ai-content-maker/.venv/Lib/site-packages/torch/jit/_check.py

249 lines
9.1 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import ast
import inspect
import textwrap
import warnings
import torch
class AttributeTypeIsSupportedChecker(ast.NodeVisitor):
"""Check the ``__init__`` method of a given ``nn.Module``.
It ensures that all instance-level attributes can be properly initialized.
Specifically, we do type inference based on attribute values...even
if the attribute in question has already been typed using
Python3-style annotations or ``torch.jit.annotate``. This means that
setting an instance-level attribute to ``[]`` (for ``List``),
``{}`` for ``Dict``), or ``None`` (for ``Optional``) isn't enough
information for us to properly initialize that attribute.
An object of this class can walk a given ``nn.Module``'s AST and
determine if it meets our requirements or not.
Known limitations
1. We can only check the AST nodes for certain constructs; we can't
``eval`` arbitrary expressions. This means that function calls,
class instantiations, and complex expressions that resolve to one of
the "empty" values specified above will NOT be flagged as
problematic.
2. We match on string literals, so if the user decides to use a
non-standard import (e.g. `from typing import List as foo`), we
won't catch it.
Example:
.. code-block:: python
class M(torch.nn.Module):
def fn(self):
return []
def __init__(self):
super().__init__()
self.x: List[int] = []
def forward(self, x: List[int]):
self.x = x
return 1
The above code will pass the ``AttributeTypeIsSupportedChecker``
check since we have a function call in ``__init__``. However,
it will still fail later with the ``RuntimeError`` "Tried to set
nonexistent attribute: x. Did you forget to initialize it in
__init__()?".
Args:
nn_module - The instance of ``torch.nn.Module`` whose
``__init__`` method we wish to check
"""
def check(self, nn_module: torch.nn.Module) -> None:
source_lines = inspect.getsource(nn_module.__class__.__init__)
# Ignore comments no matter the indentation
def is_useless_comment(line):
line = line.strip()
return line.startswith("#") and not line.startswith("# type:")
source_lines = "\n".join(
[l for l in source_lines.split("\n") if not is_useless_comment(l)]
)
# This AST only contains the `__init__` method of the nn.Module
init_ast = ast.parse(textwrap.dedent(source_lines))
# Get items annotated in the class body
self.class_level_annotations = list(nn_module.__annotations__.keys())
# Flag for later
self.visiting_class_level_ann = False
self.visit(init_ast)
def _is_empty_container(self, node: ast.AST, ann_type: str) -> bool:
if ann_type == "List":
# Assigning `[]` to a `List` type gives you a Node where
# value=List(elts=[], ctx=Load())
if not isinstance(node, ast.List):
return False
if node.elts:
return False
elif ann_type == "Dict":
# Assigning `{}` to a `Dict` type gives you a Node where
# value=Dict(keys=[], values=[])
if not isinstance(node, ast.Dict):
return False
if node.keys:
return False
elif ann_type == "Optional":
# Assigning `None` to an `Optional` type gives you a
# Node where value=Constant(value=None, kind=None)
if not isinstance(node, ast.Constant):
return False
if node.value: # type: ignore[attr-defined]
return False
return True
def visit_Assign(self, node):
"""Store assignment state when assigning to a Call Node.
If we're visiting a Call Node (the right-hand side of an
assignment statement), we won't be able to check the variable
that we're assigning to (the left-hand side of an assignment).
Because of this, we need to store this state in visitAssign.
(Luckily, we only have to do this if we're assigning to a Call
Node, i.e. ``torch.jit.annotate``. If we're using normal Python
annotations, we'll be visiting an AnnAssign Node, which has its
target built in.)
"""
try:
if (
isinstance(node.value, ast.Call)
and node.targets[0].attr in self.class_level_annotations
):
self.visiting_class_level_ann = True
except AttributeError:
return
self.generic_visit(node)
self.visiting_class_level_ann = False
def visit_AnnAssign(self, node):
"""Visit an AnnAssign node in an ``nn.Module``'s ``__init__`` method.
It checks if it conforms to our attribute annotation rules."""
# If we have a local variable
try:
if node.target.value.id != "self":
return
except AttributeError:
return
# If we have an attribute that's already been annotated at the
# class level
if node.target.attr in self.class_level_annotations:
return
# TODO @ansley: add `Union` once landed
# NB: Even though `Tuple` is a "container", we don't want to
# check for it here. `Tuple` functions as an type with an
# "infinite" number of subtypes, in the sense that you can have
# `Tuple[())]`, `Tuple[T1]`, `Tuple[T2]`, `Tuple[T1, T2]`,
# `Tuple[T2, T1]` and so on, and none of these subtypes can be
# used in place of the other. Therefore, assigning an empty
# tuple in `__init__` CORRECTLY means that that variable
# cannot be reassigned later to a non-empty tuple. Same
# deal with `NamedTuple`
containers = {"List", "Dict", "Optional"}
# If we're not evaluating one of the specified problem types
try:
if node.annotation.value.id not in containers:
return
except AttributeError:
# To evaluate a base type (`str`, `int`, etc.), we would
# have needed to get the name through `node.annotation.id`
# instead of `node.annotation.value.id`. Seems that we're
# not evaluating one of our "containers"
return
# Check if the assigned variable is empty
ann_type = node.annotation.value.id
if not self._is_empty_container(node.value, ann_type):
return
warnings.warn(
"The TorchScript type system doesn't support "
"instance-level annotations on empty non-base "
"types in `__init__`. Instead, either 1) use a "
"type annotation in the class body, or 2) wrap "
"the type in `torch.jit.Attribute`."
)
def visit_Call(self, node):
"""Determine if a Call node is 'torch.jit.annotate' in __init__.
Visit a Call node in an ``nn.Module``'s ``__init__``
method and determine if it's ``torch.jit.annotate``. If so,
see if it conforms to our attribute annotation rules.
"""
# If we have an attribute that's already been annotated at the
# class level
if self.visiting_class_level_ann:
return
# If this isn't a call to `torch.jit.annotate`
try:
if (
node.func.value.value.id != "torch"
or node.func.value.attr != "jit"
or node.func.attr != "annotate"
):
self.generic_visit(node)
elif (
node.func.value.value.id != "jit" or node.func.value.attr != "annotate"
):
self.generic_visit(node)
except AttributeError:
# Looks like we didn't even have the right node structure
# to check for `torch.jit.annotate` in the first place
self.generic_visit(node)
# Invariant: we have a `torch.jit.annotate` or a
# `torch.annotate` call
# A Call Node for `torch.jit.annotate` should have an `args`
# list of length 2 where args[0] represents the annotation and
# args[1] represents the actual value
if len(node.args) != 2:
return
if not isinstance(node.args[0], ast.Subscript):
return
# See notes in `visit_AnnAssign` r.e. containers
containers = {"List", "Dict", "Optional"}
try:
ann_type = node.args[0].value.id # type: ignore[attr-defined]
except AttributeError:
return
if ann_type not in containers:
return
# Check if the assigned variable is empty
if not self._is_empty_container(node.args[1], ann_type):
return
warnings.warn(
"The TorchScript type system doesn't support "
"instance-level annotations on empty non-base "
"types in `__init__`. Instead, either 1) use a "
"type annotation in the class body, or 2) wrap "
"the type in `torch.jit.Attribute`."
)