ai-content-maker/.venv/Lib/site-packages/torch/masked/maskedtensor/binary.py

193 lines
5.2 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Copyright (c) Meta Platforms, Inc. and affiliates
import torch
from .core import _map_mt_args_kwargs, _masks_match, _tensors_match, _wrap_result, is_masked_tensor
__all__ = [] # type: ignore[var-annotated]
BINARY_NAMES = [
"add",
"atan2",
"arctan2",
"bitwise_and",
"bitwise_or",
"bitwise_xor",
"bitwise_left_shift",
"bitwise_right_shift",
"div",
"divide",
"floor_divide",
"fmod",
"logaddexp",
"logaddexp2",
"mul",
"multiply",
"nextafter",
"remainder",
"sub",
"subtract",
"true_divide",
"eq",
"ne",
"le",
"ge",
"greater",
"greater_equal",
"gt",
"less_equal",
"lt",
"less",
"maximum",
"minimum",
"fmax",
"fmin",
"not_equal",
]
INPLACE_BINARY_NAMES = [
n + "_"
for n in (
list(
set(BINARY_NAMES)
- {
"logaddexp",
"logaddexp2",
"equal",
"fmin",
"minimum",
"maximum",
"fmax",
}
)
)
]
def _get_at_least_one_mask(a, b):
if not is_masked_tensor(a) and not is_masked_tensor(b):
raise TypeError("At least one of `a` and `b` must be a MaskedTensor")
if not _masks_match(a, b):
raise ValueError("a and b must have matching masks")
if is_masked_tensor(a):
return a.get_mask()
return b.get_mask()
def _binary_helper(fn, args, kwargs, inplace):
if len(kwargs) != 0:
raise ValueError("len(kwargs) must equal 0")
for a in args[2:]:
if torch.is_tensor(a):
raise TypeError("MaskedTensor binary ops do not support Tensor arguments aside from the lhs and rhs")
if not _masks_match(*args[:2]):
raise ValueError(
"Input masks must match. If you need support for this, please open an issue on Github."
)
data_args, data_kwargs = _map_mt_args_kwargs(
args, kwargs, lambda x: x.get_data()
)
mask_args, mask_kwargs = _map_mt_args_kwargs(
args, kwargs, lambda x: x.get_mask()
)
args0_layout = data_args[0].layout
same_layout = (
(torch.is_tensor(data_args[1]) or is_masked_tensor(data_args[1])) and
(args0_layout == data_args[1].layout)
)
if args0_layout == torch.sparse_coo:
if same_layout:
if not _tensors_match(data_args[0].indices(), data_args[1].indices()):
raise ValueError(
"sparse_coo indices must match. If you need support for this, please open an issue on Github."
)
if data_args[0].size() != data_args[1].size():
raise ValueError("input1 and input2 must have the same size for binary functions.")
data_args[1] = data_args[1].values()
i = data_args[0].indices()
size = data_args[0].size()
data_args[0] = data_args[0].values()
v = fn(*data_args)
result_data = torch.sparse_coo_tensor(i, v, size)
elif args0_layout == torch.sparse_csr:
if same_layout:
if not (
_tensors_match(data_args[0].crow_indices(), data_args[1].crow_indices())
and _tensors_match(
data_args[0].col_indices(), data_args[1].col_indices()
)
):
raise ValueError(
"sparse_csr indices must match. If you need support for this, please open an issue on Github."
)
data_args[1] = data_args[1].values()
crow = data_args[0].crow_indices()
col = data_args[0].col_indices()
data_args[0] = data_args[0].values()
v = fn(*data_args)
result_data = torch.sparse_csr_tensor(crow, col, v)
else:
result_data = fn(*data_args)
if inplace:
args[0]._set_data_mask(result_data, mask_args[0])
return args[0]
else:
result_mask = _get_at_least_one_mask(*args[:2])
# sparse tensors don't have strides so we can only expand if the layout is strided
if args0_layout == torch.strided:
result_mask = result_mask.expand_as(result_data)
return _wrap_result(result_data, result_mask)
def _torch_binary(fn_name):
fn = getattr(torch.ops.aten, fn_name)
def binary_fn(*args, **kwargs):
return _binary_helper(fn, args, kwargs, inplace=False)
return binary_fn
def _torch_inplace_binary(fn_name):
fn = getattr(torch.ops.aten, fn_name)
def binary_fn(*args, **kwargs):
return _binary_helper(fn, args, kwargs, inplace=True)
return binary_fn
NATIVE_BINARY_MAP = {
getattr(torch.ops.aten, name): _torch_binary(name) for name in BINARY_NAMES
}
NATIVE_INPLACE_BINARY_MAP = {
getattr(torch.ops.aten, name): _torch_inplace_binary(name)
for name in INPLACE_BINARY_NAMES
}
NATIVE_BINARY_FNS = list(NATIVE_BINARY_MAP.keys())
NATIVE_INPLACE_BINARY_FNS = list(NATIVE_INPLACE_BINARY_MAP.keys())
def _is_native_binary(fn):
return fn in NATIVE_BINARY_FNS or fn in NATIVE_INPLACE_BINARY_FNS
def _apply_native_binary(fn, *args, **kwargs):
if fn in NATIVE_BINARY_FNS:
return NATIVE_BINARY_MAP[fn](*args, **kwargs)
if fn in NATIVE_INPLACE_BINARY_FNS:
return NATIVE_INPLACE_BINARY_MAP[fn](*args, **kwargs)
return NotImplemented