ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/NamedTensorUtils.h

216 lines
6.7 KiB
C
Raw Normal View History

2024-05-03 04:18:51 +03:00
#pragma once
#include <ATen/NamedTensor.h>
#include <ATen/TensorNames.h>
#include <ATen/WrapDimUtilsMulti.h>
#include <ATen/core/DimVector.h>
#include <ATen/core/Tensor.h>
#include <functional>
namespace at {
using NameVector = SmallVector<Dimname, kDimVectorStaticSize>;
inline bool has_names(const ITensorListRef& tensors) {
return std::any_of(tensors.begin(), tensors.end(), [](const Tensor& t) {
return t.has_names();
});
}
// Converts dim to an positional index. Errors if `dim` cannot be used to
// refer to any dimension of tensor.
TORCH_API int64_t dimname_to_position(const Tensor& tensor, Dimname dim);
TORCH_API std::vector<int64_t> dimnames_to_positions(
const Tensor& tensor,
DimnameList dims);
// Unifies two DimnameList to produce a third. This is useful for implementing
// the named inference rule for binary broadcasting operations like add.
//
// There are three main constraints:
// 1) Check matching: Names must match positionally from the right.
// 2) Check misaligned: If a name `n` is in `names`, then it must appear at
// the same index from the right in other.
// 3) The output names are obtained by unifying the names individually from the
// right.
TORCH_API std::vector<Dimname> unify_from_right(
DimnameList names,
DimnameList other,
const char* action = "broadcast");
[[noreturn]] inline void reportNYIDimnameOverload(const char* op_name) {
TORCH_CHECK(
false,
op_name,
": You passed a dimname (string) to this op in place of a dimension "
"index but it does not yet support this behavior. Please pass a dimension "
"index to work around this.");
}
// [NOTE] Writing name inference rules
//
// Operators that support named tensors are either composed of operations that
// support named tensors or implement some name inference rule. An op that
// implements its own name inference rule generally looks like the following:
//
// Tensor op(...) {
// perform_shape_checks(...);
// # (1)
// auto maybe_outnames = compute_outnames(...);
// auto result = [&]() {
// NoNamesGuard guard;
// return op_impl(...);
// }();
// # (2)
// propagate_names_if_nonempty(result, maybe_outnames);
//
// Each op has (1) a compute outnames step and (2) a propagate names step.
//
// compute_outnames is responsible for checking that input names match and
// determining what the output names should be. It returns either:
// - {} (if the inputs tensors are all unnamed)
// - non-empty outnames.
//
// propagate_names_if_nonempty propagates the outnames if they exist to the
// result tensors.
//
// The {} case is an optimization; if the user does not use named tensors they
// pay no perf cost for it.
namespace namedinference {
const Tensor& propagate_names_if_present_and_nonempty(
const Tensor& result,
c10::optional<DimnameList> maybe_names,
bool validate_names = false);
// Propagates `names` to `result` if `names` is not empty.
// `names` can be empty; see [NOTE] Writing name inference rules
// If `names` is not empty, `names.size()` should equal `result.dim()`.
// When in doubt, use this overload instead of the others.
TORCH_API const Tensor& propagate_names_if_nonempty(
const Tensor& result,
DimnameList maybe_names,
bool validate_names = false);
// Propagates `names` to `result`. Only use this if we are certain that there
// are names to propagate (that names is not empty).
TORCH_API const Tensor& propagate_names(
const Tensor& result,
DimnameList names,
bool validate_names = false);
// Propagates all names from src to result.
TORCH_API void propagate_names(const Tensor& result, const Tensor& src);
// Propagates all names except for those at the excluded_idxs.
TORCH_API void propagate_names_except(
const Tensor& result,
const Tensor& src,
IntArrayRef excluded_idxs);
// Used for reduction ops that have a `keepdim` arg.
TORCH_API void propagate_names_for_reduction(
const Tensor& result,
const Tensor& src,
IntArrayRef excluded_idxs,
bool keepdim);
TORCH_API void propagate_names_for_expand(
const Tensor& result,
const Tensor& self);
TORCH_API std::vector<Dimname> compute_cat_outnames(
const MaterializedITensorListRef& tensors);
TORCH_API std::vector<Dimname> compute_broadcast_outnames(
const Tensor& self,
const Tensor& other);
TORCH_API std::vector<Dimname> broadcast_to_outnames(
const Tensor& tensor,
const Tensor& reference_tensor,
const char* op_name);
TORCH_API std::vector<Dimname> compute_matmul_outnames(
const Tensor& self,
const Tensor& other);
TORCH_API std::vector<Dimname> compute_cdist_outnames(
const Tensor& self,
const Tensor& other);
TORCH_API std::vector<Dimname> compute_bmm_outnames(
const Tensor& result,
const Tensor& self,
const Tensor& other);
TORCH_API std::vector<Dimname> compute_squeeze_outnames(const Tensor& tensor);
TORCH_API std::vector<Dimname> compute_squeeze_outnames(
const Tensor& tensor,
std::bitset<dim_bitset_size> dims);
std::vector<Dimname> compute_diagonal_outnames(
const Tensor& tensor,
int64_t dim1,
int64_t dim2);
// TensorImpl* overloads for Legacy TH/THC code. Use these sparingly.
TORCH_API TensorImpl* propagate_names_if_nonempty(
TensorImpl* result,
DimnameList maybe_names,
bool validate_names = false);
TORCH_API TensorImpl* propagate_names(
TensorImpl* result,
DimnameList names,
bool validate_names = false);
TORCH_API void propagate_names(TensorImpl* result, /*const */ TensorImpl* src);
TORCH_API inline void propagate_names(
const TensorBase& result,
DimnameList names,
bool validate_names = false) {
propagate_names(result.unsafeGetTensorImpl(), names, validate_names);
}
TORCH_API inline void propagate_names_if_nonempty(
const TensorBase& result,
DimnameList names,
bool validate_names = false) {
propagate_names_if_nonempty(
result.unsafeGetTensorImpl(), names, validate_names);
}
TORCH_API inline void propagate_names(
const TensorBase& result,
const TensorBase& src) {
propagate_names(result.unsafeGetTensorImpl(), src.unsafeGetTensorImpl());
}
// result = m1 @ m2 + bias
TORCH_API std::vector<Dimname> propagate_names_for_addmm(
const Tensor& m1,
const Tensor& m2,
const Tensor& bias);
TORCH_API std::vector<Dimname> propagate_names_for_addmv(
const Tensor& mat,
const Tensor& vec,
const Tensor& bias);
TORCH_API void check_names_for_dot(TensorImpl* vec1, TensorImpl* vec2);
TORCH_API std::vector<Dimname> compute_baddbmm_outnames(
const Tensor& result,
const Tensor& self,
const Tensor& other,
const Tensor& bias);
TORCH_API bool are_names_equal(TensorImpl* self, TensorImpl* other);
} // namespace namedinference
} // namespace at