534 lines
20 KiB
Python
534 lines
20 KiB
Python
|
import enum
|
||
|
import operator
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.ao.nn.intrinsic.quantized as nniq
|
||
|
import torch.ao.nn.quantized as nnq
|
||
|
|
||
|
toq = torch.ops.quantized
|
||
|
from typing import Tuple, Callable, Dict, Set, List, Optional, Union
|
||
|
|
||
|
from torch.fx import GraphModule
|
||
|
from torch.fx.graph import Node
|
||
|
from torch.ao.quantization import (
|
||
|
ObserverBase,
|
||
|
FakeQuantizeBase,
|
||
|
)
|
||
|
from torch.ao.quantization.utils import getattr_from_fqn
|
||
|
from torch.ao.quantization.observer import _is_activation_post_process
|
||
|
|
||
|
from .ns_types import NSNodeTargetType, NSResultsType
|
||
|
|
||
|
# TODO(future PR): consider deleting this enum and using the torch types
|
||
|
# directly. This might be tricky because it is not a one to one mapping.
|
||
|
class NodeInputOrOutputType(enum.Enum):
|
||
|
FP32 = enum.auto() # torch.float
|
||
|
INT8 = enum.auto() # torch.qint8 or torch.quint8
|
||
|
FP16 = enum.auto() # torch.float16
|
||
|
UNKNOWN = enum.auto() # we cannot determine input/output dtype
|
||
|
# TODO(future PR): while these functions can support multiple dtypes,
|
||
|
# for the purposes of numerical debugging we want to get the actual
|
||
|
# dtype used in the model. We will likely need some kind of dtype
|
||
|
# propagation to estimate this.
|
||
|
FP32_OR_INT8 = enum.auto() # either torch.float or torch.quint8 or torch.qint8
|
||
|
# TODO(future PRs): dynamic quant, fake quant, etc
|
||
|
|
||
|
|
||
|
def get_node_first_input_and_output_type(
|
||
|
node: Node,
|
||
|
gm: GraphModule,
|
||
|
logger_cls: Callable,
|
||
|
node_type_to_io_type_map: Dict[str, Set[NSNodeTargetType]],
|
||
|
) -> Tuple[NodeInputOrOutputType, NodeInputOrOutputType]:
|
||
|
|
||
|
# TODO(future PR): clean this up
|
||
|
FUNS_IO_TYPE_FP32 = node_type_to_io_type_map["funs_io_type_fp32"]
|
||
|
FUNS_IO_TYPE_FP16 = node_type_to_io_type_map["funs_io_type_fp16"]
|
||
|
FUNS_IO_TYPE_INT8 = node_type_to_io_type_map["funs_io_type_int8"]
|
||
|
FUNS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["funs_io_type_fp32_or_int8"]
|
||
|
MODS_IO_TYPE_FP32 = node_type_to_io_type_map["mods_io_type_fp32"]
|
||
|
MODS_IO_TYPE_INT8 = node_type_to_io_type_map["mods_io_type_int8"]
|
||
|
MODS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["mods_io_type_fp32_or_int8"]
|
||
|
METHS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["meths_io_type_fp32_or_int8"]
|
||
|
|
||
|
if node.op == "call_function":
|
||
|
if node.target in FUNS_IO_TYPE_FP32:
|
||
|
return (NodeInputOrOutputType.FP32, NodeInputOrOutputType.FP32)
|
||
|
if node.target in FUNS_IO_TYPE_FP16:
|
||
|
return (NodeInputOrOutputType.FP16, NodeInputOrOutputType.FP16)
|
||
|
elif node.target in FUNS_IO_TYPE_INT8:
|
||
|
return (NodeInputOrOutputType.INT8, NodeInputOrOutputType.INT8)
|
||
|
elif node.target in FUNS_IO_TYPE_FP32_OR_INT8:
|
||
|
first_arg = get_normalized_nth_input(node, gm, 0)
|
||
|
assert isinstance(first_arg, Node)
|
||
|
(
|
||
|
_prev_node_input_type,
|
||
|
prev_node_output_type,
|
||
|
) = get_node_first_input_and_output_type(
|
||
|
first_arg, gm, logger_cls, node_type_to_io_type_map
|
||
|
)
|
||
|
return (prev_node_output_type, prev_node_output_type)
|
||
|
else:
|
||
|
return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
|
||
|
|
||
|
elif node.op == "call_module":
|
||
|
assert node.op == "call_module"
|
||
|
assert isinstance(node.target, str)
|
||
|
mod = getattr_from_fqn(gm, node.target)
|
||
|
is_known_fp32_or_int8_input_module = any(
|
||
|
isinstance(mod, target_type) for target_type in MODS_IO_TYPE_FP32_OR_INT8 # type: ignore[arg-type]
|
||
|
)
|
||
|
if (
|
||
|
isinstance(mod, (logger_cls, ObserverBase, FakeQuantizeBase)) # type: ignore[arg-type]
|
||
|
or is_known_fp32_or_int8_input_module
|
||
|
):
|
||
|
# A logger or observer's input and output type is the output
|
||
|
# type of the preceding node.
|
||
|
first_arg = get_normalized_nth_input(node, gm, 0)
|
||
|
assert isinstance(first_arg, Node)
|
||
|
(
|
||
|
_prev_node_input_type,
|
||
|
prev_node_output_type,
|
||
|
) = get_node_first_input_and_output_type(
|
||
|
first_arg, gm, logger_cls, node_type_to_io_type_map
|
||
|
)
|
||
|
return (prev_node_output_type, prev_node_output_type)
|
||
|
is_known_fp32_input_module = any(
|
||
|
isinstance(mod, target_type) for target_type in MODS_IO_TYPE_FP32 # type: ignore[arg-type]
|
||
|
)
|
||
|
is_known_int8_input_module = any(
|
||
|
isinstance(mod, target_type) for target_type in MODS_IO_TYPE_INT8 # type: ignore[arg-type]
|
||
|
)
|
||
|
if is_known_fp32_input_module:
|
||
|
return (NodeInputOrOutputType.FP32, NodeInputOrOutputType.FP32)
|
||
|
elif is_known_int8_input_module:
|
||
|
return (NodeInputOrOutputType.INT8, NodeInputOrOutputType.INT8)
|
||
|
else:
|
||
|
return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
|
||
|
|
||
|
elif node.op == "call_method":
|
||
|
if node.target == "dequantize":
|
||
|
# Dequantize is a special node because it allows multiple input types.
|
||
|
# So, we look up the output type of the previous node and return that
|
||
|
# as the input type of this node instance.
|
||
|
prev_node = get_normalized_nth_input(node, gm, 0)
|
||
|
assert isinstance(prev_node, Node)
|
||
|
(
|
||
|
_prev_node_input_type,
|
||
|
prev_node_output_type,
|
||
|
) = get_node_first_input_and_output_type(
|
||
|
prev_node, gm, logger_cls, node_type_to_io_type_map
|
||
|
)
|
||
|
return (prev_node_output_type, NodeInputOrOutputType.FP32)
|
||
|
|
||
|
elif node.target == "to":
|
||
|
# to is a special node because it allows multiple input types.
|
||
|
# So, we look up the output type of the previous node and return that
|
||
|
# as the input type of this node instance. We also look up the target
|
||
|
# of to and return the correct output type.
|
||
|
prev_node = get_normalized_nth_input(node, gm, 0)
|
||
|
assert isinstance(prev_node, Node)
|
||
|
(
|
||
|
_prev_node_input_type,
|
||
|
prev_node_output_type,
|
||
|
) = get_node_first_input_and_output_type(
|
||
|
prev_node, gm, logger_cls, node_type_to_io_type_map
|
||
|
)
|
||
|
|
||
|
cur_node_dtype_target = get_normalized_nth_input(node, gm, 1)
|
||
|
assert (
|
||
|
cur_node_dtype_target is torch.float16
|
||
|
), f"{cur_node_dtype_target} handling needs to be added"
|
||
|
|
||
|
return (prev_node_output_type, NodeInputOrOutputType.FP16)
|
||
|
|
||
|
elif node.target in METHS_IO_TYPE_FP32_OR_INT8:
|
||
|
first_arg = get_normalized_nth_input(node, gm, 0)
|
||
|
assert isinstance(first_arg, Node)
|
||
|
(
|
||
|
_prev_node_input_type,
|
||
|
prev_node_output_type,
|
||
|
) = get_node_first_input_and_output_type(
|
||
|
first_arg, gm, logger_cls, node_type_to_io_type_map
|
||
|
)
|
||
|
return (prev_node_output_type, prev_node_output_type)
|
||
|
|
||
|
return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
|
||
|
else:
|
||
|
return (NodeInputOrOutputType.UNKNOWN, NodeInputOrOutputType.UNKNOWN)
|
||
|
|
||
|
|
||
|
def get_node_input_qparams(
|
||
|
node: Node,
|
||
|
gm: GraphModule,
|
||
|
node_type_to_io_type_map: Dict[str, Set[NSNodeTargetType]],
|
||
|
) -> Optional[Tuple[Union[torch.Tensor, float], Union[torch.Tensor, int]]]:
|
||
|
"""
|
||
|
Returns the qparams (scale, zero_point) of the first input to `node`,
|
||
|
if they can be inferred from the graph.
|
||
|
"""
|
||
|
prev_node = get_normalized_nth_input(node, gm, 0)
|
||
|
|
||
|
if not isinstance(prev_node, Node):
|
||
|
return None
|
||
|
|
||
|
MODS_IO_TYPE_FP32_OR_INT8 = node_type_to_io_type_map["mods_io_type_fp32_or_int8"]
|
||
|
|
||
|
def _get_scale_zp_from_function_args(node, gm, scale_arg_idx, zp_arg_idx):
|
||
|
scale_node = get_normalized_nth_input(node, gm, scale_arg_idx)
|
||
|
zp_node = get_normalized_nth_input(node, gm, zp_arg_idx)
|
||
|
assert isinstance(scale_node, Node) and isinstance(scale_node.target, str)
|
||
|
assert isinstance(zp_node, Node) and isinstance(zp_node.target, str)
|
||
|
scale_obj = getattr_from_fqn(gm, scale_node.target)
|
||
|
zp_obj = getattr_from_fqn(gm, zp_node.target)
|
||
|
return (scale_obj, zp_obj)
|
||
|
|
||
|
if prev_node.op == "call_function":
|
||
|
|
||
|
# quantize - read the args directly
|
||
|
if prev_node.target == torch.quantize_per_tensor:
|
||
|
return _get_scale_zp_from_function_args(prev_node, gm, 1, 2)
|
||
|
elif prev_node.target in (toq.add, toq.add_relu, toq.mul, toq.mul_relu):
|
||
|
return _get_scale_zp_from_function_args(prev_node, gm, 2, 3)
|
||
|
|
||
|
return None
|
||
|
# TODO(future PR): handle more functionals
|
||
|
# TODO(future PR): handle functional ops which inherit qparams from input
|
||
|
|
||
|
elif prev_node.op == "call_module":
|
||
|
|
||
|
# get type of the module
|
||
|
assert isinstance(prev_node.target, str)
|
||
|
module_obj = getattr_from_fqn(gm, prev_node.target)
|
||
|
if isinstance(
|
||
|
module_obj,
|
||
|
(
|
||
|
nnq.Linear,
|
||
|
nnq.Conv1d,
|
||
|
nnq.Conv2d,
|
||
|
nniq.ConvReLU2d,
|
||
|
nnq.Conv3d,
|
||
|
nnq.BatchNorm2d,
|
||
|
nnq.BatchNorm3d,
|
||
|
nnq.ConvTranspose1d,
|
||
|
nnq.ConvTranspose2d,
|
||
|
nnq.ELU,
|
||
|
nnq.GroupNorm,
|
||
|
nnq.InstanceNorm1d,
|
||
|
nnq.InstanceNorm2d,
|
||
|
nnq.InstanceNorm3d,
|
||
|
nnq.LayerNorm,
|
||
|
nnq.Hardswish,
|
||
|
nnq.LeakyReLU,
|
||
|
nnq.ReLU6,
|
||
|
nniq.BNReLU2d,
|
||
|
nniq.BNReLU3d,
|
||
|
nniq.ConvReLU1d,
|
||
|
nniq.ConvReLU2d,
|
||
|
nniq.ConvReLU3d,
|
||
|
nniq.LinearReLU,
|
||
|
),
|
||
|
):
|
||
|
return (module_obj.scale, module_obj.zero_point) # type: ignore[return-value]
|
||
|
|
||
|
is_known_fp32_or_int8_input_module = any(
|
||
|
isinstance(module_obj, target_type) for target_type in MODS_IO_TYPE_FP32_OR_INT8 # type: ignore[arg-type]
|
||
|
)
|
||
|
if is_known_fp32_or_int8_input_module:
|
||
|
return get_node_input_qparams(prev_node, gm, node_type_to_io_type_map)
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def return_first_non_observer_node(
|
||
|
node: Node,
|
||
|
gm: GraphModule,
|
||
|
) -> Node:
|
||
|
"""
|
||
|
If node is not an observer, returns it. If node is an observer,
|
||
|
navigates up the graph and returns the first parent which is not an
|
||
|
observer. For example,
|
||
|
|
||
|
graph: (node_non_obs), node = node_non_obs : returns node_non_obs
|
||
|
graph: (node_non_obs -> obs0), node = obs0 : returns node_non_obs
|
||
|
graph: (node_non_obs -> obs0 -> fq0), node = fq0 : returns node_non_obs
|
||
|
"""
|
||
|
if node.op == "call_module":
|
||
|
node_obj = getattr_from_fqn(gm, node.target) # type: ignore[arg-type]
|
||
|
if _is_activation_post_process(node_obj):
|
||
|
assert len(node.args) == 1
|
||
|
assert isinstance(node.args[0], Node)
|
||
|
node = node.args[0]
|
||
|
# code duplication intended, not worth refactoring
|
||
|
assert isinstance(node.target, str)
|
||
|
node_obj = getattr_from_fqn(gm, node.target)
|
||
|
if _is_activation_post_process(node_obj):
|
||
|
assert len(node.args) == 1
|
||
|
assert isinstance(node.args[0], Node)
|
||
|
node = node.args[0]
|
||
|
return node
|
||
|
|
||
|
|
||
|
def get_number_of_non_param_args(
|
||
|
node: Node,
|
||
|
gm: GraphModule,
|
||
|
) -> int:
|
||
|
"""
|
||
|
Assumes that all non-param args occur first. Returns the number of
|
||
|
non-param args expected for a node. For example, for
|
||
|
|
||
|
F.linear(x, weight, bias)
|
||
|
|
||
|
Returns 1, because x is a non-param arg and weight and bias are params.
|
||
|
For
|
||
|
|
||
|
lstm_mod(x, hid)
|
||
|
|
||
|
Returns 2, because both x and hid are non-param args.
|
||
|
"""
|
||
|
if node.op == "call_module":
|
||
|
node_obj = getattr_from_fqn(gm, node.target) # type: ignore[arg-type]
|
||
|
if isinstance(node_obj, nn.LSTM):
|
||
|
return 2
|
||
|
|
||
|
# default is 1
|
||
|
return 1
|
||
|
|
||
|
|
||
|
def get_arg_indices_of_inputs_to_log(node: Node) -> List[int]:
|
||
|
"""
|
||
|
Returns the indices of args of the node which we should attach
|
||
|
loggers to, if input logging is enabled.
|
||
|
|
||
|
For example,
|
||
|
* for (x + y), returns [0, 1]
|
||
|
* for (1 + y), returns [1]
|
||
|
* for (x + 1), returns [0]
|
||
|
* for (linear(x, w, b)) returns [0]
|
||
|
* by default, returns [0]
|
||
|
"""
|
||
|
if len(node.args) == 0:
|
||
|
return []
|
||
|
if node.op == "call_function" and (
|
||
|
# TODO(future PR): use relationship map instead of hardcoding
|
||
|
node.target in (torch.add, torch.ops.quantized.add, operator.add)
|
||
|
or node.target in (torch.mul, torch.ops.quantized.mul, operator.mul)
|
||
|
):
|
||
|
result = []
|
||
|
for i in range(2):
|
||
|
if type(node.args[i]) == Node:
|
||
|
result.append(i)
|
||
|
return result
|
||
|
return [0]
|
||
|
|
||
|
|
||
|
def get_target_type_str(node: Node, gm: GraphModule) -> str:
|
||
|
"""
|
||
|
Returns a string representation of the type of the function or module
|
||
|
pointed to by this node, or '' for other node types.
|
||
|
"""
|
||
|
target_type = ""
|
||
|
if node.op in ("call_function", "call_method"):
|
||
|
target_type = torch.typename(node.target)
|
||
|
elif node.op == "call_module":
|
||
|
assert isinstance(node.target, str)
|
||
|
target_mod = getattr_from_fqn(gm, node.target)
|
||
|
target_type = torch.typename(target_mod)
|
||
|
return target_type
|
||
|
|
||
|
|
||
|
def rekey_logger_info_on_node_name_of_model(
|
||
|
results: NSResultsType,
|
||
|
model_name: str,
|
||
|
) -> NSResultsType:
|
||
|
"""
|
||
|
Rekeys the layer name of a results dictionary to use node names
|
||
|
from `model_name`.
|
||
|
|
||
|
For example, transforms
|
||
|
|
||
|
{'base_op_1_0': {'node_output': {'model_a':
|
||
|
[{'ref_node_name': 'linear1', ...}]}}}
|
||
|
|
||
|
into
|
||
|
|
||
|
{'linear1': {'node_output': {'model_a':
|
||
|
[{'ref_node_name': 'linear1', ...}]}}}
|
||
|
|
||
|
Note: we cannot use these node names directly because they are not
|
||
|
guaranteed to be consistent across models. This is why we extract
|
||
|
the results first and rekey afterwards.
|
||
|
"""
|
||
|
new_results = {}
|
||
|
for old_layer_name, result_type_to_results in results.items():
|
||
|
new_layer_name = None
|
||
|
for model_name_to_results in result_type_to_results.values():
|
||
|
for cur_model_name, list_of_results in model_name_to_results.items():
|
||
|
if cur_model_name == model_name:
|
||
|
assert len(list_of_results)
|
||
|
new_layer_name = list_of_results[0]["ref_node_name"]
|
||
|
else:
|
||
|
continue
|
||
|
if new_layer_name is not None:
|
||
|
new_results[new_layer_name] = result_type_to_results
|
||
|
else:
|
||
|
new_results[old_layer_name] = result_type_to_results
|
||
|
return new_results
|
||
|
|
||
|
|
||
|
def maybe_add_missing_fqns(results: NSResultsType) -> None:
|
||
|
"""
|
||
|
If `fqn` entries are filled in for one of the models in `results`, copies
|
||
|
them over to any models which do not have them filled out.
|
||
|
|
||
|
A common use case benefitting from this is comparing a model prepared by
|
||
|
quantization to a quantized model. In this case, the model prepared by
|
||
|
quantization would have `fqn` entries, and the quantized model would not.
|
||
|
"""
|
||
|
|
||
|
# Check in the first result to find any model with fqn entries defined.
|
||
|
model_name_with_fqns = None
|
||
|
for result_type_to_results in results.values():
|
||
|
for model_name_to_results in result_type_to_results.values():
|
||
|
for model_name, model_results in model_name_to_results.items():
|
||
|
if len(model_results) > 0:
|
||
|
if model_results[0]["fqn"] is not None:
|
||
|
model_name_with_fqns = model_name
|
||
|
break
|
||
|
break
|
||
|
break
|
||
|
|
||
|
if model_name_with_fqns:
|
||
|
for result_type_to_results in results.values():
|
||
|
for model_name_to_results in result_type_to_results.values():
|
||
|
ref_model_results = model_name_to_results[model_name_with_fqns]
|
||
|
for model_name, model_results in model_name_to_results.items():
|
||
|
if model_name == model_name_with_fqns:
|
||
|
continue
|
||
|
for i in range(len(model_results)):
|
||
|
fqn = ref_model_results[i]["fqn"]
|
||
|
model_results[i]["fqn"] = fqn
|
||
|
|
||
|
|
||
|
def maybe_dequantize_first_two_tensor_args_and_handle_tuples(f):
|
||
|
def inner(*args, **kwargs):
|
||
|
a0, a1, *a_other = args
|
||
|
|
||
|
if (isinstance(a0, tuple) and isinstance(a1, tuple)) or (
|
||
|
isinstance(a0, list) and isinstance(a1, list)
|
||
|
):
|
||
|
results = []
|
||
|
for el0, el1 in zip(a0, a1):
|
||
|
new_args = (el0, el1, *a_other)
|
||
|
results.append(inner(*new_args, **kwargs))
|
||
|
return results
|
||
|
|
||
|
elif isinstance(a0, torch.Tensor) and isinstance(a1, torch.Tensor):
|
||
|
if a0.is_quantized:
|
||
|
a0 = a0.dequantize()
|
||
|
if a1.is_quantized:
|
||
|
a1 = a1.dequantize()
|
||
|
|
||
|
# for the purposes of this util, only handle floats
|
||
|
if a0.dtype != torch.float or a1.dtype != torch.float:
|
||
|
return None
|
||
|
|
||
|
new_args = (a0, a1, *a_other)
|
||
|
return f(*new_args, **kwargs)
|
||
|
|
||
|
return inner
|
||
|
|
||
|
|
||
|
@maybe_dequantize_first_two_tensor_args_and_handle_tuples
|
||
|
def compute_sqnr(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes the SQNR between `x` and `y`.
|
||
|
|
||
|
Args:
|
||
|
x: Tensor or tuple of tensors
|
||
|
y: Tensor or tuple of tensors
|
||
|
|
||
|
Return:
|
||
|
float or tuple of floats
|
||
|
"""
|
||
|
Ps = torch.norm(x)
|
||
|
Pn = torch.norm(x - y)
|
||
|
return 20 * torch.log10(Ps / Pn)
|
||
|
|
||
|
|
||
|
@maybe_dequantize_first_two_tensor_args_and_handle_tuples
|
||
|
def compute_normalized_l2_error(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes the normalized L2 error between `x` and `y`.
|
||
|
|
||
|
Args:
|
||
|
x: Tensor or tuple of tensors
|
||
|
y: Tensor or tuple of tensors
|
||
|
|
||
|
Return:
|
||
|
float or tuple of floats
|
||
|
"""
|
||
|
return torch.sqrt(((x - y) ** 2).sum() / (x ** 2).sum())
|
||
|
|
||
|
|
||
|
@maybe_dequantize_first_two_tensor_args_and_handle_tuples
|
||
|
def compute_cosine_similarity(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
||
|
"""
|
||
|
Computes the cosine similarity between `x` and `y`.
|
||
|
|
||
|
Args:
|
||
|
x: Tensor or tuple of tensors
|
||
|
y: Tensor or tuple of tensors
|
||
|
|
||
|
Return:
|
||
|
float or tuple of floats
|
||
|
"""
|
||
|
# For convolutions, the shape of the quantized weight has one additional
|
||
|
# dimension compared to the shape of the fp32 weight. Match the shapes
|
||
|
# to enable cosine similarity comparison.
|
||
|
x = x.reshape(1, -1)
|
||
|
y = y.reshape(1, -1)
|
||
|
return torch.nn.functional.cosine_similarity(x, y)
|
||
|
|
||
|
def op_type_supports_shadowing(node: Node) -> bool:
|
||
|
if node.op == 'call_function':
|
||
|
if node.target in (torch.add, torch.mul, operator.add, operator.mul, torch.cat, torch.stack):
|
||
|
# shadowing for ops with multiple tensor inputs is not implemented yet
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def get_normalized_nth_input(node: Node, gm: GraphModule, idx: int) -> Node:
|
||
|
"""
|
||
|
Given a node, gets the n'th input to that node, normalizing
|
||
|
args and kwargs to the best of its ability.
|
||
|
"""
|
||
|
try:
|
||
|
norm_args_and_kwargs = node.normalized_arguments(
|
||
|
gm, normalize_to_only_use_kwargs=True)
|
||
|
if norm_args_and_kwargs is not None:
|
||
|
norm_args, norm_kwargs = norm_args_and_kwargs
|
||
|
assert len(norm_args) + len(norm_kwargs) > idx
|
||
|
if idx < len(norm_args):
|
||
|
return norm_args[idx]
|
||
|
else:
|
||
|
# note: in Python 3.7+ dicts are ordered
|
||
|
return list(norm_kwargs.values())[idx]
|
||
|
else:
|
||
|
assert len(node.args) + len(node.kwargs) > idx
|
||
|
if idx < len(node.args):
|
||
|
return node.args[idx] # type: ignore[return-value]
|
||
|
else:
|
||
|
kwargs_idx = idx + len(node.args)
|
||
|
return list(node.kwargs.values())[kwargs_idx] # type: ignore[return-value]
|
||
|
except RuntimeError:
|
||
|
# this RuntimeError happens when node argument normalization
|
||
|
# requires typehints to proceed, such as for torch.add where
|
||
|
# either the first, second or both arguments could be tensors
|
||
|
assert len(node.args) + len(node.kwargs) > idx
|
||
|
if idx < len(node.args):
|
||
|
return node.args[idx] # type: ignore[return-value]
|
||
|
else:
|
||
|
kwargs_idx = idx + len(node.args)
|
||
|
return list(node.kwargs.values())[kwargs_idx] # type: ignore[return-value]
|