ai-content-maker/.venv/Lib/site-packages/torch/include/ATen/SparseTensorImpl.h

401 lines
14 KiB
C
Raw Normal View History

2024-05-03 04:18:51 +03:00
#pragma once
#include <ATen/Tensor.h>
#include <c10/core/TensorImpl.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/resize.h>
#endif
namespace at {
struct TORCH_API SparseTensorImpl : public TensorImpl {
// Stored in COO format, indices + values.
// INVARIANTS:
// sparse_dim: range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// dense_dim : range [0, len(shape)]; sparse_dim + dense_dim = len(shape)
// _indices.shape: dimensionality: 2, shape: (sparse_dim, nnz)
// _values.shape: dimensionality: 1 + dense_dim. shape: (nnz,
// shape[sparse_dim:])
int64_t sparse_dim_ = 0; // number of sparse dimensions
int64_t dense_dim_ = 0; // number of dense dimensions
Tensor indices_; // always a LongTensor
Tensor values_;
// A sparse tensor is 'coalesced' if every index occurs at most once in
// the indices tensor, and the indices are in sorted order. (This means
// that it is very easy to convert a coalesced tensor to CSR format: you
// need only compute CSR format indices.)
//
// Most math operations can only be performed on coalesced sparse tensors,
// because many algorithms proceed by merging two sorted lists (of indices).
bool coalesced_ = false;
// compute_numel with integer multiplication overflow check, see gh-57542
void refresh_numel() {
TensorImpl::safe_refresh_numel();
}
public:
// Public for now...
explicit SparseTensorImpl(at::DispatchKeySet, const caffe2::TypeMeta);
void release_resources() override;
int64_t nnz() const {
return values_.size(0);
}
c10::SymInt sym_nnz() const {
return values_.sym_size(0);
}
int64_t sparse_dim() const {
return sparse_dim_;
}
int64_t dense_dim() const {
return dense_dim_;
}
bool coalesced() const {
return coalesced_;
}
Tensor indices() const {
return indices_;
}
Tensor values() const {
return values_;
}
void set_size(int64_t dim, int64_t new_size) override;
void set_stride(int64_t dim, int64_t new_stride) override;
void set_storage_offset(int64_t storage_offset) override;
#ifdef DEBUG
bool has_storage() const override;
#endif
// WARNING: This function does NOT preserve invariants of sparse_dim/dense_dim
// with respect to indices and values
void raw_resize_(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"raw_resize_ ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"raw_resize_ called on tensor with symbolic shape")
set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
// NOTE: This function preserves invariants of sparse_dim/dense_dim with
// respect to indices and values.
//
// NOTE: This function supports the following cases:
// 1. When we keep the number of dense dimensions unchanged, and NOT shrinking
// the size of any of the dense dimensions.
// 2. When we keep the number of sparse dimensions unchanged, and NOT
// shrinking the size of any of the sparse dimensions.
// 3. When the sparse tensor has zero nnz, in which case we are free to change
// the shapes of both its sparse and dense dimensions.
//
// This function DOESN'T support (and will throw an error) the following
// cases:
// 1. When we attempt to change the number of sparse dimensions on a non-empty
// sparse tensor (such an operation will invalidate the indices stored).
// 2. When we attempt to change the number of dense dimensions on a non-empty
// sparse tensor (such an operation will behave differently from an equivalent
// dense tensor's resize method, and for API consistency we don't support it).
// 3. When we attempt to shrink the size of any of the dense dimensions on a
// non-empty sparse tensor (such an operation will behave differently from an
// equivalent dense tensor's resize method, and for API consistency we don't
// support it).
// 4. When we attempt to shrink the size of any of the sparse dimensions on a
// non-empty sparse tensor (this could make some of the stored indices
// out-of-bound and thus unsafe).
template <typename T>
void _resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<T> size) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"resize_ ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"resize_ called on tensor with symbolic shape")
TORCH_CHECK(
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
"number of dimensions must be sparse_dim (",
sparse_dim,
") + dense_dim (",
dense_dim,
"), but got ",
size.size());
if (nnz() > 0) {
auto alt_options_msg =
"You could try the following options:\n\
1. If you need an empty sparse tensor of this size, call `x = torch.sparse_coo_tensor(size)`.\n\
2. If you need to resize this tensor, you have the following options:\n\
1. For both sparse and dense dimensions, keep the number of them constant and the size of them non-shrinking, and then try the same call again.\n\
2. Or, create a new sparse tensor with the correct indices and values from this sparse tensor.";
TORCH_CHECK(
sparse_dim == sparse_dim_,
"changing the number of sparse dimensions (from ",
sparse_dim_,
" to ",
sparse_dim,
") on a non-empty sparse tensor is not supported.\n",
alt_options_msg);
TORCH_CHECK(
dense_dim == dense_dim_,
"changing the number of dense dimensions (from ",
dense_dim_,
" to ",
dense_dim,
") on a non-empty sparse tensor is not supported.\n",
alt_options_msg);
bool shrinking_sparse_dims = false;
bool shrinking_dense_dim = false;
auto sparse_size_original = generic_sizes<T>().slice(0, sparse_dim);
auto sparse_size_new = size.slice(0, sparse_dim);
for (const auto i : c10::irange(sparse_dim)) {
if (sparse_size_new[i] < sparse_size_original[i]) {
shrinking_sparse_dims = true;
break;
}
}
auto dense_size_original = generic_sizes<T>().slice(sparse_dim);
auto dense_size_new = size.slice(sparse_dim);
for (const auto i : c10::irange(dense_dim)) {
if (dense_size_new[i] < dense_size_original[i]) {
shrinking_dense_dim = true;
break;
}
}
TORCH_CHECK(
!shrinking_sparse_dims,
"shrinking the size of sparse dimensions (from ",
sparse_size_original,
" to ",
sparse_size_new,
") on a non-empty sparse tensor is not supported.\n",
alt_options_msg);
TORCH_CHECK(
!shrinking_dense_dim,
"shrinking the size of dense dimensions (from ",
dense_size_original,
" to ",
dense_size_new,
") on a non-empty sparse tensor is not supported.\n",
alt_options_msg);
}
auto sizes_and_strides = generic_sizes<T>();
const bool size_equals_sizes = std::equal(
size.begin(),
size.end(),
sizes_and_strides.begin(),
sizes_and_strides.end());
if ((!size_equals_sizes) || (sparse_dim != sparse_dim_) ||
(dense_dim != dense_dim_)) {
auto nnz = at::symint::sizes<T>(values())[0];
std::vector<T> values_size = {nnz};
auto dense_size = size.slice(sparse_dim);
values_size.insert(
values_size.end(), dense_size.begin(), dense_size.end());
at::symint::resize_<T>(values_, values_size);
at::symint::resize_<T>(indices_, {T(sparse_dim), nnz});
}
if (!size_equals_sizes) {
set_sizes_and_strides(size, std::vector<T>(size.size()));
}
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
refresh_numel();
}
void resize_(int64_t sparse_dim, int64_t dense_dim, ArrayRef<int64_t> size) {
return _resize_(sparse_dim, dense_dim, size);
}
void resize_(
int64_t sparse_dim,
int64_t dense_dim,
ArrayRef<c10::SymInt> size) {
return _resize_(sparse_dim, dense_dim, size);
}
// NOTE: this function will resize the sparse tensor and also set `indices`
// and `values` to empty.
void resize_and_clear_(
int64_t sparse_dim,
int64_t dense_dim,
IntArrayRef size) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"resize_and_clear_ ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"resize_and_clear_ called on tensor with symbolic shape")
TORCH_CHECK(
sparse_dim + dense_dim == static_cast<int64_t>(size.size()),
"number of dimensions must be sparse_dim (",
sparse_dim,
") + dense_dim (",
dense_dim,
"), but got ",
size.size());
set_sizes_and_strides(size, std::vector<int64_t>(size.size()));
sparse_dim_ = sparse_dim;
dense_dim_ = dense_dim;
auto empty_indices = at::empty({sparse_dim, 0}, indices().options());
std::vector<int64_t> values_size = {0};
auto dense_size = sizes().slice(sparse_dim);
values_size.insert(values_size.end(), dense_size.begin(), dense_size.end());
auto empty_values = at::empty(values_size, values().options());
set_indices_and_values_unsafe(empty_indices, empty_values);
refresh_numel();
}
void set_coalesced(bool coalesced) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_coalesced ",
err_msg_tensor_metadata_change_not_allowed);
coalesced_ = coalesced;
}
// NOTE: this function is only used internally and not exposed to Python
// frontend
void set_nnz_and_narrow(int64_t new_nnz) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_nnz_and_narrow ",
err_msg_tensor_metadata_change_not_allowed);
AT_ASSERT(new_nnz <= nnz());
indices_ = indices_.narrow(1, 0, new_nnz);
values_ = values_.narrow(0, 0, new_nnz);
if (new_nnz < 2) {
coalesced_ = true;
}
}
// Takes indices and values and directly puts them into the sparse tensor, no
// copy. NOTE: this function is unsafe because it doesn't check whether any
// indices are out of boundaries of `sizes`, so it should ONLY be used where
// we know that the indices are guaranteed to be within bounds. This used to
// be called THSTensor_(_move) NB: This used to be able to avoid a refcount
// bump, but I was too lazy to make it happen
void set_indices_and_values_unsafe(
const Tensor& indices,
const Tensor& values);
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const override {
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
copy_tensor_metadata(
/*src_sparse_impl=*/this,
/*dest_sparse_impl=*/impl.get(),
/*version_counter=*/version_counter,
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
return impl;
}
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const override {
auto impl = c10::make_intrusive<SparseTensorImpl>(key_set(), dtype());
copy_tensor_metadata(
/*src_sparse_impl=*/this,
/*dest_sparse_impl=*/impl.get(),
/*version_counter=*/std::move(version_counter),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change);
impl->refresh_numel();
return impl;
}
/**
* Shallow-copies data from another TensorImpl into this TensorImpl.
*
* For why this function doesn't check this TensorImpl's
* `allow_tensor_metadata_change_`, see NOTE [ TensorImpl Shallow-Copying ].
*/
void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) override {
AT_ASSERT(has_compatible_shallow_copy_type(impl->key_set()));
auto sparse_impl = static_cast<const SparseTensorImpl*>(impl.get());
copy_tensor_metadata(
/*src_sparse_impl=*/sparse_impl,
/*dest_sparse_impl=*/this,
/*version_counter=*/version_counter(),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
refresh_numel();
}
private:
explicit SparseTensorImpl(
at::DispatchKeySet,
const caffe2::TypeMeta,
at::Tensor indices,
at::Tensor values);
/**
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
* storage_offset) from one TensorImpl to another TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
* [ TensorImpl Shallow-Copying ].
*/
static void copy_tensor_metadata(
const SparseTensorImpl* src_sparse_impl,
SparseTensorImpl* dest_sparse_impl,
c10::VariableVersion version_counter,
bool allow_tensor_metadata_change) {
TensorImpl::copy_tensor_metadata(
src_sparse_impl,
dest_sparse_impl,
std::move(version_counter),
allow_tensor_metadata_change);
// Sparse-specific fields
dest_sparse_impl->sparse_dim_ = src_sparse_impl->sparse_dim();
dest_sparse_impl->dense_dim_ = src_sparse_impl->dense_dim();
dest_sparse_impl->indices_ = src_sparse_impl->indices();
dest_sparse_impl->values_ = src_sparse_impl->values();
dest_sparse_impl->coalesced_ = src_sparse_impl->coalesced();
}
const char* tensorimpl_type_name() const override;
};
} // namespace at