263 lines
10 KiB
Python
263 lines
10 KiB
Python
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import _standard_normal, lazy_property
|
||
|
|
||
|
__all__ = ["MultivariateNormal"]
|
||
|
|
||
|
|
||
|
def _batch_mv(bmat, bvec):
|
||
|
r"""
|
||
|
Performs a batched matrix-vector product, with compatible but different batch shapes.
|
||
|
|
||
|
This function takes as input `bmat`, containing :math:`n \times n` matrices, and
|
||
|
`bvec`, containing length :math:`n` vectors.
|
||
|
|
||
|
Both `bmat` and `bvec` may have any number of leading dimensions, which correspond
|
||
|
to a batch shape. They are not necessarily assumed to have the same batch shape,
|
||
|
just ones which can be broadcasted.
|
||
|
"""
|
||
|
return torch.matmul(bmat, bvec.unsqueeze(-1)).squeeze(-1)
|
||
|
|
||
|
|
||
|
def _batch_mahalanobis(bL, bx):
|
||
|
r"""
|
||
|
Computes the squared Mahalanobis distance :math:`\mathbf{x}^\top\mathbf{M}^{-1}\mathbf{x}`
|
||
|
for a factored :math:`\mathbf{M} = \mathbf{L}\mathbf{L}^\top`.
|
||
|
|
||
|
Accepts batches for both bL and bx. They are not necessarily assumed to have the same batch
|
||
|
shape, but `bL` one should be able to broadcasted to `bx` one.
|
||
|
"""
|
||
|
n = bx.size(-1)
|
||
|
bx_batch_shape = bx.shape[:-1]
|
||
|
|
||
|
# Assume that bL.shape = (i, 1, n, n), bx.shape = (..., i, j, n),
|
||
|
# we are going to make bx have shape (..., 1, j, i, 1, n) to apply batched tri.solve
|
||
|
bx_batch_dims = len(bx_batch_shape)
|
||
|
bL_batch_dims = bL.dim() - 2
|
||
|
outer_batch_dims = bx_batch_dims - bL_batch_dims
|
||
|
old_batch_dims = outer_batch_dims + bL_batch_dims
|
||
|
new_batch_dims = outer_batch_dims + 2 * bL_batch_dims
|
||
|
# Reshape bx with the shape (..., 1, i, j, 1, n)
|
||
|
bx_new_shape = bx.shape[:outer_batch_dims]
|
||
|
for sL, sx in zip(bL.shape[:-2], bx.shape[outer_batch_dims:-1]):
|
||
|
bx_new_shape += (sx // sL, sL)
|
||
|
bx_new_shape += (n,)
|
||
|
bx = bx.reshape(bx_new_shape)
|
||
|
# Permute bx to make it have shape (..., 1, j, i, 1, n)
|
||
|
permute_dims = (
|
||
|
list(range(outer_batch_dims))
|
||
|
+ list(range(outer_batch_dims, new_batch_dims, 2))
|
||
|
+ list(range(outer_batch_dims + 1, new_batch_dims, 2))
|
||
|
+ [new_batch_dims]
|
||
|
)
|
||
|
bx = bx.permute(permute_dims)
|
||
|
|
||
|
flat_L = bL.reshape(-1, n, n) # shape = b x n x n
|
||
|
flat_x = bx.reshape(-1, flat_L.size(0), n) # shape = c x b x n
|
||
|
flat_x_swap = flat_x.permute(1, 2, 0) # shape = b x n x c
|
||
|
M_swap = (
|
||
|
torch.linalg.solve_triangular(flat_L, flat_x_swap, upper=False).pow(2).sum(-2)
|
||
|
) # shape = b x c
|
||
|
M = M_swap.t() # shape = c x b
|
||
|
|
||
|
# Now we revert the above reshape and permute operators.
|
||
|
permuted_M = M.reshape(bx.shape[:-1]) # shape = (..., 1, j, i, 1)
|
||
|
permute_inv_dims = list(range(outer_batch_dims))
|
||
|
for i in range(bL_batch_dims):
|
||
|
permute_inv_dims += [outer_batch_dims + i, old_batch_dims + i]
|
||
|
reshaped_M = permuted_M.permute(permute_inv_dims) # shape = (..., 1, i, j, 1)
|
||
|
return reshaped_M.reshape(bx_batch_shape)
|
||
|
|
||
|
|
||
|
def _precision_to_scale_tril(P):
|
||
|
# Ref: https://nbviewer.jupyter.org/gist/fehiepsi/5ef8e09e61604f10607380467eb82006#Precision-to-scale_tril
|
||
|
Lf = torch.linalg.cholesky(torch.flip(P, (-2, -1)))
|
||
|
L_inv = torch.transpose(torch.flip(Lf, (-2, -1)), -2, -1)
|
||
|
Id = torch.eye(P.shape[-1], dtype=P.dtype, device=P.device)
|
||
|
L = torch.linalg.solve_triangular(L_inv, Id, upper=False)
|
||
|
return L
|
||
|
|
||
|
|
||
|
class MultivariateNormal(Distribution):
|
||
|
r"""
|
||
|
Creates a multivariate normal (also called Gaussian) distribution
|
||
|
parameterized by a mean vector and a covariance matrix.
|
||
|
|
||
|
The multivariate normal distribution can be parameterized either
|
||
|
in terms of a positive definite covariance matrix :math:`\mathbf{\Sigma}`
|
||
|
or a positive definite precision matrix :math:`\mathbf{\Sigma}^{-1}`
|
||
|
or a lower-triangular matrix :math:`\mathbf{L}` with positive-valued
|
||
|
diagonal entries, such that
|
||
|
:math:`\mathbf{\Sigma} = \mathbf{L}\mathbf{L}^\top`. This triangular matrix
|
||
|
can be obtained via e.g. Cholesky decomposition of the covariance.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_LAPACK)
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = MultivariateNormal(torch.zeros(2), torch.eye(2))
|
||
|
>>> m.sample() # normally distributed with mean=`[0,0]` and covariance_matrix=`I`
|
||
|
tensor([-0.2102, -0.5429])
|
||
|
|
||
|
Args:
|
||
|
loc (Tensor): mean of the distribution
|
||
|
covariance_matrix (Tensor): positive-definite covariance matrix
|
||
|
precision_matrix (Tensor): positive-definite precision matrix
|
||
|
scale_tril (Tensor): lower-triangular factor of covariance, with positive-valued diagonal
|
||
|
|
||
|
Note:
|
||
|
Only one of :attr:`covariance_matrix` or :attr:`precision_matrix` or
|
||
|
:attr:`scale_tril` can be specified.
|
||
|
|
||
|
Using :attr:`scale_tril` will be more efficient: all computations internally
|
||
|
are based on :attr:`scale_tril`. If :attr:`covariance_matrix` or
|
||
|
:attr:`precision_matrix` is passed instead, it is only used to compute
|
||
|
the corresponding lower triangular matrices using a Cholesky decomposition.
|
||
|
"""
|
||
|
arg_constraints = {
|
||
|
"loc": constraints.real_vector,
|
||
|
"covariance_matrix": constraints.positive_definite,
|
||
|
"precision_matrix": constraints.positive_definite,
|
||
|
"scale_tril": constraints.lower_cholesky,
|
||
|
}
|
||
|
support = constraints.real_vector
|
||
|
has_rsample = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
loc,
|
||
|
covariance_matrix=None,
|
||
|
precision_matrix=None,
|
||
|
scale_tril=None,
|
||
|
validate_args=None,
|
||
|
):
|
||
|
if loc.dim() < 1:
|
||
|
raise ValueError("loc must be at least one-dimensional.")
|
||
|
if (covariance_matrix is not None) + (scale_tril is not None) + (
|
||
|
precision_matrix is not None
|
||
|
) != 1:
|
||
|
raise ValueError(
|
||
|
"Exactly one of covariance_matrix or precision_matrix or scale_tril may be specified."
|
||
|
)
|
||
|
|
||
|
if scale_tril is not None:
|
||
|
if scale_tril.dim() < 2:
|
||
|
raise ValueError(
|
||
|
"scale_tril matrix must be at least two-dimensional, "
|
||
|
"with optional leading batch dimensions"
|
||
|
)
|
||
|
batch_shape = torch.broadcast_shapes(scale_tril.shape[:-2], loc.shape[:-1])
|
||
|
self.scale_tril = scale_tril.expand(batch_shape + (-1, -1))
|
||
|
elif covariance_matrix is not None:
|
||
|
if covariance_matrix.dim() < 2:
|
||
|
raise ValueError(
|
||
|
"covariance_matrix must be at least two-dimensional, "
|
||
|
"with optional leading batch dimensions"
|
||
|
)
|
||
|
batch_shape = torch.broadcast_shapes(
|
||
|
covariance_matrix.shape[:-2], loc.shape[:-1]
|
||
|
)
|
||
|
self.covariance_matrix = covariance_matrix.expand(batch_shape + (-1, -1))
|
||
|
else:
|
||
|
if precision_matrix.dim() < 2:
|
||
|
raise ValueError(
|
||
|
"precision_matrix must be at least two-dimensional, "
|
||
|
"with optional leading batch dimensions"
|
||
|
)
|
||
|
batch_shape = torch.broadcast_shapes(
|
||
|
precision_matrix.shape[:-2], loc.shape[:-1]
|
||
|
)
|
||
|
self.precision_matrix = precision_matrix.expand(batch_shape + (-1, -1))
|
||
|
self.loc = loc.expand(batch_shape + (-1,))
|
||
|
|
||
|
event_shape = self.loc.shape[-1:]
|
||
|
super().__init__(batch_shape, event_shape, validate_args=validate_args)
|
||
|
|
||
|
if scale_tril is not None:
|
||
|
self._unbroadcasted_scale_tril = scale_tril
|
||
|
elif covariance_matrix is not None:
|
||
|
self._unbroadcasted_scale_tril = torch.linalg.cholesky(covariance_matrix)
|
||
|
else: # precision_matrix is not None
|
||
|
self._unbroadcasted_scale_tril = _precision_to_scale_tril(precision_matrix)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(MultivariateNormal, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
loc_shape = batch_shape + self.event_shape
|
||
|
cov_shape = batch_shape + self.event_shape + self.event_shape
|
||
|
new.loc = self.loc.expand(loc_shape)
|
||
|
new._unbroadcasted_scale_tril = self._unbroadcasted_scale_tril
|
||
|
if "covariance_matrix" in self.__dict__:
|
||
|
new.covariance_matrix = self.covariance_matrix.expand(cov_shape)
|
||
|
if "scale_tril" in self.__dict__:
|
||
|
new.scale_tril = self.scale_tril.expand(cov_shape)
|
||
|
if "precision_matrix" in self.__dict__:
|
||
|
new.precision_matrix = self.precision_matrix.expand(cov_shape)
|
||
|
super(MultivariateNormal, new).__init__(
|
||
|
batch_shape, self.event_shape, validate_args=False
|
||
|
)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
@lazy_property
|
||
|
def scale_tril(self):
|
||
|
return self._unbroadcasted_scale_tril.expand(
|
||
|
self._batch_shape + self._event_shape + self._event_shape
|
||
|
)
|
||
|
|
||
|
@lazy_property
|
||
|
def covariance_matrix(self):
|
||
|
return torch.matmul(
|
||
|
self._unbroadcasted_scale_tril, self._unbroadcasted_scale_tril.mT
|
||
|
).expand(self._batch_shape + self._event_shape + self._event_shape)
|
||
|
|
||
|
@lazy_property
|
||
|
def precision_matrix(self):
|
||
|
return torch.cholesky_inverse(self._unbroadcasted_scale_tril).expand(
|
||
|
self._batch_shape + self._event_shape + self._event_shape
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return self.loc
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return self.loc
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return (
|
||
|
self._unbroadcasted_scale_tril.pow(2)
|
||
|
.sum(-1)
|
||
|
.expand(self._batch_shape + self._event_shape)
|
||
|
)
|
||
|
|
||
|
def rsample(self, sample_shape=torch.Size()):
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
|
||
|
return self.loc + _batch_mv(self._unbroadcasted_scale_tril, eps)
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
diff = value - self.loc
|
||
|
M = _batch_mahalanobis(self._unbroadcasted_scale_tril, diff)
|
||
|
half_log_det = (
|
||
|
self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
|
||
|
)
|
||
|
return -0.5 * (self._event_shape[0] * math.log(2 * math.pi) + M) - half_log_det
|
||
|
|
||
|
def entropy(self):
|
||
|
half_log_det = (
|
||
|
self._unbroadcasted_scale_tril.diagonal(dim1=-2, dim2=-1).log().sum(-1)
|
||
|
)
|
||
|
H = 0.5 * self._event_shape[0] * (1.0 + math.log(2 * math.pi)) + half_log_det
|
||
|
if len(self._batch_shape) == 0:
|
||
|
return H
|
||
|
else:
|
||
|
return H.expand(self._batch_shape)
|