ai-content-maker/.venv/Lib/site-packages/torch/nn/parallel/scatter_gather.py

108 lines
4.2 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import torch
from typing import Any, Dict, List, Optional, Sequence, Tuple, TypeVar, Union, overload
from ._functions import Scatter, Gather
import warnings
__all__ = ['scatter', 'scatter_kwargs', 'gather']
def is_namedtuple(obj: Any) -> bool:
# Check if type was created from collections.namedtuple or a typing.NamedTuple.
warnings.warn("is_namedtuple is deprecated, please use the python checks instead")
return _is_namedtuple(obj)
def _is_namedtuple(obj: Any) -> bool:
# Check if type was created from collections.namedtuple or a typing.NamedTuple.
return (
isinstance(obj, tuple) and hasattr(obj, "_asdict") and hasattr(obj, "_fields")
)
T = TypeVar("T", dict, list, tuple)
# For some reason, 'scatter' returns a tuple when given a single Tensor input but a list otherwise.
@overload
def scatter(
inputs: torch.Tensor,
target_gpus: Sequence[Union[int, torch.device]],
dim: int = ...,
) -> Tuple[torch.Tensor, ...]:
...
@overload
def scatter(inputs: T, target_gpus: Sequence[Union[int, torch.device]], dim: int = ...) -> List[T]:
...
def scatter(inputs, target_gpus, dim=0):
r"""Slice tensors into approximately equal chunks and distributes them across given GPUs.
Duplicates references to objects that are not tensors.
"""
def scatter_map(obj):
if isinstance(obj, torch.Tensor):
return Scatter.apply(target_gpus, None, dim, obj)
if _is_namedtuple(obj):
return [type(obj)(*args) for args in zip(*map(scatter_map, obj))]
if isinstance(obj, tuple) and len(obj) > 0:
return list(zip(*map(scatter_map, obj)))
if isinstance(obj, list) and len(obj) > 0:
return [list(i) for i in zip(*map(scatter_map, obj))]
if isinstance(obj, dict) and len(obj) > 0:
return [type(obj)(i) for i in zip(*map(scatter_map, obj.items()))]
return [obj for _ in target_gpus]
# After scatter_map is called, a scatter_map cell will exist. This cell
# has a reference to the actual function scatter_map, which has references
# to a closure that has a reference to the scatter_map cell (because the
# fn is recursive). To avoid this reference cycle, we set the function to
# None, clearing the cell
try:
res = scatter_map(inputs)
finally:
scatter_map = None # type: ignore[assignment]
return res
def scatter_kwargs(
inputs: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]],
target_gpus: Sequence[Union[int, torch.device]],
dim: int = 0,
) -> Tuple[Tuple[Any, ...], Tuple[Dict[str, Any], ...]]:
r"""Scatter with support for kwargs dictionary."""
scattered_inputs = scatter(inputs, target_gpus, dim) if inputs else []
scattered_kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
if len(scattered_inputs) < len(scattered_kwargs):
scattered_inputs.extend(() for _ in range(len(scattered_kwargs) - len(scattered_inputs)))
elif len(scattered_kwargs) < len(inputs):
scattered_kwargs.extend({} for _ in range(len(scattered_inputs) - len(scattered_kwargs)))
return tuple(scattered_inputs), tuple(scattered_kwargs)
def gather(outputs: Any, target_device: Union[int, torch.device], dim: int = 0) -> Any:
r"""Gather tensors from different GPUs on a specified device.
Use 'cpu' for CPU to avoid a deprecation warning.
"""
def gather_map(outputs):
out = outputs[0]
if isinstance(out, torch.Tensor):
return Gather.apply(target_device, dim, *outputs)
if out is None:
return None
if isinstance(out, dict):
if not all(len(out) == len(d) for d in outputs):
raise ValueError('All dicts must have the same number of keys')
return type(out)((k, gather_map([d[k] for d in outputs]))
for k in out)
if _is_namedtuple(out):
return type(out)._make(map(gather_map, zip(*outputs)))
return type(out)(map(gather_map, zip(*outputs)))
# Recursive function calls like this create reference cycles.
# Setting the function to None clears the refcycle.
try:
res = gather_map(outputs)
finally:
gather_map = None # type: ignore[assignment]
return res