2849 lines
111 KiB
Python
2849 lines
111 KiB
Python
|
import sys
|
|||
|
|
|||
|
import torch
|
|||
|
from torch._C import _add_docstr, _linalg # type: ignore[attr-defined]
|
|||
|
|
|||
|
LinAlgError = torch._C._LinAlgError # type: ignore[attr-defined]
|
|||
|
|
|||
|
Tensor = torch.Tensor
|
|||
|
|
|||
|
common_notes = {
|
|||
|
"experimental_warning": """This function is "experimental" and it may change in a future PyTorch release.""",
|
|||
|
"sync_note": "When inputs are on a CUDA device, this function synchronizes that device with the CPU.",
|
|||
|
"sync_note_ex": r"When the inputs are on a CUDA device, this function synchronizes only when :attr:`check_errors`\ `= True`.",
|
|||
|
"sync_note_has_ex": ("When inputs are on a CUDA device, this function synchronizes that device with the CPU. "
|
|||
|
"For a version of this function that does not synchronize, see :func:`{}`.")
|
|||
|
}
|
|||
|
|
|||
|
|
|||
|
# Note: This not only adds doc strings for functions in the linalg namespace, but
|
|||
|
# also connects the torch.linalg Python namespace to the torch._C._linalg builtins.
|
|||
|
|
|||
|
cross = _add_docstr(_linalg.linalg_cross, r"""
|
|||
|
linalg.cross(input, other, *, dim=-1, out=None) -> Tensor
|
|||
|
|
|||
|
|
|||
|
Computes the cross product of two 3-dimensional vectors.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches
|
|||
|
of vectors, for which it computes the product along the dimension :attr:`dim`.
|
|||
|
It broadcasts over the batch dimensions.
|
|||
|
|
|||
|
Args:
|
|||
|
input (Tensor): the first input tensor.
|
|||
|
other (Tensor): the second input tensor.
|
|||
|
dim (int, optional): the dimension along which to take the cross-product. Default: `-1`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): the output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Example:
|
|||
|
>>> a = torch.randn(4, 3)
|
|||
|
>>> a
|
|||
|
tensor([[-0.3956, 1.1455, 1.6895],
|
|||
|
[-0.5849, 1.3672, 0.3599],
|
|||
|
[-1.1626, 0.7180, -0.0521],
|
|||
|
[-0.1339, 0.9902, -2.0225]])
|
|||
|
>>> b = torch.randn(4, 3)
|
|||
|
>>> b
|
|||
|
tensor([[-0.0257, -1.4725, -1.2251],
|
|||
|
[-1.1479, -0.7005, -1.9757],
|
|||
|
[-1.3904, 0.3726, -1.1836],
|
|||
|
[-0.9688, -0.7153, 0.2159]])
|
|||
|
>>> torch.linalg.cross(a, b)
|
|||
|
tensor([[ 1.0844, -0.5281, 0.6120],
|
|||
|
[-2.4490, -1.5687, 1.9792],
|
|||
|
[-0.8304, -1.3037, 0.5650],
|
|||
|
[-1.2329, 1.9883, 1.0551]])
|
|||
|
>>> a = torch.randn(1, 3) # a is broadcast to match shape of b
|
|||
|
>>> a
|
|||
|
tensor([[-0.9941, -0.5132, 0.5681]])
|
|||
|
>>> torch.linalg.cross(a, b)
|
|||
|
tensor([[ 1.4653, -1.2325, 1.4507],
|
|||
|
[ 1.4119, -2.6163, 0.1073],
|
|||
|
[ 0.3957, -1.9666, -1.0840],
|
|||
|
[ 0.2956, -0.3357, 0.2139]])
|
|||
|
""")
|
|||
|
|
|||
|
cholesky = _add_docstr(_linalg.linalg_cholesky, r"""
|
|||
|
linalg.cholesky(A, *, upper=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the Cholesky decomposition of a complex Hermitian or real symmetric positive-definite matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **Cholesky decomposition** of a complex Hermitian or real symmetric positive-definite matrix
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = LL^{\text{H}}\mathrlap{\qquad L \in \mathbb{K}^{n \times n}}
|
|||
|
|
|||
|
where :math:`L` is a lower triangular matrix with real positive diagonal (even in the complex case) and
|
|||
|
:math:`L^{\text{H}}` is the conjugate transpose when :math:`L` is complex, and the transpose when :math:`L` is real-valued.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.cholesky_ex")}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.cholesky_ex` for a version of this operation that
|
|||
|
skips the (slow) error checking by default and instead returns the debug
|
|||
|
information. This makes it a faster way to check if a matrix is
|
|||
|
positive-definite.
|
|||
|
|
|||
|
:func:`torch.linalg.eigh` for a different decomposition of a Hermitian matrix.
|
|||
|
The eigenvalue decomposition gives more information about the matrix but it
|
|||
|
slower to compute than the Cholesky decomposition.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of symmetric or Hermitian positive-definite matrices.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
upper (bool, optional): whether to return an upper triangular matrix.
|
|||
|
The tensor returned with upper=True is the conjugate transpose of the tensor
|
|||
|
returned with upper=False.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the :attr:`A` matrix or any matrix in a batched :attr:`A` is not Hermitian
|
|||
|
(resp. symmetric) positive-definite. If :attr:`A` is a batch of matrices,
|
|||
|
the error message will include the batch index of the first matrix that fails
|
|||
|
to meet this condition.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> A = A @ A.T.conj() + torch.eye(2) # creates a Hermitian positive-definite matrix
|
|||
|
>>> A
|
|||
|
tensor([[2.5266+0.0000j, 1.9586-2.0626j],
|
|||
|
[1.9586+2.0626j, 9.4160+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> L = torch.linalg.cholesky(A)
|
|||
|
>>> L
|
|||
|
tensor([[1.5895+0.0000j, 0.0000+0.0000j],
|
|||
|
[1.2322+1.2976j, 2.4928+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> torch.dist(L @ L.T.conj(), A)
|
|||
|
tensor(4.4692e-16, dtype=torch.float64)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2, 2, dtype=torch.float64)
|
|||
|
>>> A = A @ A.mT + torch.eye(2) # batch of symmetric positive-definite matrices
|
|||
|
>>> L = torch.linalg.cholesky(A)
|
|||
|
>>> torch.dist(L @ L.mT, A)
|
|||
|
tensor(5.8747e-16, dtype=torch.float64)
|
|||
|
""")
|
|||
|
|
|||
|
cholesky_ex = _add_docstr(_linalg.linalg_cholesky_ex, r"""
|
|||
|
linalg.cholesky_ex(A, *, upper=False, check_errors=False, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the Cholesky decomposition of a complex Hermitian or real
|
|||
|
symmetric positive-definite matrix.
|
|||
|
|
|||
|
This function skips the (slow) error checking and error message construction
|
|||
|
of :func:`torch.linalg.cholesky`, instead directly returning the LAPACK
|
|||
|
error codes as part of a named tuple ``(L, info)``. This makes this function
|
|||
|
a faster way to check if a matrix is positive-definite, and it provides an
|
|||
|
opportunity to handle decomposition errors more gracefully or performantly
|
|||
|
than :func:`torch.linalg.cholesky` does.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
If :attr:`A` is not a Hermitian positive-definite matrix, or if it's a batch of matrices
|
|||
|
and one or more of them is not a Hermitian positive-definite matrix,
|
|||
|
then ``info`` stores a positive integer for the corresponding matrix.
|
|||
|
The positive integer indicates the order of the leading minor that is not positive-definite,
|
|||
|
and the decomposition could not be completed.
|
|||
|
``info`` filled with zeros indicates that the decomposition was successful.
|
|||
|
If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_ex"]}
|
|||
|
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
:func:`torch.linalg.cholesky` is a NumPy compatible variant that always checks for errors.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): the Hermitian `n \times n` matrix or the batch of such matrices of size
|
|||
|
`(*, n, n)` where `*` is one or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
upper (bool, optional): whether to return an upper triangular matrix.
|
|||
|
The tensor returned with upper=True is the conjugate transpose of the tensor
|
|||
|
returned with upper=False.
|
|||
|
check_errors (bool, optional): controls whether to check the content of ``infos``. Default: `False`.
|
|||
|
out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> A = A @ A.t().conj() # creates a Hermitian positive-definite matrix
|
|||
|
>>> L, info = torch.linalg.cholesky_ex(A)
|
|||
|
>>> A
|
|||
|
tensor([[ 2.3792+0.0000j, -0.9023+0.9831j],
|
|||
|
[-0.9023-0.9831j, 0.8757+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> L
|
|||
|
tensor([[ 1.5425+0.0000j, 0.0000+0.0000j],
|
|||
|
[-0.5850-0.6374j, 0.3567+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> info
|
|||
|
tensor(0, dtype=torch.int32)
|
|||
|
|
|||
|
""")
|
|||
|
|
|||
|
inv = _add_docstr(_linalg.linalg_inv, r"""
|
|||
|
linalg.inv(A, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the inverse of a square matrix if it exists.
|
|||
|
Throws a `RuntimeError` if the matrix is not invertible.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
for a matrix :math:`A \in \mathbb{K}^{n \times n}`,
|
|||
|
its **inverse matrix** :math:`A^{-1} \in \mathbb{K}^{n \times n}` (if it exists) is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A^{-1}A = AA^{-1} = \mathrm{I}_n
|
|||
|
|
|||
|
where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.
|
|||
|
|
|||
|
The inverse matrix exists if and only if :math:`A` is `invertible`_. In this case,
|
|||
|
the inverse is unique.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices
|
|||
|
then the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.inv_ex")}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. note::
|
|||
|
Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by
|
|||
|
the inverse, as::
|
|||
|
|
|||
|
linalg.solve(A, B) == linalg.inv(A) @ B # When B is a matrix
|
|||
|
|
|||
|
It is always preferred to use :func:`~solve` when possible, as it is faster and more
|
|||
|
numerically stable than computing the inverse explicitly.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.pinv` computes the pseudoinverse (Moore-Penrose inverse) of matrices
|
|||
|
of any shape.
|
|||
|
|
|||
|
:func:`torch.linalg.solve` computes :attr:`A`\ `.inv() @ \ `:attr:`B` with a
|
|||
|
numerically stable algorithm.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of invertible matrices.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the matrix :attr:`A` or any matrix in the batch of matrices :attr:`A` is not invertible.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(4, 4)
|
|||
|
>>> Ainv = torch.linalg.inv(A)
|
|||
|
>>> torch.dist(A @ Ainv, torch.eye(4))
|
|||
|
tensor(1.1921e-07)
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 4, 4) # Batch of matrices
|
|||
|
>>> Ainv = torch.linalg.inv(A)
|
|||
|
>>> torch.dist(A @ Ainv, torch.eye(4))
|
|||
|
tensor(1.9073e-06)
|
|||
|
|
|||
|
>>> A = torch.randn(4, 4, dtype=torch.complex128) # Complex matrix
|
|||
|
>>> Ainv = torch.linalg.inv(A)
|
|||
|
>>> torch.dist(A @ Ainv, torch.eye(4))
|
|||
|
tensor(7.5107e-16, dtype=torch.float64)
|
|||
|
|
|||
|
.. _invertible:
|
|||
|
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
|
|||
|
""")
|
|||
|
|
|||
|
solve_ex = _add_docstr(_linalg.linalg_solve_ex, r"""
|
|||
|
linalg.solve_ex(A, B, *, left=True, check_errors=False, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
A version of :func:`~solve` that does not perform error checks unless :attr:`check_errors`\ `= True`.
|
|||
|
It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_ex"]}
|
|||
|
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.
|
|||
|
check_errors (bool, optional): controls whether to check the content of ``infos`` and raise
|
|||
|
an error if it is non-zero. Default: `False`.
|
|||
|
out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(result, info)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> Ainv, info = torch.linalg.solve_ex(A)
|
|||
|
>>> torch.dist(torch.linalg.inv(A), Ainv)
|
|||
|
tensor(0.)
|
|||
|
>>> info
|
|||
|
tensor(0, dtype=torch.int32)
|
|||
|
|
|||
|
.. _LAPACK's getrf:
|
|||
|
https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html
|
|||
|
""")
|
|||
|
|
|||
|
inv_ex = _add_docstr(_linalg.linalg_inv_ex, r"""
|
|||
|
linalg.inv_ex(A, *, check_errors=False, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the inverse of a square matrix if it is invertible.
|
|||
|
|
|||
|
Returns a namedtuple ``(inverse, info)``. ``inverse`` contains the result of
|
|||
|
inverting :attr:`A` and ``info`` stores the LAPACK error codes.
|
|||
|
|
|||
|
If :attr:`A` is not an invertible matrix, or if it's a batch of matrices
|
|||
|
and one or more of them is not an invertible matrix,
|
|||
|
then ``info`` stores a positive integer for the corresponding matrix.
|
|||
|
The positive integer indicates the diagonal element of the LU decomposition of
|
|||
|
the input matrix that is exactly zero.
|
|||
|
``info`` filled with zeros indicates that the inversion was successful.
|
|||
|
If ``check_errors=True`` and ``info`` contains positive integers, then a RuntimeError is thrown.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_ex"]}
|
|||
|
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.inv` is a NumPy compatible variant that always checks for errors.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of square matrices.
|
|||
|
check_errors (bool, optional): controls whether to check the content of ``info``. Default: `False`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> Ainv, info = torch.linalg.inv_ex(A)
|
|||
|
>>> torch.dist(torch.linalg.inv(A), Ainv)
|
|||
|
tensor(0.)
|
|||
|
>>> info
|
|||
|
tensor(0, dtype=torch.int32)
|
|||
|
|
|||
|
""")
|
|||
|
|
|||
|
det = _add_docstr(_linalg.linalg_det, r"""
|
|||
|
linalg.det(A, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the determinant of a square matrix.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.slogdet` computes the sign and natural logarithm of the absolute
|
|||
|
value of the determinant of square matrices.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> torch.linalg.det(A)
|
|||
|
tensor(0.0934)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2, 2)
|
|||
|
>>> torch.linalg.det(A)
|
|||
|
tensor([1.1990, 0.4099, 0.7386])
|
|||
|
""")
|
|||
|
|
|||
|
slogdet = _add_docstr(_linalg.linalg_slogdet, r"""
|
|||
|
linalg.slogdet(A, *, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the sign and natural logarithm of the absolute value of the determinant of a square matrix.
|
|||
|
|
|||
|
For complex :attr:`A`, it returns the sign and the natural logarithm of the modulus of the
|
|||
|
determinant, that is, a logarithmic polar decomposition of the determinant.
|
|||
|
|
|||
|
The determinant can be recovered as `sign * exp(logabsdet)`.
|
|||
|
When a matrix has a determinant of zero, it returns `(0, -inf)`.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.det` computes the determinant of square matrices.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(sign, logabsdet)`.
|
|||
|
|
|||
|
`sign` will have the same dtype as :attr:`A`.
|
|||
|
|
|||
|
`logabsdet` will always be real-valued, even when :attr:`A` is complex.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> A
|
|||
|
tensor([[ 0.0032, -0.2239, -1.1219],
|
|||
|
[-0.6690, 0.1161, 0.4053],
|
|||
|
[-1.6218, -0.9273, -0.0082]])
|
|||
|
>>> torch.linalg.det(A)
|
|||
|
tensor(-0.7576)
|
|||
|
>>> torch.logdet(A)
|
|||
|
tensor(nan)
|
|||
|
>>> torch.linalg.slogdet(A)
|
|||
|
torch.return_types.linalg_slogdet(sign=tensor(-1.), logabsdet=tensor(-0.2776))
|
|||
|
""")
|
|||
|
|
|||
|
eig = _add_docstr(_linalg.linalg_eig, r"""
|
|||
|
linalg.eig(A, *, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the eigenvalue decomposition of a square matrix if it exists.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **eigenvalue decomposition** of a square matrix
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}` (if it exists) is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = V \operatorname{diag}(\Lambda) V^{-1}\mathrlap{\qquad V \in \mathbb{C}^{n \times n}, \Lambda \in \mathbb{C}^n}
|
|||
|
|
|||
|
This decomposition exists if and only if :math:`A` is `diagonalizable`_.
|
|||
|
This is the case when all its eigenvalues are different.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. note:: The eigenvalues and eigenvectors of a real matrix may be complex.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. warning:: This function assumes that :attr:`A` is `diagonalizable`_ (for example, when all the
|
|||
|
eigenvalues are different). If it is not diagonalizable, the returned
|
|||
|
eigenvalues will be correct but :math:`A \neq V \operatorname{diag}(\Lambda)V^{-1}`.
|
|||
|
|
|||
|
.. warning:: The returned eigenvectors are normalized to have norm `1`.
|
|||
|
Even then, the eigenvectors of a matrix are not unique, nor are they continuous with respect to
|
|||
|
:attr:`A`. Due to this lack of uniqueness, different hardware and software may compute
|
|||
|
different eigenvectors.
|
|||
|
|
|||
|
This non-uniqueness is caused by the fact that multiplying an eigenvector by
|
|||
|
by :math:`e^{i \phi}, \phi \in \mathbb{R}` produces another set of valid eigenvectors
|
|||
|
of the matrix. For this reason, the loss function shall not depend on the phase of the
|
|||
|
eigenvectors, as this quantity is not well-defined.
|
|||
|
This is checked when computing the gradients of this function. As such,
|
|||
|
when inputs are on a CUDA device, the computation of the gradients
|
|||
|
of this function synchronizes that device with the CPU.
|
|||
|
|
|||
|
|
|||
|
.. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when
|
|||
|
:attr:`A` has distinct eigenvalues.
|
|||
|
Furthermore, if the distance between any two eigenvalues is close to zero,
|
|||
|
the gradient will be numerically unstable, as it depends on the eigenvalues
|
|||
|
:math:`\lambda_i` through the computation of
|
|||
|
:math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.eigvals` computes only the eigenvalues.
|
|||
|
Unlike :func:`torch.linalg.eig`, the gradients of :func:`~eigvals` are always
|
|||
|
numerically stable.
|
|||
|
|
|||
|
:func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition
|
|||
|
for Hermitian and symmetric matrices.
|
|||
|
|
|||
|
:func:`torch.linalg.svd` for a function that computes another type of spectral
|
|||
|
decomposition that works on matrices of any shape.
|
|||
|
|
|||
|
:func:`torch.linalg.qr` for another (much faster) decomposition that works on matrices of
|
|||
|
any shape.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of diagonalizable matrices.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`V` above.
|
|||
|
|
|||
|
`eigenvalues` and `eigenvectors` will always be complex-valued, even when :attr:`A` is real. The eigenvectors
|
|||
|
will be given by the columns of `eigenvectors`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> A
|
|||
|
tensor([[ 0.9828+0.3889j, -0.4617+0.3010j],
|
|||
|
[ 0.1662-0.7435j, -0.6139+0.0562j]], dtype=torch.complex128)
|
|||
|
>>> L, V = torch.linalg.eig(A)
|
|||
|
>>> L
|
|||
|
tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128)
|
|||
|
>>> V
|
|||
|
tensor([[ 0.9218+0.0000j, 0.1882-0.2220j],
|
|||
|
[-0.0270-0.3867j, 0.9567+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> torch.dist(V @ torch.diag(L) @ torch.linalg.inv(V), A)
|
|||
|
tensor(7.7119e-16, dtype=torch.float64)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2, 2, dtype=torch.float64)
|
|||
|
>>> L, V = torch.linalg.eig(A)
|
|||
|
>>> torch.dist(V @ torch.diag_embed(L) @ torch.linalg.inv(V), A)
|
|||
|
tensor(3.2841e-16, dtype=torch.float64)
|
|||
|
|
|||
|
.. _diagonalizable:
|
|||
|
https://en.wikipedia.org/wiki/Diagonalizable_matrix#Definition
|
|||
|
""")
|
|||
|
|
|||
|
eigvals = _add_docstr(_linalg.linalg_eigvals, r"""
|
|||
|
linalg.eigvals(A, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the eigenvalues of a square matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **eigenvalues** of a square matrix :math:`A \in \mathbb{K}^{n \times n}` are defined
|
|||
|
as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{C}}
|
|||
|
|
|||
|
where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. note:: The eigenvalues of a real matrix may be complex, as the roots of a real polynomial may be complex.
|
|||
|
|
|||
|
The eigenvalues of a matrix are always well-defined, even when the matrix is not diagonalizable.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.eig` computes the full eigenvalue decomposition.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A complex-valued tensor containing the eigenvalues even when :attr:`A` is real.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> L = torch.linalg.eigvals(A)
|
|||
|
>>> L
|
|||
|
tensor([ 1.1226+0.5738j, -0.7537-0.1286j], dtype=torch.complex128)
|
|||
|
|
|||
|
>>> torch.dist(L, torch.linalg.eig(A).eigenvalues)
|
|||
|
tensor(2.4576e-07)
|
|||
|
""")
|
|||
|
|
|||
|
eigh = _add_docstr(_linalg.linalg_eigh, r"""
|
|||
|
linalg.eigh(A, UPLO='L', *, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the eigenvalue decomposition of a complex Hermitian or real symmetric matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **eigenvalue decomposition** of a complex Hermitian or real symmetric matrix
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = Q \operatorname{diag}(\Lambda) Q^{\text{H}}\mathrlap{\qquad Q \in \mathbb{K}^{n \times n}, \Lambda \in \mathbb{R}^n}
|
|||
|
|
|||
|
where :math:`Q^{\text{H}}` is the conjugate transpose when :math:`Q` is complex, and the transpose when :math:`Q` is real-valued.
|
|||
|
:math:`Q` is orthogonal in the real case and unitary in the complex case.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
:attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:
|
|||
|
|
|||
|
- If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation.
|
|||
|
- If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used.
|
|||
|
|
|||
|
The eigenvalues are returned in ascending order.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. note:: The eigenvalues of real symmetric or complex Hermitian matrices are always real.
|
|||
|
|
|||
|
.. warning:: The eigenvectors of a symmetric matrix are not unique, nor are they continuous with
|
|||
|
respect to :attr:`A`. Due to this lack of uniqueness, different hardware and
|
|||
|
software may compute different eigenvectors.
|
|||
|
|
|||
|
This non-uniqueness is caused by the fact that multiplying an eigenvector by
|
|||
|
`-1` in the real case or by :math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex
|
|||
|
case produces another set of valid eigenvectors of the matrix.
|
|||
|
For this reason, the loss function shall not depend on the phase of the eigenvectors, as
|
|||
|
this quantity is not well-defined.
|
|||
|
This is checked for complex inputs when computing the gradients of this function. As such,
|
|||
|
when inputs are complex and are on a CUDA device, the computation of the gradients
|
|||
|
of this function synchronizes that device with the CPU.
|
|||
|
|
|||
|
.. warning:: Gradients computed using the `eigenvectors` tensor will only be finite when
|
|||
|
:attr:`A` has distinct eigenvalues.
|
|||
|
Furthermore, if the distance between any two eigenvalues is close to zero,
|
|||
|
the gradient will be numerically unstable, as it depends on the eigenvalues
|
|||
|
:math:`\lambda_i` through the computation of
|
|||
|
:math:`\frac{1}{\min_{i \neq j} \lambda_i - \lambda_j}`.
|
|||
|
|
|||
|
.. warning:: User may see pytorch crashes if running `eigh` on CUDA devices with CUDA versions before 12.1 update 1
|
|||
|
with large ill-conditioned matrices as inputs.
|
|||
|
Refer to :ref:`Linear Algebra Numerical Stability<Linear Algebra Stability>` for more details.
|
|||
|
If this is the case, user may (1) tune their matrix inputs to be less ill-conditioned,
|
|||
|
or (2) use :func:`torch.backends.cuda.preferred_linalg_library` to
|
|||
|
try other supported backends.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.eigvalsh` computes only the eigenvalues of a Hermitian matrix.
|
|||
|
Unlike :func:`torch.linalg.eigh`, the gradients of :func:`~eigvalsh` are always
|
|||
|
numerically stable.
|
|||
|
|
|||
|
:func:`torch.linalg.cholesky` for a different decomposition of a Hermitian matrix.
|
|||
|
The Cholesky decomposition gives less information about the matrix but is much faster
|
|||
|
to compute than the eigenvalue decomposition.
|
|||
|
|
|||
|
:func:`torch.linalg.eig` for a (slower) function that computes the eigenvalue decomposition
|
|||
|
of a not necessarily Hermitian square matrix.
|
|||
|
|
|||
|
:func:`torch.linalg.svd` for a (slower) function that computes the more general SVD
|
|||
|
decomposition of matrices of any shape.
|
|||
|
|
|||
|
:func:`torch.linalg.qr` for another (much faster) decomposition that works on general
|
|||
|
matrices.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of symmetric or Hermitian matrices.
|
|||
|
UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part
|
|||
|
of :attr:`A` in the computations. Default: `'L'`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(eigenvalues, eigenvectors)` which corresponds to :math:`\Lambda` and :math:`Q` above.
|
|||
|
|
|||
|
`eigenvalues` will always be real-valued, even when :attr:`A` is complex.
|
|||
|
It will also be ordered in ascending order.
|
|||
|
|
|||
|
`eigenvectors` will have the same dtype as :attr:`A` and will contain the eigenvectors as its columns.
|
|||
|
|
|||
|
Examples::
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> A = A + A.T.conj() # creates a Hermitian matrix
|
|||
|
>>> A
|
|||
|
tensor([[2.9228+0.0000j, 0.2029-0.0862j],
|
|||
|
[0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> L, Q = torch.linalg.eigh(A)
|
|||
|
>>> L
|
|||
|
tensor([0.3277, 2.9415], dtype=torch.float64)
|
|||
|
>>> Q
|
|||
|
tensor([[-0.0846+-0.0000j, -0.9964+0.0000j],
|
|||
|
[ 0.9170+0.3898j, -0.0779-0.0331j]], dtype=torch.complex128)
|
|||
|
>>> torch.dist(Q @ torch.diag(L.cdouble()) @ Q.T.conj(), A)
|
|||
|
tensor(6.1062e-16, dtype=torch.float64)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2, 2, dtype=torch.float64)
|
|||
|
>>> A = A + A.mT # creates a batch of symmetric matrices
|
|||
|
>>> L, Q = torch.linalg.eigh(A)
|
|||
|
>>> torch.dist(Q @ torch.diag_embed(L) @ Q.mH, A)
|
|||
|
tensor(1.5423e-15, dtype=torch.float64)
|
|||
|
""")
|
|||
|
|
|||
|
eigvalsh = _add_docstr(_linalg.linalg_eigvalsh, r"""
|
|||
|
linalg.eigvalsh(A, UPLO='L', *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the eigenvalues of a complex Hermitian or real symmetric matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **eigenvalues** of a complex Hermitian or real symmetric matrix :math:`A \in \mathbb{K}^{n \times n}`
|
|||
|
are defined as the roots (counted with multiplicity) of the polynomial `p` of degree `n` given by
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
p(\lambda) = \operatorname{det}(A - \lambda \mathrm{I}_n)\mathrlap{\qquad \lambda \in \mathbb{R}}
|
|||
|
|
|||
|
where :math:`\mathrm{I}_n` is the `n`-dimensional identity matrix.
|
|||
|
The eigenvalues of a real symmetric or complex Hermitian matrix are always real.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
The eigenvalues are returned in ascending order.
|
|||
|
|
|||
|
:attr:`A` is assumed to be Hermitian (resp. symmetric), but this is not checked internally, instead:
|
|||
|
|
|||
|
- If :attr:`UPLO`\ `= 'L'` (default), only the lower triangular part of the matrix is used in the computation.
|
|||
|
- If :attr:`UPLO`\ `= 'U'`, only the upper triangular part of the matrix is used.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.eigh` computes the full eigenvalue decomposition.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of symmetric or Hermitian matrices.
|
|||
|
UPLO ('L', 'U', optional): controls whether to use the upper or lower triangular part
|
|||
|
of :attr:`A` in the computations. Default: `'L'`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor containing the eigenvalues even when :attr:`A` is complex.
|
|||
|
The eigenvalues are returned in ascending order.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2, dtype=torch.complex128)
|
|||
|
>>> A = A + A.T.conj() # creates a Hermitian matrix
|
|||
|
>>> A
|
|||
|
tensor([[2.9228+0.0000j, 0.2029-0.0862j],
|
|||
|
[0.2029+0.0862j, 0.3464+0.0000j]], dtype=torch.complex128)
|
|||
|
>>> torch.linalg.eigvalsh(A)
|
|||
|
tensor([0.3277, 2.9415], dtype=torch.float64)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2, 2, dtype=torch.float64)
|
|||
|
>>> A = A + A.mT # creates a batch of symmetric matrices
|
|||
|
>>> torch.linalg.eigvalsh(A)
|
|||
|
tensor([[ 2.5797, 3.4629],
|
|||
|
[-4.1605, 1.3780],
|
|||
|
[-3.1113, 2.7381]], dtype=torch.float64)
|
|||
|
""")
|
|||
|
|
|||
|
householder_product = _add_docstr(_linalg.linalg_householder_product, r"""
|
|||
|
householder_product(A, tau, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the first `n` columns of a product of Householder matrices.
|
|||
|
|
|||
|
Let :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`, and
|
|||
|
let :math:`V \in \mathbb{K}^{m \times n}` be a matrix with columns :math:`v_i \in \mathbb{K}^m`
|
|||
|
for :math:`i=1,\ldots,m` with :math:`m \geq n`. Denote by :math:`w_i` the vector resulting from
|
|||
|
zeroing out the first :math:`i-1` components of :math:`v_i` and setting to `1` the :math:`i`-th.
|
|||
|
For a vector :math:`\tau \in \mathbb{K}^k` with :math:`k \leq n`, this function computes the
|
|||
|
first :math:`n` columns of the matrix
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
H_1H_2 ... H_k \qquad\text{with}\qquad H_i = \mathrm{I}_m - \tau_i w_i w_i^{\text{H}}
|
|||
|
|
|||
|
where :math:`\mathrm{I}_m` is the `m`-dimensional identity matrix and :math:`w^{\text{H}}` is the
|
|||
|
conjugate transpose when :math:`w` is complex, and the transpose when :math:`w` is real-valued.
|
|||
|
The output matrix is the same size as the input matrix :attr:`A`.
|
|||
|
|
|||
|
See `Representation of Orthogonal or Unitary Matrices`_ for further details.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.geqrf` can be used together with this function to form the `Q` from the
|
|||
|
:func:`~qr` decomposition.
|
|||
|
|
|||
|
:func:`torch.ormqr` is a related function that computes the matrix multiplication
|
|||
|
of a product of Householder matrices with another matrix.
|
|||
|
However, that function is not supported by autograd.
|
|||
|
|
|||
|
.. warning::
|
|||
|
Gradient computations are only well-defined if :math:`tau_i \neq \frac{1}{||v_i||^2}`.
|
|||
|
If this condition is not met, no error will be thrown, but the gradient produced may contain `NaN`.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
tau (Tensor): tensor of shape `(*, k)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if :attr:`A` doesn't satisfy the requirement `m >= n`,
|
|||
|
or :attr:`tau` doesn't satisfy the requirement `n >= k`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 2)
|
|||
|
>>> h, tau = torch.geqrf(A)
|
|||
|
>>> Q = torch.linalg.householder_product(h, tau)
|
|||
|
>>> torch.dist(Q, torch.linalg.qr(A).Q)
|
|||
|
tensor(0.)
|
|||
|
|
|||
|
>>> h = torch.randn(3, 2, 2, dtype=torch.complex128)
|
|||
|
>>> tau = torch.randn(3, 1, dtype=torch.complex128)
|
|||
|
>>> Q = torch.linalg.householder_product(h, tau)
|
|||
|
>>> Q
|
|||
|
tensor([[[ 1.8034+0.4184j, 0.2588-1.0174j],
|
|||
|
[-0.6853+0.7953j, 2.0790+0.5620j]],
|
|||
|
|
|||
|
[[ 1.4581+1.6989j, -1.5360+0.1193j],
|
|||
|
[ 1.3877-0.6691j, 1.3512+1.3024j]],
|
|||
|
|
|||
|
[[ 1.4766+0.5783j, 0.0361+0.6587j],
|
|||
|
[ 0.6396+0.1612j, 1.3693+0.4481j]]], dtype=torch.complex128)
|
|||
|
|
|||
|
.. _Representation of Orthogonal or Unitary Matrices:
|
|||
|
https://www.netlib.org/lapack/lug/node128.html
|
|||
|
""")
|
|||
|
|
|||
|
ldl_factor = _add_docstr(_linalg.linalg_ldl_factor, r"""
|
|||
|
linalg.ldl_factor(A, *, hermitian=False, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes a compact representation of the LDL factorization of a Hermitian or symmetric (possibly indefinite) matrix.
|
|||
|
|
|||
|
When :attr:`A` is complex valued it can be Hermitian (:attr:`hermitian`\ `= True`)
|
|||
|
or symmetric (:attr:`hermitian`\ `= False`).
|
|||
|
|
|||
|
The factorization is of the form the form :math:`A = L D L^T`.
|
|||
|
If :attr:`hermitian` is `True` then transpose operation is the conjugate transpose.
|
|||
|
|
|||
|
:math:`L` (or :math:`U`) and :math:`D` are stored in compact form in ``LD``.
|
|||
|
They follow the format specified by `LAPACK's sytrf`_ function.
|
|||
|
These tensors may be used in :func:`torch.linalg.ldl_solve` to solve linear systems.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.ldl_factor_ex")}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of symmetric or Hermitian matrices.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric.
|
|||
|
For real-valued matrices, this switch has no effect. Default: `False`.
|
|||
|
out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(LD, pivots)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> A = A @ A.mT # make symmetric
|
|||
|
>>> A
|
|||
|
tensor([[7.2079, 4.2414, 1.9428],
|
|||
|
[4.2414, 3.4554, 0.3264],
|
|||
|
[1.9428, 0.3264, 1.3823]])
|
|||
|
>>> LD, pivots = torch.linalg.ldl_factor(A)
|
|||
|
>>> LD
|
|||
|
tensor([[ 7.2079, 0.0000, 0.0000],
|
|||
|
[ 0.5884, 0.9595, 0.0000],
|
|||
|
[ 0.2695, -0.8513, 0.1633]])
|
|||
|
>>> pivots
|
|||
|
tensor([1, 2, 3], dtype=torch.int32)
|
|||
|
|
|||
|
.. _LAPACK's sytrf:
|
|||
|
https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html
|
|||
|
""")
|
|||
|
|
|||
|
ldl_factor_ex = _add_docstr(_linalg.linalg_ldl_factor_ex, r"""
|
|||
|
linalg.ldl_factor_ex(A, *, hermitian=False, check_errors=False, out=None) -> (Tensor, Tensor, Tensor)
|
|||
|
|
|||
|
This is a version of :func:`~ldl_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`.
|
|||
|
It also returns the :attr:`info` tensor returned by `LAPACK's sytrf`_.
|
|||
|
``info`` stores integer error codes from the backend library.
|
|||
|
A positive integer indicates the diagonal element of :math:`D` that is zero.
|
|||
|
Division by 0 will occur if the result is used for solving a system of linear equations.
|
|||
|
``info`` filled with zeros indicates that the factorization was successful.
|
|||
|
If ``check_errors=True`` and ``info`` contains positive integers, then a `RuntimeError` is thrown.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_ex"]}
|
|||
|
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of symmetric or Hermitian matrices.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
hermitian (bool, optional): whether to consider the input to be Hermitian or symmetric.
|
|||
|
For real-valued matrices, this switch has no effect. Default: `False`.
|
|||
|
check_errors (bool, optional): controls whether to check the content of ``info`` and raise
|
|||
|
an error if it is non-zero. Default: `False`.
|
|||
|
out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(LD, pivots, info)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> A = A @ A.mT # make symmetric
|
|||
|
>>> A
|
|||
|
tensor([[7.2079, 4.2414, 1.9428],
|
|||
|
[4.2414, 3.4554, 0.3264],
|
|||
|
[1.9428, 0.3264, 1.3823]])
|
|||
|
>>> LD, pivots, info = torch.linalg.ldl_factor_ex(A)
|
|||
|
>>> LD
|
|||
|
tensor([[ 7.2079, 0.0000, 0.0000],
|
|||
|
[ 0.5884, 0.9595, 0.0000],
|
|||
|
[ 0.2695, -0.8513, 0.1633]])
|
|||
|
>>> pivots
|
|||
|
tensor([1, 2, 3], dtype=torch.int32)
|
|||
|
>>> info
|
|||
|
tensor(0, dtype=torch.int32)
|
|||
|
|
|||
|
.. _LAPACK's sytrf:
|
|||
|
https://www.netlib.org/lapack/explore-html/d3/db6/group__double_s_ycomputational_gad91bde1212277b3e909eb6af7f64858a.html
|
|||
|
""")
|
|||
|
|
|||
|
ldl_solve = _add_docstr(_linalg.linalg_ldl_solve, r"""
|
|||
|
linalg.ldl_solve(LD, pivots, B, *, hermitian=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the solution of a system of linear equations using the LDL factorization.
|
|||
|
|
|||
|
:attr:`LD` and :attr:`pivots` are the compact representation of the LDL factorization and
|
|||
|
are expected to be computed by :func:`torch.linalg.ldl_factor_ex`.
|
|||
|
:attr:`hermitian` argument to this function should be the same
|
|||
|
as the corresponding arguments in :func:`torch.linalg.ldl_factor_ex`.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
LD (Tensor): the `n \times n` matrix or the batch of such matrices of size
|
|||
|
`(*, n, n)` where `*` is one or more batch dimensions.
|
|||
|
pivots (Tensor): the pivots corresponding to the LDL factorization of :attr:`LD`.
|
|||
|
B (Tensor): right-hand side tensor of shape `(*, n, k)`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
hermitian (bool, optional): whether to consider the decomposed matrix to be Hermitian or symmetric.
|
|||
|
For real-valued matrices, this switch has no effect. Default: `False`.
|
|||
|
out (tuple, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`.
|
|||
|
Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 3)
|
|||
|
>>> A = A @ A.mT # make symmetric
|
|||
|
>>> LD, pivots, info = torch.linalg.ldl_factor_ex(A)
|
|||
|
>>> B = torch.randn(2, 3, 4)
|
|||
|
>>> X = torch.linalg.ldl_solve(LD, pivots, B)
|
|||
|
>>> torch.linalg.norm(A @ X - B)
|
|||
|
>>> tensor(0.0001)
|
|||
|
""")
|
|||
|
|
|||
|
lstsq = _add_docstr(_linalg.linalg_lstsq, r"""
|
|||
|
torch.linalg.lstsq(A, B, rcond=None, *, driver=None) -> (Tensor, Tensor, Tensor, Tensor)
|
|||
|
|
|||
|
Computes a solution to the least squares problem of a system of linear equations.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **least squares problem** for a linear system :math:`AX = B` with
|
|||
|
:math:`A \in \mathbb{K}^{m \times n}, B \in \mathbb{K}^{m \times k}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
\min_{X \in \mathbb{K}^{n \times k}} \|AX - B\|_F
|
|||
|
|
|||
|
where :math:`\|-\|_F` denotes the Frobenius norm.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
:attr:`driver` chooses the backend function that will be used.
|
|||
|
For CPU inputs the valid values are `'gels'`, `'gelsy'`, `'gelsd`, `'gelss'`.
|
|||
|
To choose the best driver on CPU consider:
|
|||
|
|
|||
|
- If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss.
|
|||
|
|
|||
|
- For a general matrix: `'gelsy'` (QR with pivoting) (default)
|
|||
|
- If :attr:`A` is full-rank: `'gels'` (QR)
|
|||
|
|
|||
|
- If :attr:`A` is not well-conditioned.
|
|||
|
|
|||
|
- `'gelsd'` (tridiagonal reduction and SVD)
|
|||
|
- But if you run into memory issues: `'gelss'` (full SVD).
|
|||
|
|
|||
|
For CUDA input, the only valid driver is `'gels'`, which assumes that :attr:`A` is full-rank.
|
|||
|
|
|||
|
See also the `full description of these drivers`_
|
|||
|
|
|||
|
:attr:`rcond` is used to determine the effective rank of the matrices in :attr:`A`
|
|||
|
when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`).
|
|||
|
In this case, if :math:`\sigma_i` are the singular values of `A` in decreasing order,
|
|||
|
:math:`\sigma_i` will be rounded down to zero if :math:`\sigma_i \leq \text{rcond} \cdot \sigma_1`.
|
|||
|
If :attr:`rcond`\ `= None` (default), :attr:`rcond` is set to the machine precision of the dtype of :attr:`A` times `max(m, n)`.
|
|||
|
|
|||
|
This function returns the solution to the problem and some extra information in a named tuple of
|
|||
|
four tensors `(solution, residuals, rank, singular_values)`. For inputs :attr:`A`, :attr:`B`
|
|||
|
of shape `(*, m, n)`, `(*, m, k)` respectively, it contains
|
|||
|
|
|||
|
- `solution`: the least squares solution. It has shape `(*, n, k)`.
|
|||
|
- `residuals`: the squared residuals of the solutions, that is, :math:`\|AX - B\|_F^2`.
|
|||
|
It has shape equal to the batch dimensions of :attr:`A`.
|
|||
|
It is computed when `m > n` and every matrix in :attr:`A` is full-rank,
|
|||
|
otherwise, it is an empty tensor.
|
|||
|
If :attr:`A` is a batch of matrices and any matrix in the batch is not full rank,
|
|||
|
then an empty tensor is returned. This behavior may change in a future PyTorch release.
|
|||
|
- `rank`: tensor of ranks of the matrices in :attr:`A`.
|
|||
|
It has shape equal to the batch dimensions of :attr:`A`.
|
|||
|
It is computed when :attr:`driver` is one of (`'gelsy'`, `'gelsd'`, `'gelss'`),
|
|||
|
otherwise it is an empty tensor.
|
|||
|
- `singular_values`: tensor of singular values of the matrices in :attr:`A`.
|
|||
|
It has shape `(*, min(m, n))`.
|
|||
|
It is computed when :attr:`driver` is one of (`'gelsd'`, `'gelss'`),
|
|||
|
otherwise it is an empty tensor.
|
|||
|
|
|||
|
.. note::
|
|||
|
This function computes `X = \ `:attr:`A`\ `.pinverse() @ \ `:attr:`B` in a faster and
|
|||
|
more numerically stable way than performing the computations separately.
|
|||
|
|
|||
|
.. warning::
|
|||
|
The default value of :attr:`rcond` may change in a future PyTorch release.
|
|||
|
It is therefore recommended to use a fixed value to avoid potential
|
|||
|
breaking changes.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): lhs tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
B (Tensor): rhs tensor of shape `(*, m, k)` where `*` is zero or more batch dimensions.
|
|||
|
rcond (float, optional): used to determine the effective rank of :attr:`A`.
|
|||
|
If :attr:`rcond`\ `= None`, :attr:`rcond` is set to the machine
|
|||
|
precision of the dtype of :attr:`A` times `max(m, n)`. Default: `None`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
driver (str, optional): name of the LAPACK/MAGMA method to be used.
|
|||
|
If `None`, `'gelsy'` is used for CPU inputs and `'gels'` for CUDA inputs.
|
|||
|
Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(solution, residuals, rank, singular_values)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(1,3,3)
|
|||
|
>>> A
|
|||
|
tensor([[[-1.0838, 0.0225, 0.2275],
|
|||
|
[ 0.2438, 0.3844, 0.5499],
|
|||
|
[ 0.1175, -0.9102, 2.0870]]])
|
|||
|
>>> B = torch.randn(2,3,3)
|
|||
|
>>> B
|
|||
|
tensor([[[-0.6772, 0.7758, 0.5109],
|
|||
|
[-1.4382, 1.3769, 1.1818],
|
|||
|
[-0.3450, 0.0806, 0.3967]],
|
|||
|
[[-1.3994, -0.1521, -0.1473],
|
|||
|
[ 1.9194, 1.0458, 0.6705],
|
|||
|
[-1.1802, -0.9796, 1.4086]]])
|
|||
|
>>> X = torch.linalg.lstsq(A, B).solution # A is broadcasted to shape (2, 3, 3)
|
|||
|
>>> torch.dist(X, torch.linalg.pinv(A) @ B)
|
|||
|
tensor(1.5152e-06)
|
|||
|
|
|||
|
>>> S = torch.linalg.lstsq(A, B, driver='gelsd').singular_values
|
|||
|
>>> torch.dist(S, torch.linalg.svdvals(A))
|
|||
|
tensor(2.3842e-07)
|
|||
|
|
|||
|
>>> A[:, 0].zero_() # Decrease the rank of A
|
|||
|
>>> rank = torch.linalg.lstsq(A, B).rank
|
|||
|
>>> rank
|
|||
|
tensor([2])
|
|||
|
|
|||
|
.. _condition number:
|
|||
|
https://pytorch.org/docs/master/linalg.html#torch.linalg.cond
|
|||
|
.. _full description of these drivers:
|
|||
|
https://www.netlib.org/lapack/lug/node27.html
|
|||
|
""")
|
|||
|
|
|||
|
matrix_power = _add_docstr(_linalg.linalg_matrix_power, r"""
|
|||
|
matrix_power(A, n, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the `n`-th power of a square matrix for an integer `n`.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
If :attr:`n`\ `= 0`, it returns the identity matrix (or batch) of the same shape
|
|||
|
as :attr:`A`. If :attr:`n` is negative, it returns the inverse of each matrix
|
|||
|
(if invertible) raised to the power of `abs(n)`.
|
|||
|
|
|||
|
.. note::
|
|||
|
Consider using :func:`torch.linalg.solve` if possible for multiplying a matrix on the left by
|
|||
|
a negative power as, if :attr:`n`\ `> 0`::
|
|||
|
|
|||
|
torch.linalg.solve(matrix_power(A, n), B) == matrix_power(A, -n) @ B
|
|||
|
|
|||
|
It is always preferred to use :func:`~solve` when possible, as it is faster and more
|
|||
|
numerically stable than computing :math:`A^{-n}` explicitly.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.solve` computes :attr:`A`\ `.inverse() @ \ `:attr:`B` with a
|
|||
|
numerically stable algorithm.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, m)` where `*` is zero or more batch dimensions.
|
|||
|
n (int): the exponent.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if :attr:`n`\ `< 0` and the matrix :attr:`A` or any matrix in the
|
|||
|
batch of matrices :attr:`A` is not invertible.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> torch.linalg.matrix_power(A, 0)
|
|||
|
tensor([[1., 0., 0.],
|
|||
|
[0., 1., 0.],
|
|||
|
[0., 0., 1.]])
|
|||
|
>>> torch.linalg.matrix_power(A, 3)
|
|||
|
tensor([[ 1.0756, 0.4980, 0.0100],
|
|||
|
[-1.6617, 1.4994, -1.9980],
|
|||
|
[-0.4509, 0.2731, 0.8001]])
|
|||
|
>>> torch.linalg.matrix_power(A.expand(2, -1, -1), -2)
|
|||
|
tensor([[[ 0.2640, 0.4571, -0.5511],
|
|||
|
[-1.0163, 0.3491, -1.5292],
|
|||
|
[-0.4899, 0.0822, 0.2773]],
|
|||
|
[[ 0.2640, 0.4571, -0.5511],
|
|||
|
[-1.0163, 0.3491, -1.5292],
|
|||
|
[-0.4899, 0.0822, 0.2773]]])
|
|||
|
""")
|
|||
|
|
|||
|
matrix_rank = _add_docstr(_linalg.linalg_matrix_rank, r"""
|
|||
|
linalg.matrix_rank(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the numerical rank of a matrix.
|
|||
|
|
|||
|
The matrix rank is computed as the number of singular values
|
|||
|
(or eigenvalues in absolute value when :attr:`hermitian`\ `= True`)
|
|||
|
that are greater than :math:`\max(\text{atol}, \sigma_1 * \text{rtol})` threshold,
|
|||
|
where :math:`\sigma_1` is the largest singular value (or eigenvalue).
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or
|
|||
|
symmetric if real, but this is not checked internally. Instead, just the lower
|
|||
|
triangular part of the matrix is used in the computations.
|
|||
|
|
|||
|
If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`,
|
|||
|
the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon`
|
|||
|
and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`).
|
|||
|
If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then
|
|||
|
:attr:`rtol` is set to zero.
|
|||
|
|
|||
|
If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that
|
|||
|
of the singular values of :attr:`A` as returned by :func:`torch.linalg.svdvals`.
|
|||
|
|
|||
|
.. note::
|
|||
|
This function has NumPy compatible variant `linalg.matrix_rank(A, tol, hermitian=False)`.
|
|||
|
However, use of the positional argument :attr:`tol` is deprecated in favor of :attr:`atol` and :attr:`rtol`.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: The matrix rank is computed using a singular value decomposition
|
|||
|
:func:`torch.linalg.svdvals` if :attr:`hermitian`\ `= False` (default) and the eigenvalue
|
|||
|
decomposition :func:`torch.linalg.eigvalsh` when :attr:`hermitian`\ `= True`.
|
|||
|
{common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
tol (float, Tensor, optional): [NumPy Compat] Alias for :attr:`atol`. Default: `None`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero.
|
|||
|
Default: `None`.
|
|||
|
rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`.
|
|||
|
Default: `None`.
|
|||
|
hermitian(bool): indicates whether :attr:`A` is Hermitian if complex
|
|||
|
or symmetric if real. Default: `False`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.eye(10)
|
|||
|
>>> torch.linalg.matrix_rank(A)
|
|||
|
tensor(10)
|
|||
|
>>> B = torch.eye(10)
|
|||
|
>>> B[0, 0] = 0
|
|||
|
>>> torch.linalg.matrix_rank(B)
|
|||
|
tensor(9)
|
|||
|
|
|||
|
>>> A = torch.randn(4, 3, 2)
|
|||
|
>>> torch.linalg.matrix_rank(A)
|
|||
|
tensor([2, 2, 2, 2])
|
|||
|
|
|||
|
>>> A = torch.randn(2, 4, 2, 3)
|
|||
|
>>> torch.linalg.matrix_rank(A)
|
|||
|
tensor([[2, 2, 2, 2],
|
|||
|
[2, 2, 2, 2]])
|
|||
|
|
|||
|
>>> A = torch.randn(2, 4, 3, 3, dtype=torch.complex64)
|
|||
|
>>> torch.linalg.matrix_rank(A)
|
|||
|
tensor([[3, 3, 3, 3],
|
|||
|
[3, 3, 3, 3]])
|
|||
|
>>> torch.linalg.matrix_rank(A, hermitian=True)
|
|||
|
tensor([[3, 3, 3, 3],
|
|||
|
[3, 3, 3, 3]])
|
|||
|
>>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0)
|
|||
|
tensor([[3, 2, 2, 2],
|
|||
|
[1, 2, 1, 2]])
|
|||
|
>>> torch.linalg.matrix_rank(A, atol=1.0, rtol=0.0, hermitian=True)
|
|||
|
tensor([[2, 2, 2, 1],
|
|||
|
[1, 2, 2, 2]])
|
|||
|
""")
|
|||
|
|
|||
|
norm = _add_docstr(_linalg.linalg_norm, r"""
|
|||
|
linalg.norm(A, ord=None, dim=None, keepdim=False, *, out=None, dtype=None) -> Tensor
|
|||
|
|
|||
|
Computes a vector or matrix norm.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
|
|||
|
Whether this function computes a vector or matrix norm is determined as follows:
|
|||
|
|
|||
|
- If :attr:`dim` is an `int`, the vector norm will be computed.
|
|||
|
- If :attr:`dim` is a `2`-`tuple`, the matrix norm will be computed.
|
|||
|
- If :attr:`dim`\ `= None` and :attr:`ord`\ `= None`,
|
|||
|
:attr:`A` will be flattened to 1D and the `2`-norm of the resulting vector will be computed.
|
|||
|
- If :attr:`dim`\ `= None` and :attr:`ord` `!= None`, :attr:`A` must be 1D or 2D.
|
|||
|
|
|||
|
:attr:`ord` defines the norm that is computed. The following norms are supported:
|
|||
|
|
|||
|
====================== ========================= ========================================================
|
|||
|
:attr:`ord` norm for matrices norm for vectors
|
|||
|
====================== ========================= ========================================================
|
|||
|
`None` (default) Frobenius norm `2`-norm (see below)
|
|||
|
`'fro'` Frobenius norm -- not supported --
|
|||
|
`'nuc'` nuclear norm -- not supported --
|
|||
|
`inf` `max(sum(abs(x), dim=1))` `max(abs(x))`
|
|||
|
`-inf` `min(sum(abs(x), dim=1))` `min(abs(x))`
|
|||
|
`0` -- not supported -- `sum(x != 0)`
|
|||
|
`1` `max(sum(abs(x), dim=0))` as below
|
|||
|
`-1` `min(sum(abs(x), dim=0))` as below
|
|||
|
`2` largest singular value as below
|
|||
|
`-2` smallest singular value as below
|
|||
|
other `int` or `float` -- not supported -- `sum(abs(x)^{ord})^{(1 / ord)}`
|
|||
|
====================== ========================= ========================================================
|
|||
|
|
|||
|
where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.vector_norm` computes a vector norm.
|
|||
|
|
|||
|
:func:`torch.linalg.matrix_norm` computes a matrix norm.
|
|||
|
|
|||
|
The above functions are often clearer and more flexible than using :func:`torch.linalg.norm`.
|
|||
|
For example, `torch.linalg.norm(A, ord=1, dim=(0, 1))` always
|
|||
|
computes a matrix norm, but with `torch.linalg.vector_norm(A, ord=1, dim=(0, 1))` it is possible
|
|||
|
to compute a vector norm over the two dimensions.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n)` or `(*, m, n)` where `*` is zero or more batch dimensions
|
|||
|
ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `None`
|
|||
|
dim (int, Tuple[int], optional): dimensions over which to compute
|
|||
|
the vector or matrix norm. See above for the behavior when :attr:`dim`\ `= None`.
|
|||
|
Default: `None`
|
|||
|
keepdim (bool, optional): If set to `True`, the reduced dimensions are retained
|
|||
|
in the result as dimensions with size one. Default: `False`
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to
|
|||
|
:attr:`dtype` before performing the operation, and the returned tensor's type
|
|||
|
will be :attr:`dtype`. Default: `None`
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor, even when :attr:`A` is complex.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> from torch import linalg as LA
|
|||
|
>>> a = torch.arange(9, dtype=torch.float) - 4
|
|||
|
>>> a
|
|||
|
tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
|||
|
>>> B = a.reshape((3, 3))
|
|||
|
>>> B
|
|||
|
tensor([[-4., -3., -2.],
|
|||
|
[-1., 0., 1.],
|
|||
|
[ 2., 3., 4.]])
|
|||
|
|
|||
|
>>> LA.norm(a)
|
|||
|
tensor(7.7460)
|
|||
|
>>> LA.norm(B)
|
|||
|
tensor(7.7460)
|
|||
|
>>> LA.norm(B, 'fro')
|
|||
|
tensor(7.7460)
|
|||
|
>>> LA.norm(a, float('inf'))
|
|||
|
tensor(4.)
|
|||
|
>>> LA.norm(B, float('inf'))
|
|||
|
tensor(9.)
|
|||
|
>>> LA.norm(a, -float('inf'))
|
|||
|
tensor(0.)
|
|||
|
>>> LA.norm(B, -float('inf'))
|
|||
|
tensor(2.)
|
|||
|
|
|||
|
>>> LA.norm(a, 1)
|
|||
|
tensor(20.)
|
|||
|
>>> LA.norm(B, 1)
|
|||
|
tensor(7.)
|
|||
|
>>> LA.norm(a, -1)
|
|||
|
tensor(0.)
|
|||
|
>>> LA.norm(B, -1)
|
|||
|
tensor(6.)
|
|||
|
>>> LA.norm(a, 2)
|
|||
|
tensor(7.7460)
|
|||
|
>>> LA.norm(B, 2)
|
|||
|
tensor(7.3485)
|
|||
|
|
|||
|
>>> LA.norm(a, -2)
|
|||
|
tensor(0.)
|
|||
|
>>> LA.norm(B.double(), -2)
|
|||
|
tensor(1.8570e-16, dtype=torch.float64)
|
|||
|
>>> LA.norm(a, 3)
|
|||
|
tensor(5.8480)
|
|||
|
>>> LA.norm(a, -3)
|
|||
|
tensor(0.)
|
|||
|
|
|||
|
Using the :attr:`dim` argument to compute vector norms::
|
|||
|
|
|||
|
>>> c = torch.tensor([[1., 2., 3.],
|
|||
|
... [-1, 1, 4]])
|
|||
|
>>> LA.norm(c, dim=0)
|
|||
|
tensor([1.4142, 2.2361, 5.0000])
|
|||
|
>>> LA.norm(c, dim=1)
|
|||
|
tensor([3.7417, 4.2426])
|
|||
|
>>> LA.norm(c, ord=1, dim=1)
|
|||
|
tensor([6., 6.])
|
|||
|
|
|||
|
Using the :attr:`dim` argument to compute matrix norms::
|
|||
|
|
|||
|
>>> A = torch.arange(8, dtype=torch.float).reshape(2, 2, 2)
|
|||
|
>>> LA.norm(A, dim=(1,2))
|
|||
|
tensor([ 3.7417, 11.2250])
|
|||
|
>>> LA.norm(A[0, :, :]), LA.norm(A[1, :, :])
|
|||
|
(tensor(3.7417), tensor(11.2250))
|
|||
|
""")
|
|||
|
|
|||
|
vector_norm = _add_docstr(_linalg.linalg_vector_norm, r"""
|
|||
|
linalg.vector_norm(x, ord=2, dim=None, keepdim=False, *, dtype=None, out=None) -> Tensor
|
|||
|
|
|||
|
Computes a vector norm.
|
|||
|
|
|||
|
If :attr:`x` is complex valued, it computes the norm of :attr:`x`\ `.abs()`
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
|
|||
|
This function does not necessarily treat multidimensional :attr:`x` as a batch of
|
|||
|
vectors, instead:
|
|||
|
|
|||
|
- If :attr:`dim`\ `= None`, :attr:`x` will be flattened before the norm is computed.
|
|||
|
- If :attr:`dim` is an `int` or a `tuple`, the norm will be computed over these dimensions
|
|||
|
and the other dimensions will be treated as batch dimensions.
|
|||
|
|
|||
|
This behavior is for consistency with :func:`torch.linalg.norm`.
|
|||
|
|
|||
|
:attr:`ord` defines the vector norm that is computed. The following norms are supported:
|
|||
|
|
|||
|
====================== ===============================
|
|||
|
:attr:`ord` vector norm
|
|||
|
====================== ===============================
|
|||
|
`2` (default) `2`-norm (see below)
|
|||
|
`inf` `max(abs(x))`
|
|||
|
`-inf` `min(abs(x))`
|
|||
|
`0` `sum(x != 0)`
|
|||
|
other `int` or `float` `sum(abs(x)^{ord})^{(1 / ord)}`
|
|||
|
====================== ===============================
|
|||
|
|
|||
|
where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.
|
|||
|
|
|||
|
:attr:`dtype` may be used to perform the computation in a more precise dtype.
|
|||
|
It is semantically equivalent to calling ``linalg.vector_norm(x.to(dtype))``
|
|||
|
but it is faster in some cases.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.matrix_norm` computes a matrix norm.
|
|||
|
|
|||
|
Args:
|
|||
|
x (Tensor): tensor, flattened by default, but this behavior can be
|
|||
|
controlled using :attr:`dim`.
|
|||
|
ord (int, float, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `2`
|
|||
|
dim (int, Tuple[int], optional): dimensions over which to compute
|
|||
|
the norm. See above for the behavior when :attr:`dim`\ `= None`.
|
|||
|
Default: `None`
|
|||
|
keepdim (bool, optional): If set to `True`, the reduced dimensions are retained
|
|||
|
in the result as dimensions with size one. Default: `False`
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
dtype (:class:`torch.dtype`, optional): type used to perform the accumulation and the return.
|
|||
|
If specified, :attr:`x` is cast to :attr:`dtype` before performing the operation,
|
|||
|
and the returned tensor’s type will be :attr:`dtype` if real and of its real counterpart if complex.
|
|||
|
:attr:`dtype` may be complex if :attr:`x` is complex, otherwise it must be real.
|
|||
|
:attr:`x` should be convertible without narrowing to :attr:`dtype`. Default: None
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor, even when :attr:`x` is complex.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> from torch import linalg as LA
|
|||
|
>>> a = torch.arange(9, dtype=torch.float) - 4
|
|||
|
>>> a
|
|||
|
tensor([-4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
|||
|
>>> B = a.reshape((3, 3))
|
|||
|
>>> B
|
|||
|
tensor([[-4., -3., -2.],
|
|||
|
[-1., 0., 1.],
|
|||
|
[ 2., 3., 4.]])
|
|||
|
>>> LA.vector_norm(a, ord=3.5)
|
|||
|
tensor(5.4345)
|
|||
|
>>> LA.vector_norm(B, ord=3.5)
|
|||
|
tensor(5.4345)
|
|||
|
""")
|
|||
|
|
|||
|
matrix_norm = _add_docstr(_linalg.linalg_matrix_norm, r"""
|
|||
|
linalg.matrix_norm(A, ord='fro', dim=(-2, -1), keepdim=False, *, dtype=None, out=None) -> Tensor
|
|||
|
|
|||
|
Computes a matrix norm.
|
|||
|
|
|||
|
If :attr:`A` is complex valued, it computes the norm of :attr:`A`\ `.abs()`
|
|||
|
|
|||
|
Support input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices: the norm will be computed over the
|
|||
|
dimensions specified by the 2-tuple :attr:`dim` and the other dimensions will
|
|||
|
be treated as batch dimensions. The output will have the same batch dimensions.
|
|||
|
|
|||
|
:attr:`ord` defines the matrix norm that is computed. The following norms are supported:
|
|||
|
|
|||
|
====================== ========================================================
|
|||
|
:attr:`ord` matrix norm
|
|||
|
====================== ========================================================
|
|||
|
`'fro'` (default) Frobenius norm
|
|||
|
`'nuc'` nuclear norm
|
|||
|
`inf` `max(sum(abs(x), dim=1))`
|
|||
|
`-inf` `min(sum(abs(x), dim=1))`
|
|||
|
`1` `max(sum(abs(x), dim=0))`
|
|||
|
`-1` `min(sum(abs(x), dim=0))`
|
|||
|
`2` largest singular value
|
|||
|
`-2` smallest singular value
|
|||
|
====================== ========================================================
|
|||
|
|
|||
|
where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor with two or more dimensions. By default its
|
|||
|
shape is interpreted as `(*, m, n)` where `*` is zero or more
|
|||
|
batch dimensions, but this behavior can be controlled using :attr:`dim`.
|
|||
|
ord (int, inf, -inf, 'fro', 'nuc', optional): order of norm. Default: `'fro'`
|
|||
|
dim (Tuple[int, int], optional): dimensions over which to compute the norm. Default: `(-2, -1)`
|
|||
|
keepdim (bool, optional): If set to `True`, the reduced dimensions are retained
|
|||
|
in the result as dimensions with size one. Default: `False`
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
dtype (:class:`torch.dtype`, optional): If specified, the input tensor is cast to
|
|||
|
:attr:`dtype` before performing the operation, and the returned tensor's type
|
|||
|
will be :attr:`dtype`. Default: `None`
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor, even when :attr:`A` is complex.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> from torch import linalg as LA
|
|||
|
>>> A = torch.arange(9, dtype=torch.float).reshape(3, 3)
|
|||
|
>>> A
|
|||
|
tensor([[0., 1., 2.],
|
|||
|
[3., 4., 5.],
|
|||
|
[6., 7., 8.]])
|
|||
|
>>> LA.matrix_norm(A)
|
|||
|
tensor(14.2829)
|
|||
|
>>> LA.matrix_norm(A, ord=-1)
|
|||
|
tensor(9.)
|
|||
|
>>> B = A.expand(2, -1, -1)
|
|||
|
>>> B
|
|||
|
tensor([[[0., 1., 2.],
|
|||
|
[3., 4., 5.],
|
|||
|
[6., 7., 8.]],
|
|||
|
|
|||
|
[[0., 1., 2.],
|
|||
|
[3., 4., 5.],
|
|||
|
[6., 7., 8.]]])
|
|||
|
>>> LA.matrix_norm(B)
|
|||
|
tensor([14.2829, 14.2829])
|
|||
|
>>> LA.matrix_norm(B, dim=(0, 2))
|
|||
|
tensor([ 3.1623, 10.0000, 17.2627])
|
|||
|
""")
|
|||
|
|
|||
|
matmul = _add_docstr(_linalg.linalg_matmul, r"""
|
|||
|
linalg.matmul(input, other, *, out=None) -> Tensor
|
|||
|
|
|||
|
Alias for :func:`torch.matmul`
|
|||
|
""")
|
|||
|
|
|||
|
diagonal = _add_docstr(_linalg.linalg_diagonal, r"""
|
|||
|
linalg.diagonal(A, *, offset=0, dim1=-2, dim2=-1) -> Tensor
|
|||
|
|
|||
|
Alias for :func:`torch.diagonal` with defaults :attr:`dim1`\ `= -2`, :attr:`dim2`\ `= -1`.
|
|||
|
""")
|
|||
|
|
|||
|
multi_dot = _add_docstr(_linalg.linalg_multi_dot, r"""
|
|||
|
linalg.multi_dot(tensors, *, out=None)
|
|||
|
|
|||
|
Efficiently multiplies two or more matrices by reordering the multiplications so that
|
|||
|
the fewest arithmetic operations are performed.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
This function does not support batched inputs.
|
|||
|
|
|||
|
Every tensor in :attr:`tensors` must be 2D, except for the first and last which
|
|||
|
may be 1D. If the first tensor is a 1D vector of shape `(n,)` it is treated as a row vector
|
|||
|
of shape `(1, n)`, similarly if the last tensor is a 1D vector of shape `(n,)` it is treated
|
|||
|
as a column vector of shape `(n, 1)`.
|
|||
|
|
|||
|
If the first and last tensors are matrices, the output will be a matrix.
|
|||
|
However, if either is a 1D vector, then the output will be a 1D vector.
|
|||
|
|
|||
|
Differences with `numpy.linalg.multi_dot`:
|
|||
|
|
|||
|
- Unlike `numpy.linalg.multi_dot`, the first and last tensors must either be 1D or 2D
|
|||
|
whereas NumPy allows them to be nD
|
|||
|
|
|||
|
.. warning:: This function does not broadcast.
|
|||
|
|
|||
|
.. note:: This function is implemented by chaining :func:`torch.mm` calls after
|
|||
|
computing the optimal matrix multiplication order.
|
|||
|
|
|||
|
.. note:: The cost of multiplying two matrices with shapes `(a, b)` and `(b, c)` is
|
|||
|
`a * b * c`. Given matrices `A`, `B`, `C` with shapes `(10, 100)`,
|
|||
|
`(100, 5)`, `(5, 50)` respectively, we can calculate the cost of different
|
|||
|
multiplication orders as follows:
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
\begin{align*}
|
|||
|
\operatorname{cost}((AB)C) &= 10 \times 100 \times 5 + 10 \times 5 \times 50 = 7500 \\
|
|||
|
\operatorname{cost}(A(BC)) &= 10 \times 100 \times 50 + 100 \times 5 \times 50 = 75000
|
|||
|
\end{align*}
|
|||
|
|
|||
|
In this case, multiplying `A` and `B` first followed by `C` is 10 times faster.
|
|||
|
|
|||
|
Args:
|
|||
|
tensors (Sequence[Tensor]): two or more tensors to multiply. The first and last
|
|||
|
tensors may be 1D or 2D. Every other tensor must be 2D.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> from torch.linalg import multi_dot
|
|||
|
|
|||
|
>>> multi_dot([torch.tensor([1, 2]), torch.tensor([2, 3])])
|
|||
|
tensor(8)
|
|||
|
>>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([2, 3])])
|
|||
|
tensor([8])
|
|||
|
>>> multi_dot([torch.tensor([[1, 2]]), torch.tensor([[2], [3]])])
|
|||
|
tensor([[8]])
|
|||
|
|
|||
|
>>> A = torch.arange(2 * 3).view(2, 3)
|
|||
|
>>> B = torch.arange(3 * 2).view(3, 2)
|
|||
|
>>> C = torch.arange(2 * 2).view(2, 2)
|
|||
|
>>> multi_dot((A, B, C))
|
|||
|
tensor([[ 26, 49],
|
|||
|
[ 80, 148]])
|
|||
|
""")
|
|||
|
|
|||
|
svd = _add_docstr(_linalg.linalg_svd, r"""
|
|||
|
linalg.svd(A, full_matrices=True, *, driver=None, out=None) -> (Tensor, Tensor, Tensor)
|
|||
|
|
|||
|
Computes the singular value decomposition (SVD) of a matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **full SVD** of a matrix
|
|||
|
:math:`A \in \mathbb{K}^{m \times n}`, if `k = min(m,n)`, is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = U \operatorname{diag}(S) V^{\text{H}}
|
|||
|
\mathrlap{\qquad U \in \mathbb{K}^{m \times m}, S \in \mathbb{R}^k, V \in \mathbb{K}^{n \times n}}
|
|||
|
|
|||
|
where :math:`\operatorname{diag}(S) \in \mathbb{K}^{m \times n}`,
|
|||
|
:math:`V^{\text{H}}` is the conjugate transpose when :math:`V` is complex, and the transpose when :math:`V` is real-valued.
|
|||
|
The matrices :math:`U`, :math:`V` (and thus :math:`V^{\text{H}}`) are orthogonal in the real case, and unitary in the complex case.
|
|||
|
|
|||
|
When `m > n` (resp. `m < n`) we can drop the last `m - n` (resp. `n - m`) columns of `U` (resp. `V`) to form the **reduced SVD**:
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = U \operatorname{diag}(S) V^{\text{H}}
|
|||
|
\mathrlap{\qquad U \in \mathbb{K}^{m \times k}, S \in \mathbb{R}^k, V \in \mathbb{K}^{k \times n}}
|
|||
|
|
|||
|
where :math:`\operatorname{diag}(S) \in \mathbb{K}^{k \times k}`.
|
|||
|
In this case, :math:`U` and :math:`V` also have orthonormal columns.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
The returned decomposition is a named tuple `(U, S, Vh)`
|
|||
|
which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above.
|
|||
|
|
|||
|
The singular values are returned in descending order.
|
|||
|
|
|||
|
The parameter :attr:`full_matrices` chooses between the full (default) and reduced SVD.
|
|||
|
|
|||
|
The :attr:`driver` kwarg may be used in CUDA with a cuSOLVER backend to choose the algorithm used to compute the SVD.
|
|||
|
The choice of a driver is a trade-off between accuracy and speed.
|
|||
|
|
|||
|
- If :attr:`A` is well-conditioned (its `condition number`_ is not too large), or you do not mind some precision loss.
|
|||
|
|
|||
|
- For a general matrix: `'gesvdj'` (Jacobi method)
|
|||
|
- If :attr:`A` is tall or wide (`m >> n` or `m << n`): `'gesvda'` (Approximate method)
|
|||
|
|
|||
|
- If :attr:`A` is not well-conditioned or precision is relevant: `'gesvd'` (QR based)
|
|||
|
|
|||
|
By default (:attr:`driver`\ `= None`), we call `'gesvdj'` and, if it fails, we fallback to `'gesvd'`.
|
|||
|
|
|||
|
Differences with `numpy.linalg.svd`:
|
|||
|
|
|||
|
- Unlike `numpy.linalg.svd`, this function always returns a tuple of three tensors
|
|||
|
and it doesn't support `compute_uv` argument.
|
|||
|
Please use :func:`torch.linalg.svdvals`, which computes only the singular values,
|
|||
|
instead of `compute_uv=False`.
|
|||
|
|
|||
|
.. note:: When :attr:`full_matrices`\ `= True`, the gradients with respect to `U[..., :, min(m, n):]`
|
|||
|
and `Vh[..., min(m, n):, :]` will be ignored, as those vectors can be arbitrary bases
|
|||
|
of the corresponding subspaces.
|
|||
|
|
|||
|
.. warning:: The returned tensors `U` and `V` are not unique, nor are they continuous with
|
|||
|
respect to :attr:`A`.
|
|||
|
Due to this lack of uniqueness, different hardware and software may compute
|
|||
|
different singular vectors.
|
|||
|
|
|||
|
This non-uniqueness is caused by the fact that multiplying any pair of singular
|
|||
|
vectors :math:`u_k, v_k` by `-1` in the real case or by
|
|||
|
:math:`e^{i \phi}, \phi \in \mathbb{R}` in the complex case produces another two
|
|||
|
valid singular vectors of the matrix.
|
|||
|
For this reason, the loss function shall not depend on this :math:`e^{i \phi}` quantity,
|
|||
|
as it is not well-defined.
|
|||
|
This is checked for complex inputs when computing the gradients of this function. As such,
|
|||
|
when inputs are complex and are on a CUDA device, the computation of the gradients
|
|||
|
of this function synchronizes that device with the CPU.
|
|||
|
|
|||
|
.. warning:: Gradients computed using `U` or `Vh` will only be finite when
|
|||
|
:attr:`A` does not have repeated singular values. If :attr:`A` is rectangular,
|
|||
|
additionally, zero must also not be one of its singular values.
|
|||
|
Furthermore, if the distance between any two singular values is close to zero,
|
|||
|
the gradient will be numerically unstable, as it depends on the singular values
|
|||
|
:math:`\sigma_i` through the computation of
|
|||
|
:math:`\frac{1}{\min_{i \neq j} \sigma_i^2 - \sigma_j^2}`.
|
|||
|
In the rectangular case, the gradient will also be numerically unstable when
|
|||
|
:attr:`A` has small singular values, as it also depends on the computation of
|
|||
|
:math:`\frac{1}{\sigma_i}`.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.svdvals` computes only the singular values.
|
|||
|
Unlike :func:`torch.linalg.svd`, the gradients of :func:`~svdvals` are always
|
|||
|
numerically stable.
|
|||
|
|
|||
|
:func:`torch.linalg.eig` for a function that computes another type of spectral
|
|||
|
decomposition of a matrix. The eigendecomposition works just on square matrices.
|
|||
|
|
|||
|
:func:`torch.linalg.eigh` for a (faster) function that computes the eigenvalue decomposition
|
|||
|
for Hermitian and symmetric matrices.
|
|||
|
|
|||
|
:func:`torch.linalg.qr` for another (much faster) decomposition that works on general
|
|||
|
matrices.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
full_matrices (bool, optional): controls whether to compute the full or reduced
|
|||
|
SVD, and consequently,
|
|||
|
the shape of the returned tensors
|
|||
|
`U` and `Vh`. Default: `True`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs.
|
|||
|
Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`.
|
|||
|
Default: `None`.
|
|||
|
out (tuple, optional): output tuple of three tensors. Ignored if `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(U, S, Vh)` which corresponds to :math:`U`, :math:`S`, :math:`V^{\text{H}}` above.
|
|||
|
|
|||
|
`S` will always be real-valued, even when :attr:`A` is complex.
|
|||
|
It will also be ordered in descending order.
|
|||
|
|
|||
|
`U` and `Vh` will have the same dtype as :attr:`A`. The left / right singular vectors will be given by
|
|||
|
the columns of `U` and the rows of `Vh` respectively.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(5, 3)
|
|||
|
>>> U, S, Vh = torch.linalg.svd(A, full_matrices=False)
|
|||
|
>>> U.shape, S.shape, Vh.shape
|
|||
|
(torch.Size([5, 3]), torch.Size([3]), torch.Size([3, 3]))
|
|||
|
>>> torch.dist(A, U @ torch.diag(S) @ Vh)
|
|||
|
tensor(1.0486e-06)
|
|||
|
|
|||
|
>>> U, S, Vh = torch.linalg.svd(A)
|
|||
|
>>> U.shape, S.shape, Vh.shape
|
|||
|
(torch.Size([5, 5]), torch.Size([3]), torch.Size([3, 3]))
|
|||
|
>>> torch.dist(A, U[:, :3] @ torch.diag(S) @ Vh)
|
|||
|
tensor(1.0486e-06)
|
|||
|
|
|||
|
>>> A = torch.randn(7, 5, 3)
|
|||
|
>>> U, S, Vh = torch.linalg.svd(A, full_matrices=False)
|
|||
|
>>> torch.dist(A, U @ torch.diag_embed(S) @ Vh)
|
|||
|
tensor(3.0957e-06)
|
|||
|
|
|||
|
.. _condition number:
|
|||
|
https://pytorch.org/docs/master/linalg.html#torch.linalg.cond
|
|||
|
.. _the resulting vectors will span the same subspace:
|
|||
|
https://en.wikipedia.org/wiki/Singular_value_decomposition#Singular_values,_singular_vectors,_and_their_relation_to_the_SVD
|
|||
|
""")
|
|||
|
|
|||
|
svdvals = _add_docstr(_linalg.linalg_svdvals, r"""
|
|||
|
linalg.svdvals(A, *, driver=None, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the singular values of a matrix.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
The singular values are returned in descending order.
|
|||
|
|
|||
|
.. note:: This function is equivalent to NumPy's `linalg.svd(A, compute_uv=False)`.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.svd` computes the full singular value decomposition.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
driver (str, optional): name of the cuSOLVER method to be used. This keyword argument only works on CUDA inputs.
|
|||
|
Available options are: `None`, `gesvd`, `gesvdj`, and `gesvda`.
|
|||
|
Check :func:`torch.linalg.svd` for details.
|
|||
|
Default: `None`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor, even when :attr:`A` is complex.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(5, 3)
|
|||
|
>>> S = torch.linalg.svdvals(A)
|
|||
|
>>> S
|
|||
|
tensor([2.5139, 2.1087, 1.1066])
|
|||
|
|
|||
|
>>> torch.dist(S, torch.linalg.svd(A, full_matrices=False).S)
|
|||
|
tensor(2.4576e-07)
|
|||
|
""")
|
|||
|
|
|||
|
cond = _add_docstr(_linalg.linalg_cond, r"""
|
|||
|
linalg.cond(A, p=None, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the condition number of a matrix with respect to a matrix norm.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **condition number** :math:`\kappa` of a matrix
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
\kappa(A) = \|A\|_p\|A^{-1}\|_p
|
|||
|
|
|||
|
The condition number of :attr:`A` measures the numerical stability of the linear system `AX = B`
|
|||
|
with respect to a matrix norm.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
:attr:`p` defines the matrix norm that is computed. The following norms are supported:
|
|||
|
|
|||
|
========= =================================
|
|||
|
:attr:`p` matrix norm
|
|||
|
========= =================================
|
|||
|
`None` `2`-norm (largest singular value)
|
|||
|
`'fro'` Frobenius norm
|
|||
|
`'nuc'` nuclear norm
|
|||
|
`inf` `max(sum(abs(x), dim=1))`
|
|||
|
`-inf` `min(sum(abs(x), dim=1))`
|
|||
|
`1` `max(sum(abs(x), dim=0))`
|
|||
|
`-1` `min(sum(abs(x), dim=0))`
|
|||
|
`2` largest singular value
|
|||
|
`-2` smallest singular value
|
|||
|
========= =================================
|
|||
|
|
|||
|
where `inf` refers to `float('inf')`, NumPy's `inf` object, or any equivalent object.
|
|||
|
|
|||
|
For :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`, this function uses
|
|||
|
:func:`torch.linalg.norm` and :func:`torch.linalg.inv`.
|
|||
|
As such, in this case, the matrix (or every matrix in the batch) :attr:`A` has to be square
|
|||
|
and invertible.
|
|||
|
|
|||
|
For :attr:`p` in `(2, -2)`, this function can be computed in terms of the singular values
|
|||
|
:math:`\sigma_1 \geq \ldots \geq \sigma_n`
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
\kappa_2(A) = \frac{\sigma_1}{\sigma_n}\qquad \kappa_{-2}(A) = \frac{\sigma_n}{\sigma_1}
|
|||
|
|
|||
|
In these cases, it is computed using :func:`torch.linalg.svdvals`. For these norms, the matrix
|
|||
|
(or every matrix in the batch) :attr:`A` may have any shape.
|
|||
|
|
|||
|
.. note :: When inputs are on a CUDA device, this function synchronizes that device with the CPU
|
|||
|
if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.solve` for a function that solves linear systems of square matrices.
|
|||
|
|
|||
|
:func:`torch.linalg.lstsq` for a function that solves linear systems of general matrices.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions
|
|||
|
for :attr:`p` in `(2, -2)`, and of shape `(*, n, n)` where every matrix
|
|||
|
is invertible for :attr:`p` in `('fro', 'nuc', inf, -inf, 1, -1)`.
|
|||
|
p (int, inf, -inf, 'fro', 'nuc', optional):
|
|||
|
the type of the matrix norm to use in the computations (see above). Default: `None`
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A real-valued tensor, even when :attr:`A` is complex.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError:
|
|||
|
if :attr:`p` is one of `('fro', 'nuc', inf, -inf, 1, -1)`
|
|||
|
and the :attr:`A` matrix or any matrix in the batch :attr:`A` is not square
|
|||
|
or invertible.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 4, 4, dtype=torch.complex64)
|
|||
|
>>> torch.linalg.cond(A)
|
|||
|
>>> A = torch.tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])
|
|||
|
>>> torch.linalg.cond(A)
|
|||
|
tensor([1.4142])
|
|||
|
>>> torch.linalg.cond(A, 'fro')
|
|||
|
tensor(3.1623)
|
|||
|
>>> torch.linalg.cond(A, 'nuc')
|
|||
|
tensor(9.2426)
|
|||
|
>>> torch.linalg.cond(A, float('inf'))
|
|||
|
tensor(2.)
|
|||
|
>>> torch.linalg.cond(A, float('-inf'))
|
|||
|
tensor(1.)
|
|||
|
>>> torch.linalg.cond(A, 1)
|
|||
|
tensor(2.)
|
|||
|
>>> torch.linalg.cond(A, -1)
|
|||
|
tensor(1.)
|
|||
|
>>> torch.linalg.cond(A, 2)
|
|||
|
tensor([1.4142])
|
|||
|
>>> torch.linalg.cond(A, -2)
|
|||
|
tensor([0.7071])
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 3)
|
|||
|
>>> torch.linalg.cond(A)
|
|||
|
tensor([[9.5917],
|
|||
|
[3.2538]])
|
|||
|
>>> A = torch.randn(2, 3, 3, dtype=torch.complex64)
|
|||
|
>>> torch.linalg.cond(A)
|
|||
|
tensor([[4.6245],
|
|||
|
[4.5671]])
|
|||
|
""")
|
|||
|
|
|||
|
pinv = _add_docstr(_linalg.linalg_pinv, r"""
|
|||
|
linalg.pinv(A, *, atol=None, rtol=None, hermitian=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
|
|||
|
|
|||
|
The pseudoinverse may be `defined algebraically`_
|
|||
|
but it is more computationally convenient to understand it `through the SVD`_
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
If :attr:`hermitian`\ `= True`, :attr:`A` is assumed to be Hermitian if complex or
|
|||
|
symmetric if real, but this is not checked internally. Instead, just the lower
|
|||
|
triangular part of the matrix is used in the computations.
|
|||
|
|
|||
|
The singular values (or the norm of the eigenvalues when :attr:`hermitian`\ `= True`)
|
|||
|
that are below :math:`\max(\text{atol}, \sigma_1 \cdot \text{rtol})` threshold are
|
|||
|
treated as zero and discarded in the computation,
|
|||
|
where :math:`\sigma_1` is the largest singular value (or eigenvalue).
|
|||
|
|
|||
|
If :attr:`rtol` is not specified and :attr:`A` is a matrix of dimensions `(m, n)`,
|
|||
|
the relative tolerance is set to be :math:`\text{rtol} = \max(m, n) \varepsilon`
|
|||
|
and :math:`\varepsilon` is the epsilon value for the dtype of :attr:`A` (see :class:`.finfo`).
|
|||
|
If :attr:`rtol` is not specified and :attr:`atol` is specified to be larger than zero then
|
|||
|
:attr:`rtol` is set to zero.
|
|||
|
|
|||
|
If :attr:`atol` or :attr:`rtol` is a :class:`torch.Tensor`, its shape must be broadcastable to that
|
|||
|
of the singular values of :attr:`A` as returned by :func:`torch.linalg.svd`.
|
|||
|
|
|||
|
.. note:: This function uses :func:`torch.linalg.svd` if :attr:`hermitian`\ `= False` and
|
|||
|
:func:`torch.linalg.eigh` if :attr:`hermitian`\ `= True`.
|
|||
|
For CUDA inputs, this function synchronizes that device with the CPU.
|
|||
|
|
|||
|
.. note::
|
|||
|
Consider using :func:`torch.linalg.lstsq` if possible for multiplying a matrix on the left by
|
|||
|
the pseudoinverse, as::
|
|||
|
|
|||
|
torch.linalg.lstsq(A, B).solution == A.pinv() @ B
|
|||
|
|
|||
|
It is always preferred to use :func:`~lstsq` when possible, as it is faster and more
|
|||
|
numerically stable than computing the pseudoinverse explicitly.
|
|||
|
|
|||
|
.. note::
|
|||
|
This function has NumPy compatible variant `linalg.pinv(A, rcond, hermitian=False)`.
|
|||
|
However, use of the positional argument :attr:`rcond` is deprecated in favor of :attr:`rtol`.
|
|||
|
|
|||
|
.. warning::
|
|||
|
This function uses internally :func:`torch.linalg.svd` (or :func:`torch.linalg.eigh`
|
|||
|
when :attr:`hermitian`\ `= True`), so its derivative has the same problems as those of these
|
|||
|
functions. See the warnings in :func:`torch.linalg.svd` and :func:`torch.linalg.eigh` for
|
|||
|
more details.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.inv` computes the inverse of a square matrix.
|
|||
|
|
|||
|
:func:`torch.linalg.lstsq` computes :attr:`A`\ `.pinv() @ \ `:attr:`B` with a
|
|||
|
numerically stable algorithm.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
rcond (float, Tensor, optional): [NumPy Compat]. Alias for :attr:`rtol`. Default: `None`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
atol (float, Tensor, optional): the absolute tolerance value. When `None` it's considered to be zero.
|
|||
|
Default: `None`.
|
|||
|
rtol (float, Tensor, optional): the relative tolerance value. See above for the value it takes when `None`.
|
|||
|
Default: `None`.
|
|||
|
hermitian(bool, optional): indicates whether :attr:`A` is Hermitian if complex
|
|||
|
or symmetric if real. Default: `False`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 5)
|
|||
|
>>> A
|
|||
|
tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132],
|
|||
|
[-1.1143, -0.3662, 0.3042, 1.6374, -0.9294],
|
|||
|
[-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]])
|
|||
|
>>> torch.linalg.pinv(A)
|
|||
|
tensor([[ 0.0600, -0.1933, -0.2090],
|
|||
|
[-0.0903, -0.0817, -0.4752],
|
|||
|
[-0.7124, -0.1631, -0.2272],
|
|||
|
[ 0.1356, 0.3933, -0.5023],
|
|||
|
[-0.0308, -0.1725, -0.5216]])
|
|||
|
|
|||
|
>>> A = torch.randn(2, 6, 3)
|
|||
|
>>> Apinv = torch.linalg.pinv(A)
|
|||
|
>>> torch.dist(Apinv @ A, torch.eye(3))
|
|||
|
tensor(8.5633e-07)
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3, dtype=torch.complex64)
|
|||
|
>>> A = A + A.T.conj() # creates a Hermitian matrix
|
|||
|
>>> Apinv = torch.linalg.pinv(A, hermitian=True)
|
|||
|
>>> torch.dist(Apinv @ A, torch.eye(3))
|
|||
|
tensor(1.0830e-06)
|
|||
|
|
|||
|
.. _defined algebraically:
|
|||
|
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Existence_and_uniqueness
|
|||
|
.. _through the SVD:
|
|||
|
https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse#Singular_value_decomposition_(SVD)
|
|||
|
""")
|
|||
|
|
|||
|
matrix_exp = _add_docstr(_linalg.linalg_matrix_exp, r"""
|
|||
|
linalg.matrix_exp(A) -> Tensor
|
|||
|
|
|||
|
Computes the matrix exponential of a square matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
this function computes the **matrix exponential** of :math:`A \in \mathbb{K}^{n \times n}`, which is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
\mathrm{matrix\_exp}(A) = \sum_{k=0}^\infty \frac{1}{k!}A^k \in \mathbb{K}^{n \times n}.
|
|||
|
|
|||
|
If the matrix :math:`A` has eigenvalues :math:`\lambda_i \in \mathbb{C}`,
|
|||
|
the matrix :math:`\mathrm{matrix\_exp}(A)` has eigenvalues :math:`e^{\lambda_i} \in \mathbb{C}`.
|
|||
|
|
|||
|
Supports input of bfloat16, float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Example::
|
|||
|
|
|||
|
>>> A = torch.empty(2, 2, 2)
|
|||
|
>>> A[0, :, :] = torch.eye(2, 2)
|
|||
|
>>> A[1, :, :] = 2 * torch.eye(2, 2)
|
|||
|
>>> A
|
|||
|
tensor([[[1., 0.],
|
|||
|
[0., 1.]],
|
|||
|
|
|||
|
[[2., 0.],
|
|||
|
[0., 2.]]])
|
|||
|
>>> torch.linalg.matrix_exp(A)
|
|||
|
tensor([[[2.7183, 0.0000],
|
|||
|
[0.0000, 2.7183]],
|
|||
|
|
|||
|
[[7.3891, 0.0000],
|
|||
|
[0.0000, 7.3891]]])
|
|||
|
|
|||
|
>>> import math
|
|||
|
>>> A = torch.tensor([[0, math.pi/3], [-math.pi/3, 0]]) # A is skew-symmetric
|
|||
|
>>> torch.linalg.matrix_exp(A) # matrix_exp(A) = [[cos(pi/3), sin(pi/3)], [-sin(pi/3), cos(pi/3)]]
|
|||
|
tensor([[ 0.5000, 0.8660],
|
|||
|
[-0.8660, 0.5000]])
|
|||
|
""")
|
|||
|
|
|||
|
|
|||
|
solve = _add_docstr(_linalg.linalg_solve, r"""
|
|||
|
linalg.solve(A, B, *, left=True, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the solution of a square system of linear equations with a unique solution.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as
|
|||
|
|
|||
|
.. math:: AX = B
|
|||
|
|
|||
|
If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}
|
|||
|
|
|||
|
This system of linear equations has one solution if and only if :math:`A` is `invertible`_.
|
|||
|
This function assumes that :math:`A` is invertible.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
Letting `*` be zero or more batch dimensions,
|
|||
|
|
|||
|
- If :attr:`A` has shape `(*, n, n)` and :attr:`B` has shape `(*, n)` (a batch of vectors) or shape
|
|||
|
`(*, n, k)` (a batch of matrices or "multiple right-hand sides"), this function returns `X` of shape
|
|||
|
`(*, n)` or `(*, n, k)` respectively.
|
|||
|
- Otherwise, if :attr:`A` has shape `(*, n, n)` and :attr:`B` has shape `(n,)` or `(n, k)`, :attr:`B`
|
|||
|
is broadcasted to have shape `(*, n)` or `(*, n, k)` respectively.
|
|||
|
This function then returns the solution of the resulting batch of systems of linear equations.
|
|||
|
|
|||
|
.. note::
|
|||
|
This function computes `X = \ `:attr:`A`\ `.inverse() @ \ `:attr:`B` in a faster and
|
|||
|
more numerically stable way than performing the computations separately.
|
|||
|
|
|||
|
.. note::
|
|||
|
It is possible to compute the solution of the system :math:`XA = B` by passing the inputs
|
|||
|
:attr:`A` and :attr:`B` transposed and transposing the output returned by this function.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.solve_ex")}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.solve_triangular` computes the solution of a triangular system of linear
|
|||
|
equations with a unique solution.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` where `*` is zero or more batch dimensions.
|
|||
|
B (Tensor): right-hand side tensor of shape `(*, n)` or `(*, n, k)` or `(n,)` or `(n, k)`
|
|||
|
according to the rules described above
|
|||
|
|
|||
|
Keyword args:
|
|||
|
left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A`
|
|||
|
is not invertible.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> b = torch.randn(3)
|
|||
|
>>> x = torch.linalg.solve(A, b)
|
|||
|
>>> torch.allclose(A @ x, b)
|
|||
|
True
|
|||
|
>>> A = torch.randn(2, 3, 3)
|
|||
|
>>> B = torch.randn(2, 3, 4)
|
|||
|
>>> X = torch.linalg.solve(A, B)
|
|||
|
>>> X.shape
|
|||
|
torch.Size([2, 3, 4])
|
|||
|
>>> torch.allclose(A @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 3)
|
|||
|
>>> b = torch.randn(3, 1)
|
|||
|
>>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3, 1)
|
|||
|
>>> x.shape
|
|||
|
torch.Size([2, 3, 1])
|
|||
|
>>> torch.allclose(A @ x, b)
|
|||
|
True
|
|||
|
>>> b = torch.randn(3)
|
|||
|
>>> x = torch.linalg.solve(A, b) # b is broadcasted to size (2, 3)
|
|||
|
>>> x.shape
|
|||
|
torch.Size([2, 3])
|
|||
|
>>> Ax = A @ x.unsqueeze(-1)
|
|||
|
>>> torch.allclose(Ax, b.unsqueeze(-1).expand_as(Ax))
|
|||
|
True
|
|||
|
|
|||
|
.. _invertible:
|
|||
|
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
|
|||
|
""")
|
|||
|
|
|||
|
solve_triangular = _add_docstr(_linalg.linalg_solve_triangular, r"""
|
|||
|
linalg.solve_triangular(A, B, *, upper, left=True, unitriangular=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the solution of a triangular system of linear equations with a unique solution.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system**
|
|||
|
associated to the triangular matrix :math:`A \in \mathbb{K}^{n \times n}` without zeros on the diagonal
|
|||
|
(that is, it is `invertible`_) and the rectangular matrix , :math:`B \in \mathbb{K}^{n \times k}`,
|
|||
|
which is defined as
|
|||
|
|
|||
|
.. math:: AX = B
|
|||
|
|
|||
|
The argument :attr:`upper` signals whether :math:`A` is upper or lower triangular.
|
|||
|
|
|||
|
If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that
|
|||
|
solves the system
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}
|
|||
|
|
|||
|
If :attr:`upper`\ `= True` (resp. `False`) just the upper (resp. lower) triangular half of :attr:`A`
|
|||
|
will be accessed. The elements below the main diagonal will be considered to be zero and will not be accessed.
|
|||
|
|
|||
|
If :attr:`unitriangular`\ `= True`, the diagonal of :attr:`A` is assumed to be ones and will not be accessed.
|
|||
|
|
|||
|
The result may contain `NaN` s if the diagonal of :attr:`A` contains zeros or elements that
|
|||
|
are very close to zero and :attr:`unitriangular`\ `= False` (default) or if the input matrix
|
|||
|
has very small eigenvalues.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.solve` computes the solution of a general square system of linear
|
|||
|
equations with a unique solution.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`)
|
|||
|
where `*` is zero or more batch dimensions.
|
|||
|
B (Tensor): right-hand side tensor of shape `(*, n, k)`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
upper (bool): whether :attr:`A` is an upper or lower triangular matrix.
|
|||
|
left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.
|
|||
|
unitriangular (bool, optional): if `True`, the diagonal elements of :attr:`A` are assumed to be
|
|||
|
all equal to `1`. Default: `False`.
|
|||
|
out (Tensor, optional): output tensor. `B` may be passed as `out` and the result is computed in-place on `B`.
|
|||
|
Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3).triu_()
|
|||
|
>>> B = torch.randn(3, 4)
|
|||
|
>>> X = torch.linalg.solve_triangular(A, B, upper=True)
|
|||
|
>>> torch.allclose(A @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 3).tril_()
|
|||
|
>>> B = torch.randn(2, 3, 4)
|
|||
|
>>> X = torch.linalg.solve_triangular(A, B, upper=False)
|
|||
|
>>> torch.allclose(A @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> A = torch.randn(2, 4, 4).tril_()
|
|||
|
>>> B = torch.randn(2, 3, 4)
|
|||
|
>>> X = torch.linalg.solve_triangular(A, B, upper=False, left=False)
|
|||
|
>>> torch.allclose(X @ A, B)
|
|||
|
True
|
|||
|
|
|||
|
.. _invertible:
|
|||
|
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
|
|||
|
""")
|
|||
|
|
|||
|
lu_factor = _add_docstr(_linalg.linalg_lu_factor, r"""
|
|||
|
linalg.lu_factor(A, *, bool pivot=True, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes a compact representation of the LU factorization with partial pivoting of a matrix.
|
|||
|
|
|||
|
This function computes a compact representation of the decomposition given by :func:`torch.linalg.lu`.
|
|||
|
If the matrix is square, this representation may be used in :func:`torch.linalg.lu_solve`
|
|||
|
to solve system of linear equations that share the matrix :attr:`A`.
|
|||
|
|
|||
|
The returned decomposition is represented as a named tuple `(LU, pivots)`.
|
|||
|
The ``LU`` matrix has the same shape as the input matrix ``A``. Its upper and lower triangular
|
|||
|
parts encode the non-constant elements of ``L`` and ``U`` of the LU decomposition of ``A``.
|
|||
|
|
|||
|
The returned permutation matrix is represented by a 1-indexed vector. `pivots[i] == j` represents
|
|||
|
that in the `i`-th step of the algorithm, the `i`-th row was permuted with the `j-1`-th row.
|
|||
|
|
|||
|
On CUDA, one may use :attr:`pivot`\ `= False`. In this case, this function returns the LU
|
|||
|
decomposition without pivoting if it exists.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_has_ex"].format("torch.linalg.lu_factor_ex")}
|
|||
|
""" + r"""
|
|||
|
.. warning:: The LU decomposition is almost never unique, as often there are different permutation
|
|||
|
matrices that can yield different LU decompositions.
|
|||
|
As such, different platforms, like SciPy, or inputs on different devices,
|
|||
|
may produce different valid decompositions.
|
|||
|
|
|||
|
Gradient computations are only supported if the input matrix is full-rank.
|
|||
|
If this condition is not met, no error will be thrown, but the gradient may not be finite.
|
|||
|
This is because the LU decomposition with pivoting is not differentiable at these points.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.lu_solve` solves a system of linear equations given the output of this
|
|||
|
function provided the input matrix was square and invertible.
|
|||
|
|
|||
|
:func:`torch.lu_unpack` unpacks the tensors returned by :func:`~lu_factor` into the three
|
|||
|
matrices `P, L, U` that form the decomposition.
|
|||
|
|
|||
|
:func:`torch.linalg.lu` computes the LU decomposition with partial pivoting of a possibly
|
|||
|
non-square matrix. It is a composition of :func:`~lu_factor` and :func:`torch.lu_unpack`.
|
|||
|
|
|||
|
:func:`torch.linalg.solve` solves a system of linear equations. It is a composition
|
|||
|
of :func:`~lu_factor` and :func:`~lu_solve`.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU
|
|||
|
decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`.
|
|||
|
out (tuple, optional): tuple of two tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(LU, pivots)`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the :attr:`A` matrix is not invertible or any matrix in a batched :attr:`A`
|
|||
|
is not invertible.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(2, 3, 3)
|
|||
|
>>> B1 = torch.randn(2, 3, 4)
|
|||
|
>>> B2 = torch.randn(2, 3, 7)
|
|||
|
>>> LU, pivots = torch.linalg.lu_factor(A)
|
|||
|
>>> X1 = torch.linalg.lu_solve(LU, pivots, B1)
|
|||
|
>>> X2 = torch.linalg.lu_solve(LU, pivots, B2)
|
|||
|
>>> torch.allclose(A @ X1, B1)
|
|||
|
True
|
|||
|
>>> torch.allclose(A @ X2, B2)
|
|||
|
True
|
|||
|
|
|||
|
.. _invertible:
|
|||
|
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
|
|||
|
""")
|
|||
|
|
|||
|
lu_factor_ex = _add_docstr(_linalg.linalg_lu_factor_ex, r"""
|
|||
|
linalg.lu_factor_ex(A, *, pivot=True, check_errors=False, out=None) -> (Tensor, Tensor, Tensor)
|
|||
|
|
|||
|
This is a version of :func:`~lu_factor` that does not perform error checks unless :attr:`check_errors`\ `= True`.
|
|||
|
It also returns the :attr:`info` tensor returned by `LAPACK's getrf`_.
|
|||
|
|
|||
|
""" + fr"""
|
|||
|
.. note:: {common_notes["sync_note_ex"]}
|
|||
|
|
|||
|
.. warning:: {common_notes["experimental_warning"]}
|
|||
|
""" + r"""
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
pivot (bool, optional): Whether to compute the LU decomposition with partial pivoting, or the regular LU
|
|||
|
decomposition. :attr:`pivot`\ `= False` not supported on CPU. Default: `True`.
|
|||
|
check_errors (bool, optional): controls whether to check the content of ``infos`` and raise
|
|||
|
an error if it is non-zero. Default: `False`.
|
|||
|
out (tuple, optional): tuple of three tensors to write the output to. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(LU, pivots, info)`.
|
|||
|
|
|||
|
.. _LAPACK's getrf:
|
|||
|
https://www.netlib.org/lapack/explore-html/dd/d9a/group__double_g_ecomputational_ga0019443faea08275ca60a734d0593e60.html
|
|||
|
""")
|
|||
|
|
|||
|
lu_solve = _add_docstr(_linalg.linalg_lu_solve, r"""
|
|||
|
linalg.lu_solve(LU, pivots, B, *, left=True, adjoint=False, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the solution of a square system of linear equations with a unique solution given an LU decomposition.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
this function computes the solution :math:`X \in \mathbb{K}^{n \times k}` of the **linear system** associated to
|
|||
|
:math:`A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}`, which is defined as
|
|||
|
|
|||
|
.. math:: AX = B
|
|||
|
|
|||
|
where :math:`A` is given factorized as returned by :func:`~lu_factor`.
|
|||
|
|
|||
|
If :attr:`left`\ `= False`, this function returns the matrix :math:`X \in \mathbb{K}^{n \times k}` that solves the system
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}
|
|||
|
|
|||
|
If :attr:`adjoint`\ `= True` (and :attr:`left`\ `= True`), given an LU factorization of :math:`A`
|
|||
|
this function function returns the :math:`X \in \mathbb{K}^{n \times k}` that solves the system
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A^{\text{H}}X = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.}
|
|||
|
|
|||
|
where :math:`A^{\text{H}}` is the conjugate transpose when :math:`A` is complex, and the
|
|||
|
transpose when :math:`A` is real-valued. The :attr:`left`\ `= False` case is analogous.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if the inputs are batches of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
Args:
|
|||
|
LU (Tensor): tensor of shape `(*, n, n)` (or `(*, k, k)` if :attr:`left`\ `= True`)
|
|||
|
where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`.
|
|||
|
pivots (Tensor): tensor of shape `(*, n)` (or `(*, k)` if :attr:`left`\ `= True`)
|
|||
|
where `*` is zero or more batch dimensions as returned by :func:`~lu_factor`.
|
|||
|
B (Tensor): right-hand side tensor of shape `(*, n, k)`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
left (bool, optional): whether to solve the system :math:`AX=B` or :math:`XA = B`. Default: `True`.
|
|||
|
adjoint (bool, optional): whether to solve the system :math:`AX=B` or :math:`A^{\text{H}}X = B`. Default: `False`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 3)
|
|||
|
>>> LU, pivots = torch.linalg.lu_factor(A)
|
|||
|
>>> B = torch.randn(3, 2)
|
|||
|
>>> X = torch.linalg.lu_solve(LU, pivots, B)
|
|||
|
>>> torch.allclose(A @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> B = torch.randn(3, 3, 2) # Broadcasting rules apply: A is broadcasted
|
|||
|
>>> X = torch.linalg.lu_solve(LU, pivots, B)
|
|||
|
>>> torch.allclose(A @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> B = torch.randn(3, 5, 3)
|
|||
|
>>> X = torch.linalg.lu_solve(LU, pivots, B, left=False)
|
|||
|
>>> torch.allclose(X @ A, B)
|
|||
|
True
|
|||
|
|
|||
|
>>> B = torch.randn(3, 3, 4) # Now solve for A^T
|
|||
|
>>> X = torch.linalg.lu_solve(LU, pivots, B, adjoint=True)
|
|||
|
>>> torch.allclose(A.mT @ X, B)
|
|||
|
True
|
|||
|
|
|||
|
.. _invertible:
|
|||
|
https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
|
|||
|
""")
|
|||
|
|
|||
|
lu = _add_docstr(_linalg.linalg_lu, r"""
|
|||
|
lu(A, *, pivot=True, out=None) -> (Tensor, Tensor, Tensor)
|
|||
|
|
|||
|
Computes the LU decomposition with partial pivoting of a matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **LU decomposition with partial pivoting** of a matrix
|
|||
|
:math:`A \in \mathbb{K}^{m \times n}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = PLU\mathrlap{\qquad P \in \mathbb{K}^{m \times m}, L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}}
|
|||
|
|
|||
|
where `k = min(m,n)`, :math:`P` is a `permutation matrix`_, :math:`L` is lower triangular with ones on the diagonal
|
|||
|
and :math:`U` is upper triangular.
|
|||
|
|
|||
|
If :attr:`pivot`\ `= False` and :attr:`A` is on GPU, then the **LU decomposition without pivoting** is computed
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = LU\mathrlap{\qquad L \in \mathbb{K}^{m \times k}, U \in \mathbb{K}^{k \times n}}
|
|||
|
|
|||
|
When :attr:`pivot`\ `= False`, the returned matrix :attr:`P` will be empty.
|
|||
|
The LU decomposition without pivoting `may not exist`_ if any of the principal minors of :attr:`A` is singular.
|
|||
|
In this case, the output matrix may contain `inf` or `NaN`.
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.solve` solves a system of linear equations using the LU decomposition
|
|||
|
with partial pivoting.
|
|||
|
|
|||
|
.. warning:: The LU decomposition is almost never unique, as often there are different permutation
|
|||
|
matrices that can yield different LU decompositions.
|
|||
|
As such, different platforms, like SciPy, or inputs on different devices,
|
|||
|
may produce different valid decompositions.
|
|||
|
|
|||
|
.. warning:: Gradient computations are only supported if the input matrix is full-rank.
|
|||
|
If this condition is not met, no error will be thrown, but the gradient
|
|||
|
may not be finite.
|
|||
|
This is because the LU decomposition with pivoting is not differentiable at these points.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
pivot (bool, optional): Controls whether to compute the LU decomposition with partial pivoting or
|
|||
|
no pivoting. Default: `True`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): output tuple of three tensors. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(P, L, U)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.randn(3, 2)
|
|||
|
>>> P, L, U = torch.linalg.lu(A)
|
|||
|
>>> P
|
|||
|
tensor([[0., 1., 0.],
|
|||
|
[0., 0., 1.],
|
|||
|
[1., 0., 0.]])
|
|||
|
>>> L
|
|||
|
tensor([[1.0000, 0.0000],
|
|||
|
[0.5007, 1.0000],
|
|||
|
[0.0633, 0.9755]])
|
|||
|
>>> U
|
|||
|
tensor([[0.3771, 0.0489],
|
|||
|
[0.0000, 0.9644]])
|
|||
|
>>> torch.dist(A, P @ L @ U)
|
|||
|
tensor(5.9605e-08)
|
|||
|
|
|||
|
>>> A = torch.randn(2, 5, 7, device="cuda")
|
|||
|
>>> P, L, U = torch.linalg.lu(A, pivot=False)
|
|||
|
>>> P
|
|||
|
tensor([], device='cuda:0')
|
|||
|
>>> torch.dist(A, L @ U)
|
|||
|
tensor(1.0376e-06, device='cuda:0')
|
|||
|
|
|||
|
.. _permutation matrix:
|
|||
|
https://en.wikipedia.org/wiki/Permutation_matrix
|
|||
|
.. _may not exist:
|
|||
|
https://en.wikipedia.org/wiki/LU_decomposition#Definitions
|
|||
|
""")
|
|||
|
|
|||
|
tensorinv = _add_docstr(_linalg.linalg_tensorinv, r"""
|
|||
|
linalg.tensorinv(A, ind=2, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the multiplicative inverse of :func:`torch.tensordot`.
|
|||
|
|
|||
|
If `m` is the product of the first :attr:`ind` dimensions of :attr:`A` and `n` is the product of
|
|||
|
the rest of the dimensions, this function expects `m` and `n` to be equal.
|
|||
|
If this is the case, it computes a tensor `X` such that
|
|||
|
`tensordot(\ `:attr:`A`\ `, X, \ `:attr:`ind`\ `)` is the identity matrix in dimension `m`.
|
|||
|
`X` will have the shape of :attr:`A` but with the first :attr:`ind` dimensions pushed back to the end
|
|||
|
|
|||
|
.. code:: text
|
|||
|
|
|||
|
X.shape == A.shape[ind:] + A.shape[:ind]
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
|
|||
|
.. note:: When :attr:`A` is a `2`-dimensional tensor and :attr:`ind`\ `= 1`,
|
|||
|
this function computes the (multiplicative) inverse of :attr:`A`
|
|||
|
(see :func:`torch.linalg.inv`).
|
|||
|
|
|||
|
.. note::
|
|||
|
Consider using :func:`torch.linalg.tensorsolve` if possible for multiplying a tensor on the left
|
|||
|
by the tensor inverse, as::
|
|||
|
|
|||
|
linalg.tensorsolve(A, B) == torch.tensordot(linalg.tensorinv(A), B) # When B is a tensor with shape A.shape[:B.ndim]
|
|||
|
|
|||
|
It is always preferred to use :func:`~tensorsolve` when possible, as it is faster and more
|
|||
|
numerically stable than computing the pseudoinverse explicitly.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.tensorsolve` computes
|
|||
|
`torch.tensordot(tensorinv(\ `:attr:`A`\ `), \ `:attr:`B`\ `)`.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor to invert. Its shape must satisfy
|
|||
|
`prod(\ `:attr:`A`\ `.shape[:\ `:attr:`ind`\ `]) ==
|
|||
|
prod(\ `:attr:`A`\ `.shape[\ `:attr:`ind`\ `:])`.
|
|||
|
ind (int): index at which to compute the inverse of :func:`torch.tensordot`. Default: `2`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the reshaped :attr:`A` is not invertible or the product of the first
|
|||
|
:attr:`ind` dimensions is not equal to the product of the rest.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.eye(4 * 6).reshape((4, 6, 8, 3))
|
|||
|
>>> Ainv = torch.linalg.tensorinv(A, ind=2)
|
|||
|
>>> Ainv.shape
|
|||
|
torch.Size([8, 3, 4, 6])
|
|||
|
>>> B = torch.randn(4, 6)
|
|||
|
>>> torch.allclose(torch.tensordot(Ainv, B), torch.linalg.tensorsolve(A, B))
|
|||
|
True
|
|||
|
|
|||
|
>>> A = torch.randn(4, 4)
|
|||
|
>>> Atensorinv = torch.linalg.tensorinv(A, ind=1)
|
|||
|
>>> Ainv = torch.linalg.inv(A)
|
|||
|
>>> torch.allclose(Atensorinv, Ainv)
|
|||
|
True
|
|||
|
""")
|
|||
|
|
|||
|
tensorsolve = _add_docstr(_linalg.linalg_tensorsolve, r"""
|
|||
|
linalg.tensorsolve(A, B, dims=None, *, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the solution `X` to the system `torch.tensordot(A, X) = B`.
|
|||
|
|
|||
|
If `m` is the product of the first :attr:`B`\ `.ndim` dimensions of :attr:`A` and
|
|||
|
`n` is the product of the rest of the dimensions, this function expects `m` and `n` to be equal.
|
|||
|
|
|||
|
The returned tensor `x` satisfies
|
|||
|
`tensordot(\ `:attr:`A`\ `, x, dims=x.ndim) == \ `:attr:`B`.
|
|||
|
`x` has shape :attr:`A`\ `[B.ndim:]`.
|
|||
|
|
|||
|
If :attr:`dims` is specified, :attr:`A` will be reshaped as
|
|||
|
|
|||
|
.. code:: text
|
|||
|
|
|||
|
A = movedim(A, dims, range(len(dims) - A.ndim + 1, 0))
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat and cdouble dtypes.
|
|||
|
|
|||
|
.. seealso::
|
|||
|
|
|||
|
:func:`torch.linalg.tensorinv` computes the multiplicative inverse of
|
|||
|
:func:`torch.tensordot`.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor to solve for. Its shape must satisfy
|
|||
|
`prod(\ `:attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]) ==
|
|||
|
prod(\ `:attr:`A`\ `.shape[\ `:attr:`B`\ `.ndim:])`.
|
|||
|
B (Tensor): tensor of shape :attr:`A`\ `.shape[:\ `:attr:`B`\ `.ndim]`.
|
|||
|
dims (Tuple[int], optional): dimensions of :attr:`A` to be moved.
|
|||
|
If `None`, no dimensions are moved. Default: `None`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Raises:
|
|||
|
RuntimeError: if the reshaped :attr:`A`\ `.view(m, m)` with `m` as above is not
|
|||
|
invertible or the product of the first :attr:`ind` dimensions is not equal
|
|||
|
to the product of the rest of the dimensions.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.eye(2 * 3 * 4).reshape((2 * 3, 4, 2, 3, 4))
|
|||
|
>>> B = torch.randn(2 * 3, 4)
|
|||
|
>>> X = torch.linalg.tensorsolve(A, B)
|
|||
|
>>> X.shape
|
|||
|
torch.Size([2, 3, 4])
|
|||
|
>>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B)
|
|||
|
True
|
|||
|
|
|||
|
>>> A = torch.randn(6, 4, 4, 3, 2)
|
|||
|
>>> B = torch.randn(4, 3, 2)
|
|||
|
>>> X = torch.linalg.tensorsolve(A, B, dims=(0, 2))
|
|||
|
>>> X.shape
|
|||
|
torch.Size([6, 4])
|
|||
|
>>> A = A.permute(1, 3, 4, 0, 2)
|
|||
|
>>> A.shape[B.ndim:]
|
|||
|
torch.Size([6, 4])
|
|||
|
>>> torch.allclose(torch.tensordot(A, X, dims=X.ndim), B, atol=1e-6)
|
|||
|
True
|
|||
|
""")
|
|||
|
|
|||
|
qr = _add_docstr(_linalg.linalg_qr, r"""
|
|||
|
qr(A, mode='reduced', *, out=None) -> (Tensor, Tensor)
|
|||
|
|
|||
|
Computes the QR decomposition of a matrix.
|
|||
|
|
|||
|
Letting :math:`\mathbb{K}` be :math:`\mathbb{R}` or :math:`\mathbb{C}`,
|
|||
|
the **full QR decomposition** of a matrix
|
|||
|
:math:`A \in \mathbb{K}^{m \times n}` is defined as
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times m}, R \in \mathbb{K}^{m \times n}}
|
|||
|
|
|||
|
where :math:`Q` is orthogonal in the real case and unitary in the complex case,
|
|||
|
and :math:`R` is upper triangular with real diagonal (even in the complex case).
|
|||
|
|
|||
|
When `m > n` (tall matrix), as `R` is upper triangular, its last `m - n` rows are zero.
|
|||
|
In this case, we can drop the last `m - n` columns of `Q` to form the
|
|||
|
**reduced QR decomposition**:
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
A = QR\mathrlap{\qquad Q \in \mathbb{K}^{m \times n}, R \in \mathbb{K}^{n \times n}}
|
|||
|
|
|||
|
The reduced QR decomposition agrees with the full QR decomposition when `n >= m` (wide matrix).
|
|||
|
|
|||
|
Supports input of float, double, cfloat and cdouble dtypes.
|
|||
|
Also supports batches of matrices, and if :attr:`A` is a batch of matrices then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
The parameter :attr:`mode` chooses between the full and reduced QR decomposition.
|
|||
|
If :attr:`A` has shape `(*, m, n)`, denoting `k = min(m, n)`
|
|||
|
|
|||
|
- :attr:`mode`\ `= 'reduced'` (default): Returns `(Q, R)` of shapes `(*, m, k)`, `(*, k, n)` respectively.
|
|||
|
It is always differentiable.
|
|||
|
- :attr:`mode`\ `= 'complete'`: Returns `(Q, R)` of shapes `(*, m, m)`, `(*, m, n)` respectively.
|
|||
|
It is differentiable for `m <= n`.
|
|||
|
- :attr:`mode`\ `= 'r'`: Computes only the reduced `R`. Returns `(Q, R)` with `Q` empty and `R` of shape `(*, k, n)`.
|
|||
|
It is never differentiable.
|
|||
|
|
|||
|
Differences with `numpy.linalg.qr`:
|
|||
|
|
|||
|
- :attr:`mode`\ `= 'raw'` is not implemented.
|
|||
|
- Unlike `numpy.linalg.qr`, this function always returns a tuple of two tensors.
|
|||
|
When :attr:`mode`\ `= 'r'`, the `Q` tensor is an empty tensor.
|
|||
|
|
|||
|
.. warning:: The elements in the diagonal of `R` are not necessarily positive.
|
|||
|
As such, the returned QR decomposition is only unique up to the sign of the diagonal of `R`.
|
|||
|
Therefore, different platforms, like NumPy, or inputs on different devices,
|
|||
|
may produce different valid decompositions.
|
|||
|
|
|||
|
.. warning:: The QR decomposition is only well-defined if the first `k = min(m, n)` columns
|
|||
|
of every matrix in :attr:`A` are linearly independent.
|
|||
|
If this condition is not met, no error will be thrown, but the QR produced
|
|||
|
may be incorrect and its autodiff may fail or produce incorrect results.
|
|||
|
|
|||
|
Args:
|
|||
|
A (Tensor): tensor of shape `(*, m, n)` where `*` is zero or more batch dimensions.
|
|||
|
mode (str, optional): one of `'reduced'`, `'complete'`, `'r'`.
|
|||
|
Controls the shape of the returned tensors. Default: `'reduced'`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
out (tuple, optional): output tuple of two tensors. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Returns:
|
|||
|
A named tuple `(Q, R)`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> A = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])
|
|||
|
>>> Q, R = torch.linalg.qr(A)
|
|||
|
>>> Q
|
|||
|
tensor([[-0.8571, 0.3943, 0.3314],
|
|||
|
[-0.4286, -0.9029, -0.0343],
|
|||
|
[ 0.2857, -0.1714, 0.9429]])
|
|||
|
>>> R
|
|||
|
tensor([[ -14.0000, -21.0000, 14.0000],
|
|||
|
[ 0.0000, -175.0000, 70.0000],
|
|||
|
[ 0.0000, 0.0000, -35.0000]])
|
|||
|
>>> (Q @ R).round()
|
|||
|
tensor([[ 12., -51., 4.],
|
|||
|
[ 6., 167., -68.],
|
|||
|
[ -4., 24., -41.]])
|
|||
|
>>> (Q.T @ Q).round()
|
|||
|
tensor([[ 1., 0., 0.],
|
|||
|
[ 0., 1., -0.],
|
|||
|
[ 0., -0., 1.]])
|
|||
|
>>> Q2, R2 = torch.linalg.qr(A, mode='r')
|
|||
|
>>> Q2
|
|||
|
tensor([])
|
|||
|
>>> torch.equal(R, R2)
|
|||
|
True
|
|||
|
>>> A = torch.randn(3, 4, 5)
|
|||
|
>>> Q, R = torch.linalg.qr(A, mode='complete')
|
|||
|
>>> torch.dist(Q @ R, A)
|
|||
|
tensor(1.6099e-06)
|
|||
|
>>> torch.dist(Q.mT @ Q, torch.eye(4))
|
|||
|
tensor(6.2158e-07)
|
|||
|
""")
|
|||
|
|
|||
|
vander = _add_docstr(_linalg.linalg_vander, r"""
|
|||
|
vander(x, N=None) -> Tensor
|
|||
|
|
|||
|
Generates a Vandermonde matrix.
|
|||
|
|
|||
|
Returns the Vandermonde matrix :math:`V`
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
V = \begin{pmatrix}
|
|||
|
1 & x_1 & x_1^2 & \dots & x_1^{N-1}\\
|
|||
|
1 & x_2 & x_2^2 & \dots & x_2^{N-1}\\
|
|||
|
1 & x_3 & x_3^2 & \dots & x_3^{N-1}\\
|
|||
|
\vdots & \vdots & \vdots & \ddots &\vdots \\
|
|||
|
1 & x_n & x_n^2 & \dots & x_n^{N-1}
|
|||
|
\end{pmatrix}.
|
|||
|
|
|||
|
for `N > 1`.
|
|||
|
If :attr:`N`\ `= None`, then `N = x.size(-1)` so that the output is a square matrix.
|
|||
|
|
|||
|
Supports inputs of float, double, cfloat, cdouble, and integral dtypes.
|
|||
|
Also supports batches of vectors, and if :attr:`x` is a batch of vectors then
|
|||
|
the output has the same batch dimensions.
|
|||
|
|
|||
|
Differences with `numpy.vander`:
|
|||
|
|
|||
|
- Unlike `numpy.vander`, this function returns the powers of :attr:`x` in ascending order.
|
|||
|
To get them in the reverse order call ``linalg.vander(x, N).flip(-1)``.
|
|||
|
|
|||
|
Args:
|
|||
|
x (Tensor): tensor of shape `(*, n)` where `*` is zero or more batch dimensions
|
|||
|
consisting of vectors.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
N (int, optional): Number of columns in the output. Default: `x.size(-1)`
|
|||
|
|
|||
|
Example::
|
|||
|
|
|||
|
>>> x = torch.tensor([1, 2, 3, 5])
|
|||
|
>>> linalg.vander(x)
|
|||
|
tensor([[ 1, 1, 1, 1],
|
|||
|
[ 1, 2, 4, 8],
|
|||
|
[ 1, 3, 9, 27],
|
|||
|
[ 1, 5, 25, 125]])
|
|||
|
>>> linalg.vander(x, N=3)
|
|||
|
tensor([[ 1, 1, 1],
|
|||
|
[ 1, 2, 4],
|
|||
|
[ 1, 3, 9],
|
|||
|
[ 1, 5, 25]])
|
|||
|
""")
|
|||
|
|
|||
|
vecdot = _add_docstr(_linalg.linalg_vecdot, r"""
|
|||
|
linalg.vecdot(x, y, *, dim=-1, out=None) -> Tensor
|
|||
|
|
|||
|
Computes the dot product of two batches of vectors along a dimension.
|
|||
|
|
|||
|
In symbols, this function computes
|
|||
|
|
|||
|
.. math::
|
|||
|
|
|||
|
\sum_{i=1}^n \overline{x_i}y_i.
|
|||
|
|
|||
|
over the dimension :attr:`dim` where :math:`\overline{x_i}` denotes the conjugate for complex
|
|||
|
vectors, and it is the identity for real vectors.
|
|||
|
|
|||
|
Supports input of half, bfloat16, float, double, cfloat, cdouble and integral dtypes.
|
|||
|
It also supports broadcasting.
|
|||
|
|
|||
|
Args:
|
|||
|
x (Tensor): first batch of vectors of shape `(*, n)`.
|
|||
|
y (Tensor): second batch of vectors of shape `(*, n)`.
|
|||
|
|
|||
|
Keyword args:
|
|||
|
dim (int): Dimension along which to compute the dot product. Default: `-1`.
|
|||
|
out (Tensor, optional): output tensor. Ignored if `None`. Default: `None`.
|
|||
|
|
|||
|
Examples::
|
|||
|
|
|||
|
>>> v1 = torch.randn(3, 2)
|
|||
|
>>> v2 = torch.randn(3, 2)
|
|||
|
>>> linalg.vecdot(v1, v2)
|
|||
|
tensor([ 0.3223, 0.2815, -0.1944])
|
|||
|
>>> torch.vdot(v1[0], v2[0])
|
|||
|
tensor(0.3223)
|
|||
|
""")
|