ai-content-maker/.venv/Lib/site-packages/torch/nn/modules/utils.py

80 lines
2.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import collections
from itertools import repeat
from typing import List, Dict, Any
__all__ = ['consume_prefix_in_state_dict_if_present']
def _ntuple(n, name="parse"):
def parse(x):
if isinstance(x, collections.abc.Iterable):
return tuple(x)
return tuple(repeat(x, n))
parse.__name__ = name
return parse
_single = _ntuple(1, "_single")
_pair = _ntuple(2, "_pair")
_triple = _ntuple(3, "_triple")
_quadruple = _ntuple(4, "_quadruple")
def _reverse_repeat_tuple(t, n):
r"""Reverse the order of `t` and repeat each element for `n` times.
This can be used to translate padding arg used by Conv and Pooling modules
to the ones used by `F.pad`.
"""
return tuple(x for x in reversed(t) for _ in range(n))
def _list_with_default(out_size: List[int], defaults: List[int]) -> List[int]:
import torch
if isinstance(out_size, (int, torch.SymInt)):
return out_size
if len(defaults) <= len(out_size):
raise ValueError(
f"Input dimension should be at least {len(out_size) + 1}"
)
return [
v if v is not None else d for v, d in zip(out_size, defaults[-len(out_size) :])
]
def consume_prefix_in_state_dict_if_present(
state_dict: Dict[str, Any], prefix: str
) -> None:
r"""Strip the prefix in state_dict in place, if any.
..note::
Given a `state_dict` from a DP/DDP model, a local model can load it by applying
`consume_prefix_in_state_dict_if_present(state_dict, "module.")` before calling
:meth:`torch.nn.Module.load_state_dict`.
Args:
state_dict (OrderedDict): a state-dict to be loaded to the model.
prefix (str): prefix.
"""
keys = list(state_dict.keys())
for key in keys:
if key.startswith(prefix):
newkey = key[len(prefix) :]
state_dict[newkey] = state_dict.pop(key)
# also strip the prefix in metadata if any.
if hasattr(state_dict, "_metadata"):
keys = list(state_dict._metadata.keys())
for key in keys:
# for the metadata dict, the key can be:
# '': for the DDP module, which we want to remove.
# 'module': for the actual model.
# 'module.xx.xx': for the rest.
if len(key) == 0:
continue
# handling both, 'module' case and 'module.' cases
if key == prefix.replace('.', '') or key.startswith(prefix):
newkey = key[len(prefix) :]
state_dict._metadata[newkey] = state_dict._metadata.pop(key)