=f"dedicated_log_torch_trace_{ranksuffix}",
|
||
|
dir=self.root_dir,
|
||
|
delete=False,
|
||
|
)
|
||
|
log.info("LazyTraceHandler: logging to %s", self.stream.name)
|
||
|
else:
|
||
|
# We go poof, remove and no-op
|
||
|
trace_log.removeHandler(self)
|
||
|
return
|
||
|
if self.stream:
|
||
|
super().emit(record)
|
||
|
|
||
|
|
||
|
@functools.lru_cache(None)
|
||
|
def warning_once(logger_obj, *args, **kwargs):
|
||
|
"""
|
||
|
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
|
||
|
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
||
|
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
||
|
another type of cache that includes the caller frame information in the hashing function.
|
||
|
"""
|
||
|
logger_obj.warning(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class LazyString:
|
||
|
def __init__(self, func, *args, **kwargs):
|
||
|
self.func = func
|
||
|
self.args = args
|
||
|
self.kwargs = kwargs
|
||
|
|
||
|
def __str__(self):
|
||
|
return self.func(*self.args, **self.kwargs)
|
||
|
|
||
|
|
||
|
def trace_structured(
|
||
|
name: str,
|
||
|
# NB: metadata expected to be dict so adding more info is forward compatible
|
||
|
# Tuple[str, int] is a special case for string interning
|
||
|
metadata_fn: Callable[[], Union[Dict[str, Any], Tuple[str, int]]] = dict,
|
||
|
*,
|
||
|
payload_fn: Callable[[], Optional[Union[str, object]]] = lambda: None,
|
||
|
suppress_context: bool = False,
|
||
|
):
|
||
|
"""
|
||
|
metadata is an arbitrary JSON compatible struct, but it's expected to not be
|
||
|
too long (e.g., less than 1MB)
|
||
|
|
||
|
payload is an arbitrary string, which can be arbitrarily long (but expected to have
|
||
|
newlines so no lines are too long)
|
||
|
"""
|
||
|
assert "name" not in ["rank", "frame_id", "frame_compile_id", "attempt"]
|
||
|
assert callable(
|
||
|
metadata_fn
|
||
|
), f"metadata_fn should be callable, but got {type(metadata_fn)}"
|
||
|
assert callable(
|
||
|
payload_fn
|
||
|
), f"payload_fn should be callable, but got {type(payload_fn)}"
|
||
|
# trace_log never propagates and is ALWAYS DEBUG, so also check that there
|
||
|
# are handlers instead of checking the log level
|
||
|
if trace_log.handlers:
|
||
|
record: Dict[str, object] = {}
|
||
|
record[name] = metadata_fn()
|
||
|
if not suppress_context:
|
||
|
# TODO: Actually, the rank probably should just be emitted once at
|
||
|
# the top, and not repeatedly spammed in all the logs, since it
|
||
|
# never changes and we assume no interleaving
|
||
|
if dist.is_available() and dist.is_initialized():
|
||
|
record["rank"] = dist.get_rank()
|
||
|
if (
|
||
|
trace_id := torch._guards.CompileContext.current_trace_id()
|
||
|
) is not None:
|
||
|
record["frame_id"] = trace_id.compile_id.frame_id
|
||
|
record["frame_compile_id"] = trace_id.compile_id.frame_compile_id
|
||
|
record["attempt"] = trace_id.attempt
|
||
|
payload = payload_fn()
|
||
|
if payload is not None:
|
||
|
if not isinstance(payload, str):
|
||
|
if isinstance(payload, list):
|
||
|
# special case to look better
|
||
|
payload = "[\n" + ",\n".join(json.dumps(i) for i in payload) + "\n]"
|
||
|
else:
|
||
|
# force newlines so we are unlikely to overflow line limit
|
||
|
payload = json.dumps(payload, indent=0)
|
||
|
h = hashlib.md5()
|
||
|
h.update(payload.encode("utf-8"))
|
||
|
record["has_payload"] = h.hexdigest()
|
||
|
trace_log.debug(
|
||
|
"", extra={"metadata": record, "payload": payload}, stacklevel=2
|
||
|
)
|
||
|
|
||
|
|
||
|
import torch._guards
|
||
|
import torch._utils_internal
|
||
|
import torch.distributed as dist
|