55 lines
1.9 KiB
Python
55 lines
1.9 KiB
Python
|
from torch.distributions import constraints
|
||
|
from torch.distributions.normal import Normal
|
||
|
from torch.distributions.transformed_distribution import TransformedDistribution
|
||
|
from torch.distributions.transforms import StickBreakingTransform
|
||
|
|
||
|
__all__ = ["LogisticNormal"]
|
||
|
|
||
|
|
||
|
class LogisticNormal(TransformedDistribution):
|
||
|
r"""
|
||
|
Creates a logistic-normal distribution parameterized by :attr:`loc` and :attr:`scale`
|
||
|
that define the base `Normal` distribution transformed with the
|
||
|
`StickBreakingTransform` such that::
|
||
|
|
||
|
X ~ LogisticNormal(loc, scale)
|
||
|
Y = log(X / (1 - X.cumsum(-1)))[..., :-1] ~ Normal(loc, scale)
|
||
|
|
||
|
Args:
|
||
|
loc (float or Tensor): mean of the base distribution
|
||
|
scale (float or Tensor): standard deviation of the base distribution
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # logistic-normal distributed with mean=(0, 0, 0) and stddev=(1, 1, 1)
|
||
|
>>> # of the base Normal distribution
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = LogisticNormal(torch.tensor([0.0] * 3), torch.tensor([1.0] * 3))
|
||
|
>>> m.sample()
|
||
|
tensor([ 0.7653, 0.0341, 0.0579, 0.1427])
|
||
|
|
||
|
"""
|
||
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
||
|
support = constraints.simplex
|
||
|
has_rsample = True
|
||
|
|
||
|
def __init__(self, loc, scale, validate_args=None):
|
||
|
base_dist = Normal(loc, scale, validate_args=validate_args)
|
||
|
if not base_dist.batch_shape:
|
||
|
base_dist = base_dist.expand([1])
|
||
|
super().__init__(
|
||
|
base_dist, StickBreakingTransform(), validate_args=validate_args
|
||
|
)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(LogisticNormal, _instance)
|
||
|
return super().expand(batch_shape, _instance=new)
|
||
|
|
||
|
@property
|
||
|
def loc(self):
|
||
|
return self.base_dist.base_dist.loc
|
||
|
|
||
|
@property
|
||
|
def scale(self):
|
||
|
return self.base_dist.base_dist.scale
|