ai-content-maker/.venv/Lib/site-packages/torch/distributed/optim/functional_adamax.py

118 lines
4.3 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import Dict, List, Optional, Tuple
import torch
import torch.optim._functional as F
from torch import Tensor
__all__: List[str] = []
# Define a TorchScript compatible Functional Adamax Optimizer
# where we use these optimizer in a functional way.
# Instead of using the `param.grad` when updating parameters,
# we explicitly allow the distributed optimizer pass gradients to
# the `step` function. In this way, we could separate the gradients
# and parameters and allow multithreaded trainer to update the
# parameters without data traces on accumulating to the same .grad.
# NOTE: This should be only used by distributed optimizer internals
# and not meant to expose to the user.
@torch.jit.script
class _FunctionalAdamax:
def __init__(
self,
params: List[Tensor],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-8,
weight_decay: float = 0.0,
foreach: bool = False,
maximize: bool = False,
_allow_empty_param_list: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
self.defaults = {
"lr": lr,
"eps": eps,
"beta1": betas[0],
"beta2": betas[1],
"weight_decay": weight_decay,
}
self.foreach = foreach
self.maximize = maximize
self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
if len(params) == 0 and not _allow_empty_param_list:
raise ValueError("optimizer got an empty parameter list")
# NOTE: we only have one param_group and don't allow user to add additional
# param group as it's not a common use case.
self.param_group = {"params": params}
def step(self, gradients: List[Optional[Tensor]]):
params = self.param_group["params"]
params_with_grad = []
grads = []
exp_avgs = []
exp_infs = []
state_steps: List[Tensor] = []
if len(params) != len(gradients):
raise ValueError(
"the gradients passed in does not equal to the size of the parameters!"
+ f"Params length: {len(params)}. "
+ f"Gradients length: {len(gradients)}"
)
has_complex = False
for param, gradient in zip(self.param_group["params"], gradients):
if gradient is not None:
has_complex |= torch.is_complex(param)
params_with_grad.append(param)
grads.append(gradient)
# Lazy state initialization
if param not in self.state:
self.state[param] = {}
state = self.state[param]
state["step"] = torch.tensor(0.0)
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(
param, memory_format=torch.preserve_format
)
# Exponential moving average of squared gradient values
state["exp_inf"] = torch.zeros_like(
param, memory_format=torch.preserve_format
)
state = self.state[param]
exp_avgs.append(state["exp_avg"])
exp_infs.append(state["exp_inf"])
state_steps.append(state["step"])
with torch.no_grad():
F.adamax(
params_with_grad,
grads,
exp_avgs,
exp_infs,
state_steps,
eps=self.defaults["eps"],
beta1=self.defaults["beta1"],
beta2=self.defaults["beta2"],
lr=self.defaults["lr"],
weight_decay=self.defaults["weight_decay"],
foreach=self.foreach,
maximize=self.maximize,
has_complex=has_complex,
)