298 lines
11 KiB
Python
298 lines
11 KiB
Python
|
import torch
|
||
|
import numbers
|
||
|
from torch.nn.parameter import Parameter
|
||
|
from .module import Module
|
||
|
from ._functions import CrossMapLRN2d as _cross_map_lrn2d
|
||
|
from .. import functional as F
|
||
|
from .. import init
|
||
|
|
||
|
from torch import Tensor, Size
|
||
|
from typing import Union, List, Tuple
|
||
|
|
||
|
__all__ = ['LocalResponseNorm', 'CrossMapLRN2d', 'LayerNorm', 'GroupNorm']
|
||
|
|
||
|
class LocalResponseNorm(Module):
|
||
|
r"""Applies local response normalization over an input signal.
|
||
|
|
||
|
The input signal is composed of several input planes, where channels occupy the second dimension.
|
||
|
Applies normalization across channels.
|
||
|
|
||
|
.. math::
|
||
|
b_{c} = a_{c}\left(k + \frac{\alpha}{n}
|
||
|
\sum_{c'=\max(0, c-n/2)}^{\min(N-1,c+n/2)}a_{c'}^2\right)^{-\beta}
|
||
|
|
||
|
Args:
|
||
|
size: amount of neighbouring channels used for normalization
|
||
|
alpha: multiplicative factor. Default: 0.0001
|
||
|
beta: exponent. Default: 0.75
|
||
|
k: additive factor. Default: 1
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, *)`
|
||
|
- Output: :math:`(N, C, *)` (same shape as input)
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> lrn = nn.LocalResponseNorm(2)
|
||
|
>>> signal_2d = torch.randn(32, 5, 24, 24)
|
||
|
>>> signal_4d = torch.randn(16, 5, 7, 7, 7, 7)
|
||
|
>>> output_2d = lrn(signal_2d)
|
||
|
>>> output_4d = lrn(signal_4d)
|
||
|
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['size', 'alpha', 'beta', 'k']
|
||
|
size: int
|
||
|
alpha: float
|
||
|
beta: float
|
||
|
k: float
|
||
|
|
||
|
def __init__(self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.) -> None:
|
||
|
super().__init__()
|
||
|
self.size = size
|
||
|
self.alpha = alpha
|
||
|
self.beta = beta
|
||
|
self.k = k
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.local_response_norm(input, self.size, self.alpha, self.beta,
|
||
|
self.k)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
|
||
|
|
||
|
|
||
|
class CrossMapLRN2d(Module):
|
||
|
size: int
|
||
|
alpha: float
|
||
|
beta: float
|
||
|
k: float
|
||
|
|
||
|
def __init__(self, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1) -> None:
|
||
|
super().__init__()
|
||
|
self.size = size
|
||
|
self.alpha = alpha
|
||
|
self.beta = beta
|
||
|
self.k = k
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return _cross_map_lrn2d.apply(input, self.size, self.alpha, self.beta,
|
||
|
self.k)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return '{size}, alpha={alpha}, beta={beta}, k={k}'.format(**self.__dict__)
|
||
|
|
||
|
|
||
|
_shape_t = Union[int, List[int], Size]
|
||
|
|
||
|
|
||
|
class LayerNorm(Module):
|
||
|
r"""Applies Layer Normalization over a mini-batch of inputs.
|
||
|
|
||
|
This layer implements the operation as described in
|
||
|
the paper `Layer Normalization <https://arxiv.org/abs/1607.06450>`__
|
||
|
|
||
|
.. math::
|
||
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
||
|
|
||
|
The mean and standard-deviation are calculated over the last `D` dimensions, where `D`
|
||
|
is the dimension of :attr:`normalized_shape`. For example, if :attr:`normalized_shape`
|
||
|
is ``(3, 5)`` (a 2-dimensional shape), the mean and standard-deviation are computed over
|
||
|
the last 2 dimensions of the input (i.e. ``input.mean((-2, -1))``).
|
||
|
:math:`\gamma` and :math:`\beta` are learnable affine transform parameters of
|
||
|
:attr:`normalized_shape` if :attr:`elementwise_affine` is ``True``.
|
||
|
The standard-deviation is calculated via the biased estimator, equivalent to
|
||
|
`torch.var(input, unbiased=False)`.
|
||
|
|
||
|
.. note::
|
||
|
Unlike Batch Normalization and Instance Normalization, which applies
|
||
|
scalar scale and bias for each entire channel/plane with the
|
||
|
:attr:`affine` option, Layer Normalization applies per-element scale and
|
||
|
bias with :attr:`elementwise_affine`.
|
||
|
|
||
|
This layer uses statistics computed from input data in both training and
|
||
|
evaluation modes.
|
||
|
|
||
|
Args:
|
||
|
normalized_shape (int or list or torch.Size): input shape from an expected input
|
||
|
of size
|
||
|
|
||
|
.. math::
|
||
|
[* \times \text{normalized\_shape}[0] \times \text{normalized\_shape}[1]
|
||
|
\times \ldots \times \text{normalized\_shape}[-1]]
|
||
|
|
||
|
If a single integer is used, it is treated as a singleton list, and this module will
|
||
|
normalize over the last dimension which is expected to be of that specific size.
|
||
|
eps: a value added to the denominator for numerical stability. Default: 1e-5
|
||
|
elementwise_affine: a boolean value that when set to ``True``, this module
|
||
|
has learnable per-element affine parameters initialized to ones (for weights)
|
||
|
and zeros (for biases). Default: ``True``.
|
||
|
bias: If set to ``False``, the layer will not learn an additive bias (only relevant if
|
||
|
:attr:`elementwise_affine` is ``True``). Default: ``True``.
|
||
|
|
||
|
Attributes:
|
||
|
weight: the learnable weights of the module of shape
|
||
|
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
|
||
|
The values are initialized to 1.
|
||
|
bias: the learnable bias of the module of shape
|
||
|
:math:`\text{normalized\_shape}` when :attr:`elementwise_affine` is set to ``True``.
|
||
|
The values are initialized to 0.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, *)`
|
||
|
- Output: :math:`(N, *)` (same shape as input)
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # NLP Example
|
||
|
>>> batch, sentence_length, embedding_dim = 20, 5, 10
|
||
|
>>> embedding = torch.randn(batch, sentence_length, embedding_dim)
|
||
|
>>> layer_norm = nn.LayerNorm(embedding_dim)
|
||
|
>>> # Activate module
|
||
|
>>> layer_norm(embedding)
|
||
|
>>>
|
||
|
>>> # Image Example
|
||
|
>>> N, C, H, W = 20, 5, 10, 10
|
||
|
>>> input = torch.randn(N, C, H, W)
|
||
|
>>> # Normalize over the last three dimensions (i.e. the channel and spatial dimensions)
|
||
|
>>> # as shown in the image below
|
||
|
>>> layer_norm = nn.LayerNorm([C, H, W])
|
||
|
>>> output = layer_norm(input)
|
||
|
|
||
|
.. image:: ../_static/img/nn/layer_norm.jpg
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['normalized_shape', 'eps', 'elementwise_affine']
|
||
|
normalized_shape: Tuple[int, ...]
|
||
|
eps: float
|
||
|
elementwise_affine: bool
|
||
|
|
||
|
def __init__(self, normalized_shape: _shape_t, eps: float = 1e-5, elementwise_affine: bool = True,
|
||
|
bias: bool = True, device=None, dtype=None) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__()
|
||
|
if isinstance(normalized_shape, numbers.Integral):
|
||
|
# mypy error: incompatible types in assignment
|
||
|
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||
|
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||
|
self.eps = eps
|
||
|
self.elementwise_affine = elementwise_affine
|
||
|
if self.elementwise_affine:
|
||
|
self.weight = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||
|
if bias:
|
||
|
self.bias = Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||
|
else:
|
||
|
self.register_parameter('bias', None)
|
||
|
else:
|
||
|
self.register_parameter('weight', None)
|
||
|
self.register_parameter('bias', None)
|
||
|
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self) -> None:
|
||
|
if self.elementwise_affine:
|
||
|
init.ones_(self.weight)
|
||
|
if self.bias is not None:
|
||
|
init.zeros_(self.bias)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.layer_norm(
|
||
|
input, self.normalized_shape, self.weight, self.bias, self.eps)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return '{normalized_shape}, eps={eps}, ' \
|
||
|
'elementwise_affine={elementwise_affine}'.format(**self.__dict__)
|
||
|
|
||
|
|
||
|
class GroupNorm(Module):
|
||
|
r"""Applies Group Normalization over a mini-batch of inputs.
|
||
|
|
||
|
This layer implements the operation as described in
|
||
|
the paper `Group Normalization <https://arxiv.org/abs/1803.08494>`__
|
||
|
|
||
|
.. math::
|
||
|
y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta
|
||
|
|
||
|
The input channels are separated into :attr:`num_groups` groups, each containing
|
||
|
``num_channels / num_groups`` channels. :attr:`num_channels` must be divisible by
|
||
|
:attr:`num_groups`. The mean and standard-deviation are calculated
|
||
|
separately over the each group. :math:`\gamma` and :math:`\beta` are learnable
|
||
|
per-channel affine transform parameter vectors of size :attr:`num_channels` if
|
||
|
:attr:`affine` is ``True``.
|
||
|
The standard-deviation is calculated via the biased estimator, equivalent to
|
||
|
`torch.var(input, unbiased=False)`.
|
||
|
|
||
|
This layer uses statistics computed from input data in both training and
|
||
|
evaluation modes.
|
||
|
|
||
|
Args:
|
||
|
num_groups (int): number of groups to separate the channels into
|
||
|
num_channels (int): number of channels expected in input
|
||
|
eps: a value added to the denominator for numerical stability. Default: 1e-5
|
||
|
affine: a boolean value that when set to ``True``, this module
|
||
|
has learnable per-channel affine parameters initialized to ones (for weights)
|
||
|
and zeros (for biases). Default: ``True``.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, *)` where :math:`C=\text{num\_channels}`
|
||
|
- Output: :math:`(N, C, *)` (same shape as input)
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(20, 6, 10, 10)
|
||
|
>>> # Separate 6 channels into 3 groups
|
||
|
>>> m = nn.GroupNorm(3, 6)
|
||
|
>>> # Separate 6 channels into 6 groups (equivalent with InstanceNorm)
|
||
|
>>> m = nn.GroupNorm(6, 6)
|
||
|
>>> # Put all 6 channels into a single group (equivalent with LayerNorm)
|
||
|
>>> m = nn.GroupNorm(1, 6)
|
||
|
>>> # Activating the module
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['num_groups', 'num_channels', 'eps', 'affine']
|
||
|
num_groups: int
|
||
|
num_channels: int
|
||
|
eps: float
|
||
|
affine: bool
|
||
|
|
||
|
def __init__(self, num_groups: int, num_channels: int, eps: float = 1e-5, affine: bool = True,
|
||
|
device=None, dtype=None) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__()
|
||
|
if num_channels % num_groups != 0:
|
||
|
raise ValueError('num_channels must be divisible by num_groups')
|
||
|
|
||
|
self.num_groups = num_groups
|
||
|
self.num_channels = num_channels
|
||
|
self.eps = eps
|
||
|
self.affine = affine
|
||
|
if self.affine:
|
||
|
self.weight = Parameter(torch.empty(num_channels, **factory_kwargs))
|
||
|
self.bias = Parameter(torch.empty(num_channels, **factory_kwargs))
|
||
|
else:
|
||
|
self.register_parameter('weight', None)
|
||
|
self.register_parameter('bias', None)
|
||
|
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self) -> None:
|
||
|
if self.affine:
|
||
|
init.ones_(self.weight)
|
||
|
init.zeros_(self.bias)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.group_norm(
|
||
|
input, self.num_groups, self.weight, self.bias, self.eps)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return '{num_groups}, {num_channels}, eps={eps}, ' \
|
||
|
'affine={affine}'.format(**self.__dict__)
|
||
|
|
||
|
|
||
|
# TODO: ContrastiveNorm2d
|
||
|
# TODO: DivisiveNorm2d
|
||
|
# TODO: SubtractiveNorm2d
|