ai-content-maker/.venv/Lib/site-packages/torch/autograd/_functions/utils.py

63 lines
2.0 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import operator
from functools import reduce
def maybe_view(tensor, size, check_same_size=True):
if check_same_size and tensor.size() == size:
return tensor
return tensor.contiguous().view(size)
def maybe_unexpand(tensor, old_size, check_same_size=True):
if check_same_size and tensor.size() == old_size:
return tensor
num_unsqueezed = tensor.dim() - len(old_size)
expanded_dims = [
dim
for dim, (expanded, original) in enumerate(
zip(tensor.size()[num_unsqueezed:], old_size)
)
if expanded != original
]
for _ in range(num_unsqueezed):
tensor = tensor.sum(0, keepdim=False)
for dim in expanded_dims:
tensor = tensor.sum(dim, keepdim=True)
return tensor
# Check whether the op enable broadcasting, and whether it is supported by ONNX.
# If dims1 and dims2 are different, then broadcast is True.
# We always assume the combination of dims1 and dims2 is broadcastable.
# The following types of broadcasting are supported in ONNX:
# 1) Only one element in dims2, such as dims2 = [1, 1]
# 2) dims2 is suffix of dims1, such as dims1 = [2, 3, 4], and dims2 = [3, 4]
# Details can be found here: https://github.com/onnx/onnx/blob/master/docs/Operators.md#Gemm
def check_onnx_broadcast(dims1, dims2):
broadcast = False
supported = True
len1 = len(dims1)
len2 = len(dims2)
numel1 = reduce(operator.mul, dims1)
numel2 = reduce(operator.mul, dims2)
if len1 < len2:
broadcast = True
if numel2 != 1:
supported = False
elif len1 > len2:
broadcast = True
if numel2 != 1 and dims1[len1 - len2 :] != dims2:
supported = False
else:
if dims1 != dims2:
broadcast = True
if numel2 != 1:
supported = False
if not supported:
raise ValueError(
f"Numpy style broadcasting is not supported in ONNX. Input dims are: {dims1}, {dims2}"
)
return broadcast