ai-content-maker/.venv/Lib/site-packages/torch/_numpy/_util.py

262 lines
7.4 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# mypy: ignore-errors
"""Assorted utilities, which do not need anything other then torch and stdlib.
"""
import operator
import torch
from . import _dtypes_impl
# https://github.com/numpy/numpy/blob/v1.23.0/numpy/distutils/misc_util.py#L497-L504
def is_sequence(seq):
if isinstance(seq, str):
return False
try:
len(seq)
except Exception:
return False
return True
class AxisError(ValueError, IndexError):
pass
class UFuncTypeError(TypeError, RuntimeError):
pass
def cast_if_needed(tensor, dtype):
# NB: no casting if dtype=None
if dtype is not None and tensor.dtype != dtype:
tensor = tensor.to(dtype)
return tensor
def cast_int_to_float(x):
# cast integers and bools to the default float dtype
if _dtypes_impl._category(x.dtype) < 2:
x = x.to(_dtypes_impl.default_dtypes().float_dtype)
return x
# a replica of the version in ./numpy/numpy/core/src/multiarray/common.h
def normalize_axis_index(ax, ndim, argname=None):
if not (-ndim <= ax < ndim):
raise AxisError(f"axis {ax} is out of bounds for array of dimension {ndim}")
if ax < 0:
ax += ndim
return ax
# from https://github.com/numpy/numpy/blob/main/numpy/core/numeric.py#L1378
def normalize_axis_tuple(axis, ndim, argname=None, allow_duplicate=False):
"""
Normalizes an axis argument into a tuple of non-negative integer axes.
This handles shorthands such as ``1`` and converts them to ``(1,)``,
as well as performing the handling of negative indices covered by
`normalize_axis_index`.
By default, this forbids axes from being specified multiple times.
Used internally by multi-axis-checking logic.
Parameters
----------
axis : int, iterable of int
The un-normalized index or indices of the axis.
ndim : int
The number of dimensions of the array that `axis` should be normalized
against.
argname : str, optional
A prefix to put before the error message, typically the name of the
argument.
allow_duplicate : bool, optional
If False, the default, disallow an axis from being specified twice.
Returns
-------
normalized_axes : tuple of int
The normalized axis index, such that `0 <= normalized_axis < ndim`
"""
# Optimization to speed-up the most common cases.
if type(axis) not in (tuple, list):
try:
axis = [operator.index(axis)]
except TypeError:
pass
# Going via an iterator directly is slower than via list comprehension.
axis = tuple([normalize_axis_index(ax, ndim, argname) for ax in axis])
if not allow_duplicate and len(set(axis)) != len(axis):
if argname:
raise ValueError(f"repeated axis in `{argname}` argument")
else:
raise ValueError("repeated axis")
return axis
def allow_only_single_axis(axis):
if axis is None:
return axis
if len(axis) != 1:
raise NotImplementedError("does not handle tuple axis")
return axis[0]
def expand_shape(arr_shape, axis):
# taken from numpy 1.23.x, expand_dims function
if type(axis) not in (list, tuple):
axis = (axis,)
out_ndim = len(axis) + len(arr_shape)
axis = normalize_axis_tuple(axis, out_ndim)
shape_it = iter(arr_shape)
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
return shape
def apply_keepdims(tensor, axis, ndim):
if axis is None:
# tensor was a scalar
shape = (1,) * ndim
tensor = tensor.expand(shape).contiguous()
else:
shape = expand_shape(tensor.shape, axis)
tensor = tensor.reshape(shape)
return tensor
def axis_none_flatten(*tensors, axis=None):
"""Flatten the arrays if axis is None."""
if axis is None:
tensors = tuple(ar.flatten() for ar in tensors)
return tensors, 0
else:
return tensors, axis
def typecast_tensor(t, target_dtype, casting):
"""Dtype-cast tensor to target_dtype.
Parameters
----------
t : torch.Tensor
The tensor to cast
target_dtype : torch dtype object
The array dtype to cast all tensors to
casting : str
The casting mode, see `np.can_cast`
Returns
-------
`torch.Tensor` of the `target_dtype` dtype
Raises
------
ValueError
if the argument cannot be cast according to the `casting` rule
"""
can_cast = _dtypes_impl.can_cast_impl
if not can_cast(t.dtype, target_dtype, casting=casting):
raise TypeError(
f"Cannot cast array data from {t.dtype} to"
f" {target_dtype} according to the rule '{casting}'"
)
return cast_if_needed(t, target_dtype)
def typecast_tensors(tensors, target_dtype, casting):
return tuple(typecast_tensor(t, target_dtype, casting) for t in tensors)
def _try_convert_to_tensor(obj):
try:
tensor = torch.as_tensor(obj)
except Exception as e:
mesg = f"failed to convert {obj} to ndarray. \nInternal error is: {str(e)}."
raise NotImplementedError(mesg) # noqa: TRY200
return tensor
def _coerce_to_tensor(obj, dtype=None, copy=False, ndmin=0):
"""The core logic of the array(...) function.
Parameters
----------
obj : tensor_like
The thing to coerce
dtype : torch.dtype object or None
Coerce to this torch dtype
copy : bool
Copy or not
ndmin : int
The results as least this many dimensions
is_weak : bool
Whether obj is a weakly typed python scalar.
Returns
-------
tensor : torch.Tensor
a tensor object with requested dtype, ndim and copy semantics.
Notes
-----
This is almost a "tensor_like" coersion function. Does not handle wrapper
ndarrays (those should be handled in the ndarray-aware layer prior to
invoking this function).
"""
if isinstance(obj, torch.Tensor):
tensor = obj
else:
# tensor.dtype is the pytorch default, typically float32. If obj's elements
# are not exactly representable in float32, we've lost precision:
# >>> torch.as_tensor(1e12).item() - 1e12
# -4096.0
default_dtype = torch.get_default_dtype()
torch.set_default_dtype(_dtypes_impl.get_default_dtype_for(torch.float32))
try:
tensor = _try_convert_to_tensor(obj)
finally:
torch.set_default_dtype(default_dtype)
# type cast if requested
tensor = cast_if_needed(tensor, dtype)
# adjust ndim if needed
ndim_extra = ndmin - tensor.ndim
if ndim_extra > 0:
tensor = tensor.view((1,) * ndim_extra + tensor.shape)
# copy if requested
if copy:
tensor = tensor.clone()
return tensor
def ndarrays_to_tensors(*inputs):
"""Convert all ndarrays from `inputs` to tensors. (other things are intact)"""
from ._ndarray import ndarray
if len(inputs) == 0:
return ValueError()
elif len(inputs) == 1:
input_ = inputs[0]
if isinstance(input_, ndarray):
return input_.tensor
elif isinstance(input_, tuple):
result = []
for sub_input in input_:
sub_result = ndarrays_to_tensors(sub_input)
result.append(sub_result)
return tuple(result)
else:
return input_
else:
assert isinstance(inputs, tuple) # sanity check
return ndarrays_to_tensors(inputs)