539 lines
20 KiB
C
539 lines
20 KiB
C
|
#pragma once
|
||
|
|
||
|
/// Defines the Half type (half-precision floating-point) including conversions
|
||
|
/// to standard C types and basic arithmetic operations. Note that arithmetic
|
||
|
/// operations are implemented by converting to floating point and
|
||
|
/// performing the operation in float32, instead of using CUDA half intrinsics.
|
||
|
/// Most uses of this type within ATen are memory bound, including the
|
||
|
/// element-wise kernels, and the half intrinsics aren't efficient on all GPUs.
|
||
|
/// If you are writing a compute bound kernel, you can use the CUDA half
|
||
|
/// intrinsics directly on the Half type from device code.
|
||
|
|
||
|
#include <c10/macros/Export.h>
|
||
|
#include <c10/macros/Macros.h>
|
||
|
#include <c10/util/TypeSafeSignMath.h>
|
||
|
#include <c10/util/complex.h>
|
||
|
#include <c10/util/floating_point_utils.h>
|
||
|
#include <type_traits>
|
||
|
|
||
|
#if defined(__cplusplus) && (__cplusplus >= 201103L)
|
||
|
#include <cmath>
|
||
|
#elif !defined(__OPENCL_VERSION__)
|
||
|
#include <math.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#include <intrin.h>
|
||
|
#endif
|
||
|
|
||
|
#include <cstdint>
|
||
|
#include <cstring>
|
||
|
#include <iosfwd>
|
||
|
#include <limits>
|
||
|
|
||
|
#ifdef __CUDACC__
|
||
|
#include <cuda_fp16.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef __HIPCC__
|
||
|
#include <hip/hip_fp16.h>
|
||
|
#endif
|
||
|
|
||
|
#if defined(CL_SYCL_LANGUAGE_VERSION)
|
||
|
#include <CL/sycl.hpp> // for SYCL 1.2.1
|
||
|
#elif defined(SYCL_LANGUAGE_VERSION)
|
||
|
#include <sycl/sycl.hpp> // for SYCL 2020
|
||
|
#endif
|
||
|
|
||
|
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||
|
#include <arm_neon.h>
|
||
|
#endif
|
||
|
|
||
|
namespace c10 {
|
||
|
|
||
|
namespace detail {
|
||
|
|
||
|
/*
|
||
|
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit
|
||
|
* representation, to a 32-bit floating-point number in IEEE single-precision
|
||
|
* format, in bit representation.
|
||
|
*
|
||
|
* @note The implementation doesn't use any floating-point operations.
|
||
|
*/
|
||
|
inline uint32_t fp16_ieee_to_fp32_bits(uint16_t h) {
|
||
|
/*
|
||
|
* Extend the half-precision floating-point number to 32 bits and shift to the
|
||
|
* upper part of the 32-bit word:
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* Bits 31 26-30 16-25 0-15
|
||
|
*
|
||
|
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0
|
||
|
* - zero bits.
|
||
|
*/
|
||
|
const uint32_t w = (uint32_t)h << 16;
|
||
|
/*
|
||
|
* Extract the sign of the input number into the high bit of the 32-bit word:
|
||
|
*
|
||
|
* +---+----------------------------------+
|
||
|
* | S |0000000 00000000 00000000 00000000|
|
||
|
* +---+----------------------------------+
|
||
|
* Bits 31 0-31
|
||
|
*/
|
||
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
||
|
/*
|
||
|
* Extract mantissa and biased exponent of the input number into the bits 0-30
|
||
|
* of the 32-bit word:
|
||
|
*
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* | 0 |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* Bits 30 27-31 17-26 0-16
|
||
|
*/
|
||
|
const uint32_t nonsign = w & UINT32_C(0x7FFFFFFF);
|
||
|
/*
|
||
|
* Renorm shift is the number of bits to shift mantissa left to make the
|
||
|
* half-precision number normalized. If the initial number is normalized, some
|
||
|
* of its high 6 bits (sign == 0 and 5-bit exponent) equals one. In this case
|
||
|
* renorm_shift == 0. If the number is denormalize, renorm_shift > 0. Note
|
||
|
* that if we shift denormalized nonsign by renorm_shift, the unit bit of
|
||
|
* mantissa will shift into exponent, turning the biased exponent into 1, and
|
||
|
* making mantissa normalized (i.e. without leading 1).
|
||
|
*/
|
||
|
#ifdef _MSC_VER
|
||
|
unsigned long nonsign_bsr;
|
||
|
_BitScanReverse(&nonsign_bsr, (unsigned long)nonsign);
|
||
|
uint32_t renorm_shift = (uint32_t)nonsign_bsr ^ 31;
|
||
|
#else
|
||
|
uint32_t renorm_shift = __builtin_clz(nonsign);
|
||
|
#endif
|
||
|
renorm_shift = renorm_shift > 5 ? renorm_shift - 5 : 0;
|
||
|
/*
|
||
|
* Iff half-precision number has exponent of 15, the addition overflows
|
||
|
* it into bit 31, and the subsequent shift turns the high 9 bits
|
||
|
* into 1. Thus inf_nan_mask == 0x7F800000 if the half-precision number
|
||
|
* had exponent of 15 (i.e. was NaN or infinity) 0x00000000 otherwise
|
||
|
*/
|
||
|
const int32_t inf_nan_mask =
|
||
|
((int32_t)(nonsign + 0x04000000) >> 8) & INT32_C(0x7F800000);
|
||
|
/*
|
||
|
* Iff nonsign is 0, it overflows into 0xFFFFFFFF, turning bit 31
|
||
|
* into 1. Otherwise, bit 31 remains 0. The signed shift right by 31
|
||
|
* broadcasts bit 31 into all bits of the zero_mask. Thus zero_mask ==
|
||
|
* 0xFFFFFFFF if the half-precision number was zero (+0.0h or -0.0h)
|
||
|
* 0x00000000 otherwise
|
||
|
*/
|
||
|
const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
|
||
|
/*
|
||
|
* 1. Shift nonsign left by renorm_shift to normalize it (if the input
|
||
|
* was denormal)
|
||
|
* 2. Shift nonsign right by 3 so the exponent (5 bits originally)
|
||
|
* becomes an 8-bit field and 10-bit mantissa shifts into the 10 high
|
||
|
* bits of the 23-bit mantissa of IEEE single-precision number.
|
||
|
* 3. Add 0x70 to the exponent (starting at bit 23) to compensate the
|
||
|
* different in exponent bias (0x7F for single-precision number less 0xF
|
||
|
* for half-precision number).
|
||
|
* 4. Subtract renorm_shift from the exponent (starting at bit 23) to
|
||
|
* account for renormalization. As renorm_shift is less than 0x70, this
|
||
|
* can be combined with step 3.
|
||
|
* 5. Binary OR with inf_nan_mask to turn the exponent into 0xFF if the
|
||
|
* input was NaN or infinity.
|
||
|
* 6. Binary ANDNOT with zero_mask to turn the mantissa and exponent
|
||
|
* into zero if the input was zero.
|
||
|
* 7. Combine with the sign of the input number.
|
||
|
*/
|
||
|
return sign |
|
||
|
((((nonsign << renorm_shift >> 3) + ((0x70 - renorm_shift) << 23)) |
|
||
|
inf_nan_mask) &
|
||
|
~zero_mask);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert a 16-bit floating-point number in IEEE half-precision format, in bit
|
||
|
* representation, to a 32-bit floating-point number in IEEE single-precision
|
||
|
* format.
|
||
|
*
|
||
|
* @note The implementation relies on IEEE-like (no assumption about rounding
|
||
|
* mode and no operations on denormals) floating-point operations and bitcasts
|
||
|
* between integer and floating-point variables.
|
||
|
*/
|
||
|
C10_HOST_DEVICE inline float fp16_ieee_to_fp32_value(uint16_t h) {
|
||
|
/*
|
||
|
* Extend the half-precision floating-point number to 32 bits and shift to the
|
||
|
* upper part of the 32-bit word:
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* | S |EEEEE|MM MMMM MMMM|0000 0000 0000 0000|
|
||
|
* +---+-----+------------+-------------------+
|
||
|
* Bits 31 26-30 16-25 0-15
|
||
|
*
|
||
|
* S - sign bit, E - bits of the biased exponent, M - bits of the mantissa, 0
|
||
|
* - zero bits.
|
||
|
*/
|
||
|
const uint32_t w = (uint32_t)h << 16;
|
||
|
/*
|
||
|
* Extract the sign of the input number into the high bit of the 32-bit word:
|
||
|
*
|
||
|
* +---+----------------------------------+
|
||
|
* | S |0000000 00000000 00000000 00000000|
|
||
|
* +---+----------------------------------+
|
||
|
* Bits 31 0-31
|
||
|
*/
|
||
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
||
|
/*
|
||
|
* Extract mantissa and biased exponent of the input number into the high bits
|
||
|
* of the 32-bit word:
|
||
|
*
|
||
|
* +-----+------------+---------------------+
|
||
|
* |EEEEE|MM MMMM MMMM|0 0000 0000 0000 0000|
|
||
|
* +-----+------------+---------------------+
|
||
|
* Bits 27-31 17-26 0-16
|
||
|
*/
|
||
|
const uint32_t two_w = w + w;
|
||
|
|
||
|
/*
|
||
|
* Shift mantissa and exponent into bits 23-28 and bits 13-22 so they become
|
||
|
* mantissa and exponent of a single-precision floating-point number:
|
||
|
*
|
||
|
* S|Exponent | Mantissa
|
||
|
* +-+---+-----+------------+----------------+
|
||
|
* |0|000|EEEEE|MM MMMM MMMM|0 0000 0000 0000|
|
||
|
* +-+---+-----+------------+----------------+
|
||
|
* Bits | 23-31 | 0-22
|
||
|
*
|
||
|
* Next, there are some adjustments to the exponent:
|
||
|
* - The exponent needs to be corrected by the difference in exponent bias
|
||
|
* between single-precision and half-precision formats (0x7F - 0xF = 0x70)
|
||
|
* - Inf and NaN values in the inputs should become Inf and NaN values after
|
||
|
* conversion to the single-precision number. Therefore, if the biased
|
||
|
* exponent of the half-precision input was 0x1F (max possible value), the
|
||
|
* biased exponent of the single-precision output must be 0xFF (max possible
|
||
|
* value). We do this correction in two steps:
|
||
|
* - First, we adjust the exponent by (0xFF - 0x1F) = 0xE0 (see exp_offset
|
||
|
* below) rather than by 0x70 suggested by the difference in the exponent bias
|
||
|
* (see above).
|
||
|
* - Then we multiply the single-precision result of exponent adjustment by
|
||
|
* 2**(-112) to reverse the effect of exponent adjustment by 0xE0 less the
|
||
|
* necessary exponent adjustment by 0x70 due to difference in exponent bias.
|
||
|
* The floating-point multiplication hardware would ensure than Inf and
|
||
|
* NaN would retain their value on at least partially IEEE754-compliant
|
||
|
* implementations.
|
||
|
*
|
||
|
* Note that the above operations do not handle denormal inputs (where biased
|
||
|
* exponent == 0). However, they also do not operate on denormal inputs, and
|
||
|
* do not produce denormal results.
|
||
|
*/
|
||
|
constexpr uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
||
|
// const float exp_scale = 0x1.0p-112f;
|
||
|
constexpr uint32_t scale_bits = (uint32_t)15 << 23;
|
||
|
float exp_scale_val = 0;
|
||
|
std::memcpy(&exp_scale_val, &scale_bits, sizeof(exp_scale_val));
|
||
|
const float exp_scale = exp_scale_val;
|
||
|
const float normalized_value =
|
||
|
fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
||
|
|
||
|
/*
|
||
|
* Convert denormalized half-precision inputs into single-precision results
|
||
|
* (always normalized). Zero inputs are also handled here.
|
||
|
*
|
||
|
* In a denormalized number the biased exponent is zero, and mantissa has
|
||
|
* on-zero bits. First, we shift mantissa into bits 0-9 of the 32-bit word.
|
||
|
*
|
||
|
* zeros | mantissa
|
||
|
* +---------------------------+------------+
|
||
|
* |0000 0000 0000 0000 0000 00|MM MMMM MMMM|
|
||
|
* +---------------------------+------------+
|
||
|
* Bits 10-31 0-9
|
||
|
*
|
||
|
* Now, remember that denormalized half-precision numbers are represented as:
|
||
|
* FP16 = mantissa * 2**(-24).
|
||
|
* The trick is to construct a normalized single-precision number with the
|
||
|
* same mantissa and thehalf-precision input and with an exponent which would
|
||
|
* scale the corresponding mantissa bits to 2**(-24). A normalized
|
||
|
* single-precision floating-point number is represented as: FP32 = (1 +
|
||
|
* mantissa * 2**(-23)) * 2**(exponent - 127) Therefore, when the biased
|
||
|
* exponent is 126, a unit change in the mantissa of the input denormalized
|
||
|
* half-precision number causes a change of the constructed single-precision
|
||
|
* number by 2**(-24), i.e. the same amount.
|
||
|
*
|
||
|
* The last step is to adjust the bias of the constructed single-precision
|
||
|
* number. When the input half-precision number is zero, the constructed
|
||
|
* single-precision number has the value of FP32 = 1 * 2**(126 - 127) =
|
||
|
* 2**(-1) = 0.5 Therefore, we need to subtract 0.5 from the constructed
|
||
|
* single-precision number to get the numerical equivalent of the input
|
||
|
* half-precision number.
|
||
|
*/
|
||
|
constexpr uint32_t magic_mask = UINT32_C(126) << 23;
|
||
|
constexpr float magic_bias = 0.5f;
|
||
|
const float denormalized_value =
|
||
|
fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
||
|
|
||
|
/*
|
||
|
* - Choose either results of conversion of input as a normalized number, or
|
||
|
* as a denormalized number, depending on the input exponent. The variable
|
||
|
* two_w contains input exponent in bits 27-31, therefore if its smaller than
|
||
|
* 2**27, the input is either a denormal number, or zero.
|
||
|
* - Combine the result of conversion of exponent and mantissa with the sign
|
||
|
* of the input number.
|
||
|
*/
|
||
|
constexpr uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
||
|
const uint32_t result = sign |
|
||
|
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value)
|
||
|
: fp32_to_bits(normalized_value));
|
||
|
return fp32_from_bits(result);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Convert a 32-bit floating-point number in IEEE single-precision format to a
|
||
|
* 16-bit floating-point number in IEEE half-precision format, in bit
|
||
|
* representation.
|
||
|
*
|
||
|
* @note The implementation relies on IEEE-like (no assumption about rounding
|
||
|
* mode and no operations on denormals) floating-point operations and bitcasts
|
||
|
* between integer and floating-point variables.
|
||
|
*/
|
||
|
inline uint16_t fp16_ieee_from_fp32_value(float f) {
|
||
|
// const float scale_to_inf = 0x1.0p+112f;
|
||
|
// const float scale_to_zero = 0x1.0p-110f;
|
||
|
constexpr uint32_t scale_to_inf_bits = (uint32_t)239 << 23;
|
||
|
constexpr uint32_t scale_to_zero_bits = (uint32_t)17 << 23;
|
||
|
float scale_to_inf_val = 0, scale_to_zero_val = 0;
|
||
|
std::memcpy(&scale_to_inf_val, &scale_to_inf_bits, sizeof(scale_to_inf_val));
|
||
|
std::memcpy(
|
||
|
&scale_to_zero_val, &scale_to_zero_bits, sizeof(scale_to_zero_val));
|
||
|
const float scale_to_inf = scale_to_inf_val;
|
||
|
const float scale_to_zero = scale_to_zero_val;
|
||
|
|
||
|
#if defined(_MSC_VER) && _MSC_VER == 1916
|
||
|
float base = ((signbit(f) != 0 ? -f : f) * scale_to_inf) * scale_to_zero;
|
||
|
#else
|
||
|
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
||
|
#endif
|
||
|
|
||
|
const uint32_t w = fp32_to_bits(f);
|
||
|
const uint32_t shl1_w = w + w;
|
||
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
||
|
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
||
|
if (bias < UINT32_C(0x71000000)) {
|
||
|
bias = UINT32_C(0x71000000);
|
||
|
}
|
||
|
|
||
|
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
||
|
const uint32_t bits = fp32_to_bits(base);
|
||
|
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
||
|
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
||
|
const uint32_t nonsign = exp_bits + mantissa_bits;
|
||
|
return static_cast<uint16_t>(
|
||
|
(sign >> 16) |
|
||
|
(shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign));
|
||
|
}
|
||
|
|
||
|
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||
|
constexpr inline float16_t fp16_from_bits(uint16_t h) {
|
||
|
union {
|
||
|
uint16_t as_bits;
|
||
|
float16_t as_value;
|
||
|
} fp16 = {h};
|
||
|
return fp16.as_value;
|
||
|
}
|
||
|
|
||
|
constexpr inline uint16_t fp16_to_bits(float16_t f) {
|
||
|
union {
|
||
|
float16_t as_value;
|
||
|
uint16_t as_bits;
|
||
|
} fp16 = {.as_value = f};
|
||
|
return fp16.as_bits;
|
||
|
}
|
||
|
|
||
|
// According to https://godbolt.org/z/8s14GvEjo it would translate to single
|
||
|
// fcvt s0, h0
|
||
|
inline float native_fp16_to_fp32_value(uint16_t h) {
|
||
|
return static_cast<float>(fp16_from_bits(h));
|
||
|
}
|
||
|
|
||
|
inline uint16_t native_fp16_from_fp32_value(float f) {
|
||
|
return fp16_to_bits(static_cast<float16_t>(f));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
} // namespace detail
|
||
|
|
||
|
struct alignas(2) Half {
|
||
|
unsigned short x;
|
||
|
|
||
|
struct from_bits_t {};
|
||
|
C10_HOST_DEVICE static constexpr from_bits_t from_bits() {
|
||
|
return from_bits_t();
|
||
|
}
|
||
|
|
||
|
// HIP wants __host__ __device__ tag, CUDA does not
|
||
|
#if defined(USE_ROCM)
|
||
|
C10_HOST_DEVICE Half() = default;
|
||
|
#else
|
||
|
Half() = default;
|
||
|
#endif
|
||
|
|
||
|
constexpr C10_HOST_DEVICE Half(unsigned short bits, from_bits_t) : x(bits) {}
|
||
|
#if defined(__aarch64__) && !defined(C10_MOBILE) && !defined(__CUDACC__)
|
||
|
inline Half(float16_t value);
|
||
|
inline operator float16_t() const;
|
||
|
#else
|
||
|
inline C10_HOST_DEVICE Half(float value);
|
||
|
inline C10_HOST_DEVICE operator float() const;
|
||
|
#endif
|
||
|
|
||
|
#if defined(__CUDACC__) || defined(__HIPCC__)
|
||
|
inline C10_HOST_DEVICE Half(const __half& value);
|
||
|
inline C10_HOST_DEVICE operator __half() const;
|
||
|
#endif
|
||
|
#ifdef SYCL_LANGUAGE_VERSION
|
||
|
inline C10_HOST_DEVICE Half(const sycl::half& value);
|
||
|
inline C10_HOST_DEVICE operator sycl::half() const;
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
// TODO : move to complex.h
|
||
|
template <>
|
||
|
struct alignas(4) complex<Half> {
|
||
|
Half real_;
|
||
|
Half imag_;
|
||
|
|
||
|
// Constructors
|
||
|
complex() = default;
|
||
|
// Half constructor is not constexpr so the following constructor can't
|
||
|
// be constexpr
|
||
|
C10_HOST_DEVICE explicit inline complex(const Half& real, const Half& imag)
|
||
|
: real_(real), imag_(imag) {}
|
||
|
C10_HOST_DEVICE inline complex(const c10::complex<float>& value)
|
||
|
: real_(value.real()), imag_(value.imag()) {}
|
||
|
|
||
|
// Conversion operator
|
||
|
inline C10_HOST_DEVICE operator c10::complex<float>() const {
|
||
|
return {real_, imag_};
|
||
|
}
|
||
|
|
||
|
constexpr C10_HOST_DEVICE Half real() const {
|
||
|
return real_;
|
||
|
}
|
||
|
constexpr C10_HOST_DEVICE Half imag() const {
|
||
|
return imag_;
|
||
|
}
|
||
|
|
||
|
C10_HOST_DEVICE complex<Half>& operator+=(const complex<Half>& other) {
|
||
|
real_ = static_cast<float>(real_) + static_cast<float>(other.real_);
|
||
|
imag_ = static_cast<float>(imag_) + static_cast<float>(other.imag_);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
C10_HOST_DEVICE complex<Half>& operator-=(const complex<Half>& other) {
|
||
|
real_ = static_cast<float>(real_) - static_cast<float>(other.real_);
|
||
|
imag_ = static_cast<float>(imag_) - static_cast<float>(other.imag_);
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
C10_HOST_DEVICE complex<Half>& operator*=(const complex<Half>& other) {
|
||
|
auto a = static_cast<float>(real_);
|
||
|
auto b = static_cast<float>(imag_);
|
||
|
auto c = static_cast<float>(other.real());
|
||
|
auto d = static_cast<float>(other.imag());
|
||
|
real_ = a * c - b * d;
|
||
|
imag_ = a * d + b * c;
|
||
|
return *this;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// In some versions of MSVC, there will be a compiler error when building.
|
||
|
// C4146: unary minus operator applied to unsigned type, result still unsigned
|
||
|
// C4804: unsafe use of type 'bool' in operation
|
||
|
// It can be addressed by disabling the following warning.
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable : 4146)
|
||
|
#pragma warning(disable : 4804)
|
||
|
#pragma warning(disable : 4018)
|
||
|
#endif
|
||
|
|
||
|
// The overflow checks may involve float to int conversion which may
|
||
|
// trigger precision loss warning. Re-enable the warning once the code
|
||
|
// is fixed. See T58053069.
|
||
|
C10_CLANG_DIAGNOSTIC_PUSH()
|
||
|
#if C10_CLANG_HAS_WARNING("-Wimplicit-float-conversion")
|
||
|
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-float-conversion")
|
||
|
#endif
|
||
|
|
||
|
// bool can be converted to any type.
|
||
|
// Without specializing on bool, in pytorch_linux_trusty_py2_7_9_build:
|
||
|
// `error: comparison of constant '255' with boolean expression is always false`
|
||
|
// for `f > limit::max()` below
|
||
|
template <typename To, typename From>
|
||
|
std::enable_if_t<std::is_same_v<From, bool>, bool> overflows(
|
||
|
From /*f*/,
|
||
|
bool strict_unsigned = false) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// skip isnan and isinf check for integral types
|
||
|
template <typename To, typename From>
|
||
|
std::enable_if_t<std::is_integral_v<From> && !std::is_same_v<From, bool>, bool>
|
||
|
overflows(From f, bool strict_unsigned = false) {
|
||
|
using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
|
||
|
if constexpr (!limit::is_signed && std::numeric_limits<From>::is_signed) {
|
||
|
// allow for negative numbers to wrap using two's complement arithmetic.
|
||
|
// For example, with uint8, this allows for `a - b` to be treated as
|
||
|
// `a + 255 * b`.
|
||
|
if (!strict_unsigned) {
|
||
|
return greater_than_max<To>(f) ||
|
||
|
(c10::is_negative(f) &&
|
||
|
-static_cast<uint64_t>(f) > static_cast<uint64_t>(limit::max()));
|
||
|
}
|
||
|
}
|
||
|
return c10::less_than_lowest<To>(f) || greater_than_max<To>(f);
|
||
|
}
|
||
|
|
||
|
template <typename To, typename From>
|
||
|
std::enable_if_t<std::is_floating_point_v<From>, bool> overflows(
|
||
|
From f,
|
||
|
bool strict_unsigned = false) {
|
||
|
using limit = std::numeric_limits<typename scalar_value_type<To>::type>;
|
||
|
if (limit::has_infinity && std::isinf(static_cast<double>(f))) {
|
||
|
return false;
|
||
|
}
|
||
|
if (!limit::has_quiet_NaN && (f != f)) {
|
||
|
return true;
|
||
|
}
|
||
|
return f < limit::lowest() || f > limit::max();
|
||
|
}
|
||
|
|
||
|
C10_CLANG_DIAGNOSTIC_POP()
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
#pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
template <typename To, typename From>
|
||
|
std::enable_if_t<is_complex<From>::value, bool> overflows(
|
||
|
From f,
|
||
|
bool strict_unsigned = false) {
|
||
|
// casts from complex to real are considered to overflow if the
|
||
|
// imaginary component is non-zero
|
||
|
if (!is_complex<To>::value && f.imag() != 0) {
|
||
|
return true;
|
||
|
}
|
||
|
// Check for overflow componentwise
|
||
|
// (Technically, the imag overflow check is guaranteed to be false
|
||
|
// when !is_complex<To>, but any optimizer worth its salt will be
|
||
|
// able to figure it out.)
|
||
|
return overflows<
|
||
|
typename scalar_value_type<To>::type,
|
||
|
typename From::value_type>(f.real()) ||
|
||
|
overflows<
|
||
|
typename scalar_value_type<To>::type,
|
||
|
typename From::value_type>(f.imag());
|
||
|
}
|
||
|
|
||
|
C10_API std::ostream& operator<<(std::ostream& out, const Half& value);
|
||
|
|
||
|
} // namespace c10
|
||
|
|
||
|
#include <c10/util/Half-inl.h> // IWYU pragma: keep
|