ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/NumericUtils.h

204 lines
5.0 KiB
C
Raw Normal View History

2024-05-03 04:18:51 +03:00
#pragma once
#ifdef __HIPCC__
#include <hip/hip_runtime.h>
#endif
#include <c10/macros/Macros.h>
#include <c10/util/BFloat16.h>
#include <c10/util/Float8_e4m3fn.h>
#include <c10/util/Float8_e4m3fnuz.h>
#include <c10/util/Float8_e5m2.h>
#include <c10/util/Float8_e5m2fnuz.h>
#include <c10/util/Half.h>
#include <c10/util/complex.h>
#include <cmath>
#include <type_traits>
namespace at {
// std::isnan isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T /*val*/) {
return false;
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isnan(val);
#else
return std::isnan(val);
#endif
}
template <typename T, std::enable_if_t<c10::is_complex<T>::value, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return std::isnan(val.real()) || std::isnan(val.imag());
}
template <typename T, std::enable_if_t<std::is_same_v<T, at::Half>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::BFloat16>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isnan(at::BFloat16 val) {
return at::_isnan(static_cast<float>(val));
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fn>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e5m2fnuz>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
template <
typename T,
std::enable_if_t<std::is_same_v<T, at::Float8_e4m3fnuz>, int> = 0>
inline C10_HOST_DEVICE bool _isnan(T val) {
return val.isnan();
}
// std::isinf isn't performant to use on integral types; it will
// (uselessly) convert to floating point and then do the test.
// This function is.
template <typename T, std::enable_if_t<std::is_integral_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isinf(T /*val*/) {
return false;
}
template <typename T, std::enable_if_t<std::is_floating_point_v<T>, int> = 0>
inline C10_HOST_DEVICE bool _isinf(T val) {
#if defined(__CUDACC__) || defined(__HIPCC__)
return ::isinf(val);
#else
return std::isinf(val);
#endif
}
inline C10_HOST_DEVICE bool _isinf(at::Half val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::BFloat16 val) {
return at::_isinf(static_cast<float>(val));
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2 val) {
return val.isinf();
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fn val) {
return false;
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e5m2fnuz val) {
return false;
}
inline C10_HOST_DEVICE bool _isinf(at::Float8_e4m3fnuz val) {
return false;
}
template <typename T>
C10_HOST_DEVICE inline T exp(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __expf fast approximation for peak bandwidth
return __expf(x);
#else
return ::exp(x);
#endif
}
template <>
C10_HOST_DEVICE inline double exp<double>(double x) {
return ::exp(x);
}
template <typename T>
C10_HOST_DEVICE inline T log(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
return __logf(x);
#else
return ::log(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log<double>(double x) {
return ::log(x);
}
template <typename T>
C10_HOST_DEVICE inline T log1p(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __logf fast approximation for peak bandwidth
// NOTE: There is no __log1pf so unfortunately we lose precision.
return __logf(1.0f + x);
#else
return ::log1p(x);
#endif
}
template <>
C10_HOST_DEVICE inline double log1p<double>(double x) {
return ::log1p(x);
}
template <typename T>
C10_HOST_DEVICE inline T tan(T x) {
static_assert(
!std::is_same_v<T, double>,
"this template must be used with float or less precise type");
#if defined(__CUDA_ARCH__) || defined(__HIP_ARCH__)
// use __tanf fast approximation for peak bandwidth
return __tanf(x);
#else
return ::tan(x);
#endif
}
template <>
C10_HOST_DEVICE inline double tan<double>(double x) {
return ::tan(x);
}
} // namespace at