ai-content-maker/.venv/Lib/site-packages/torch/fx/experimental/const_fold.py

290 lines
12 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import re
from typing import Callable, Dict, Optional, Set, Union
import torch.fx
from torch.fx.node import map_arg
from torch.fx.passes.split_module import split_module
__all__ = ['FoldedGraphModule', 'get_unique_attr_name_in_module', 'split_const_subgraphs']
class FoldedGraphModule(torch.fx.GraphModule):
"""
FoldedGraphModule is a GraphModule which also contains another
`const_subgraph_module` representing a subgraph which has all const attr
inputs and which can be run once before running the main standard
`graph`. The `const_output_names` are the ordered list names of attrs which
represent what each respective output from the const_subgraph should be set
on which attrs.
"""
def __init__(
self,
root: torch.nn.Module,
graph: torch.fx.Graph,
const_subgraph: Optional[torch.fx.Graph] = None,
fx_const_folded_attrs_name: Optional[str] = None,
device_for_folded_attrs: str = "cuda",
):
super().__init__(root, graph)
self.const_subgraph_module = (
None
if const_subgraph is None
else torch.fx.GraphModule(root, const_subgraph)
)
self.has_folding_been_run = False
self.fx_const_folded_attrs_name = fx_const_folded_attrs_name
self.device_for_folded_attrs = device_for_folded_attrs
def __call__(self, *args, **kwargs):
if not self.has_folding_been_run:
self.run_folding()
return super().__call__(*args)
def run_folding(self):
# If there's no const subgraph module or attr output names to use, return
# early as there is no const folding to perform.
if (
self.const_subgraph_module is None
or self.fx_const_folded_attrs_name is None
):
return
assert not self.has_folding_been_run
self.has_folding_been_run = True
# Actually run const folding subgraph. Note that single attr const fold
# subgraphs output a single Tensor while multiple outputs are returned as
# Tuple[Tensor,].
folded_attrs = self.const_subgraph_module()
def _create_param(i):
return torch.nn.Parameter(
i
if not isinstance(i, int)
else torch.Tensor([i]).to(device=self.device_for_folded_attrs),
requires_grad=i.requires_grad if isinstance(i, torch.Tensor) else False,
)
params = (
torch.nn.ParameterList([_create_param(i) for i in folded_attrs])
if isinstance(folded_attrs, tuple)
else _create_param(folded_attrs)
)
setattr(self, self.fx_const_folded_attrs_name, params)
def _inline_module(gm: torch.fx.GraphModule, inline_mod_name: str):
"""
Given `gm` and some graph module which is called with target name `inline_mod_name`,
this helper will inline all of the nodes from that called graph module into `gm`.
"""
# Fetch the inner graph module that we want to inline inside `gm`.
inline_mod = dict(gm.named_modules())[inline_mod_name]
assert isinstance(inline_mod, torch.fx.GraphModule)
call_mod_node_to_replace = None
for node in gm.graph.nodes:
if node.op == "call_module" and node.target == inline_mod_name:
call_mod_node_to_replace = node
break
assert call_mod_node_to_replace is not None
# Now actually do the swap. Note that we have to keep track of new nodes that are
# copied into `gm` -- we do this via replacement_mapping.
call_mod_args = call_mod_node_to_replace.args
replacement_mapping: Dict[torch.fx.Node, torch.fx.Node] = {}
ph_count = 0
def replacement_fn(node):
new_node = replacement_mapping[node]
new_node.meta = node.meta.copy()
return new_node
for inline_node in inline_mod.graph.nodes:
if inline_node.op == "placeholder":
replacement_mapping[inline_node] = call_mod_args[ph_count]
ph_count += 1
continue
if inline_node.op == "output":
outputs = inline_node.args[0]
output_replacements = map_arg(outputs, replacement_fn)
call_mod_node_to_replace.replace_all_uses_with(output_replacements)
continue
with gm.graph.inserting_before(call_mod_node_to_replace):
new_node = gm.graph.node_copy(inline_node, replacement_fn)
replacement_mapping[inline_node] = new_node
gm.graph.eliminate_dead_code()
def get_unique_attr_name_in_module(mod_traced: torch.fx.GraphModule, name: str) -> str:
"""
Make sure the name is unique (in a module) and can represents an attr.
"""
# Delete all characters that are illegal in a Python identifier.
name = re.sub("[^0-9a-zA-Z_]+", "_", name)
if name[0].isdigit():
name = f"_{name}"
# Now make sure it is in fact unique to the module by incrementing suffix value.
while hasattr(mod_traced, name):
match = re.match(r"(.*)_(\d+)$", name)
if match is None:
name = name + "_1"
else:
base, num = match.group(1, 2)
name = f"{base}_{int(num) + 1}"
return name
def split_const_subgraphs(
module: Union[torch.nn.Module, torch.fx.GraphModule],
skip_folding_node_fn: Optional[Callable[[torch.fx.Node], bool]] = None,
device_for_folded_attrs: str = "cpu",
) -> FoldedGraphModule:
"""
Looks through `module` for any nodes that have all constant attribute inputs
and separates them out into their own constant subgraph, and returns a
FoldedGraphModule which runs that constant subgraph on the first run to set
attributes on the module prior to running the non-constant portion of the
graph.
"""
if not isinstance(module, torch.fx.GraphModule):
mod_traced = torch.fx.symbolic_trace(module)
else:
mod_traced = module
# Build up a list of const_nodes, defined as nodes that are themselves
# get_attrs, or have all get_attr or other constant node inputs.
const_nodes: Set[torch.fx.Node] = set()
found_const_folding = False
for node in mod_traced.graph.nodes:
# Skip over placeholders/outputs because they can't be const folded and
# we don't want to add tags to them.
if node.op in {"placeholder", "output"}:
continue
# If the node itself is constant, or all of its inputs are constant,
# then tag it as constant.
if node.op != "get_attr" and not set(node.all_input_nodes).issubset(
const_nodes
):
continue
# If provided skip folding function says to skip, then skip.
if skip_folding_node_fn and skip_folding_node_fn(node):
continue
# Skip folding side-effectful functions
if node.is_impure():
continue
# Must be a constant foldable node at this point.
const_nodes.add(node)
if node.op != "get_attr":
found_const_folding = True
# If we did not find any const folding then return early without a const fold subgraph.
if not found_const_folding:
return FoldedGraphModule(mod_traced, mod_traced.graph)
# Partition the module into two: submod_0 for constant folding subgraph, and
# submod_1 for the rest.
def mod_partition(node: torch.fx.Node):
return 0 if node in const_nodes else 1
split = split_module(mod_traced, module, mod_partition)
const_gm, non_const_gm = split.submod_0, split.submod_1
const_mod_name, non_const_mod_name = "submod_0", "submod_1"
# The module that a call_module node refers to gets copied to submodules during split.
# The path to the module also gets inlined, i.e. mod.a.b -> mod_a_b. Here we need to
# attach inlined modules to `split` as it's the owning module now.
for node in non_const_gm.graph.nodes:
if node.op == "call_module":
setattr(split, node.target, getattr(non_const_gm, node.target))
for node in const_gm.graph.nodes:
if node.op == "call_module":
setattr(split, node.target, getattr(const_gm, node.target))
# split_module currently does not use get_attrs for attrs. Instead it passes
# them in as args from the parent module, which used get_attrs. Here we set
# them as get_attrs inside const_gm, allowing for running folding without
# somehow a priori knowing the attrs that should be passed as args. We can
# unconditionally do this for all placeholders because we know all
# placeholders to const_gm must be constants accessible via get_attr.
call_const_gm_args = None
for node in split.graph.nodes:
if node.op == "call_module":
if node.target == const_mod_name:
call_const_gm_args = node.args
break
assert call_const_gm_args is not None
# Here we do the actual replacement of placeholders to get_attrs. Note that here we
# set the const_gm.graph into a new root_const_gm with split as the root module,
# because we are fetching attributes directly from the root module, instead of
# fetching them from const_gm. Example: The const_gm must have some format like:
# graph():
# %inp : [num_users=1] = placeholder[target=const_inp]
# %add : [num_users=1] = call_function[target=operator.add](args = (%inp, %inp), kwargs = {})
# return add
# We replace that with the following, which does not have any placeholders:
# graph():
# %inp_1 : [num_users=1] = get_attr[target=const_inp]
# %add : [num_users=1] = call_function[target=operator.add](args = (%inp_1, %inp_1), kwargs = {})
# return add
root_const_gm = torch.fx.GraphModule(split, const_gm.graph)
for node in root_const_gm.graph.nodes:
if node.op == "output":
multiple_outputs = isinstance(node.args[0], tuple)
continue
if node.op != "placeholder":
continue
in_node = next(n for n in call_const_gm_args if n.name == node.target)
assert in_node.op == "get_attr"
with root_const_gm.graph.inserting_before(node):
new_node = root_const_gm.graph.get_attr(in_node.target)
new_node.meta = node.meta.copy()
node.replace_all_uses_with(new_node)
root_const_gm.graph.erase_node(node)
assert "multiple_outputs" in locals()
# Now find the call to const_gm inside split, and replace it with a getattr to the
# folded tensor(s) that result from constant folding. Note that we don't need to
# worry about whether this is one or more tensors because the original graph
# correctly uses getitem to extract individual tensors if there are multiple folded.
fx_const_folded_attrs_name = get_unique_attr_name_in_module(
split, "_FX_CONST_FOLDED_ATTRS"
)
setattr(
split,
fx_const_folded_attrs_name,
torch.nn.ParameterList() if multiple_outputs else torch.nn.Parameter(), # type: ignore[possibly-undefined]
)
for node in split.graph.nodes:
if node.op == "call_module" and node.target == const_mod_name:
with node.graph.inserting_before(node):
folded_attrs = node.graph.get_attr(fx_const_folded_attrs_name)
folded_attrs.meta = node.meta.copy()
node.replace_all_uses_with(folded_attrs)
break
split.graph.eliminate_dead_code()
# Finally, inline the non-constant submod into the split submod. This is so that the
# original caller who may have passed in a graph module will get back out a graph
# module whose graph is traced to the same granularity.
_inline_module(split, non_const_mod_name)
return FoldedGraphModule(
split,
split.graph,
root_const_gm.graph,
fx_const_folded_attrs_name,
device_for_folded_attrs,
)