ai-content-maker/.venv/Lib/site-packages/torch/nn/utils/rnn.pyi

103 lines
2.5 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
from typing import (
Any,
Iterable,
NamedTuple,
Optional,
overload,
Sequence,
Tuple,
TypeVar,
Union,
)
from typing_extensions import Self
from torch import Tensor
from torch._prims_common import DeviceLikeType
from torch.types import _dtype
class PackedSequence_(NamedTuple):
data: Tensor
batch_sizes: Tensor
sorted_indices: Optional[Tensor]
unsorted_indices: Optional[Tensor]
def bind(optional: Any, fn: Any): ...
_T = TypeVar("_T")
class PackedSequence(PackedSequence_):
def __new__(
cls,
data: Tensor,
batch_sizes: Optional[Tensor] = ...,
sorted_indices: Optional[Tensor] = ...,
unsorted_indices: Optional[Tensor] = ...,
) -> Self: ...
def pin_memory(self: _T) -> _T: ...
def cuda(self: _T, *args: Any, **kwargs: Any) -> _T: ...
def cpu(self: _T) -> _T: ...
def double(self: _T) -> _T: ...
def float(self: _T) -> _T: ...
def half(self: _T) -> _T: ...
def long(self: _T) -> _T: ...
def int(self: _T) -> _T: ...
def short(self: _T) -> _T: ...
def char(self: _T) -> _T: ...
def byte(self: _T) -> _T: ...
@overload
def to(
self: _T,
dtype: _dtype,
non_blocking: bool = False,
copy: bool = False,
) -> _T: ...
@overload
def to(
self: _T,
device: Optional[DeviceLikeType] = None,
dtype: Optional[_dtype] = None,
non_blocking: bool = False,
copy: bool = False,
) -> _T: ...
@overload
def to(
self: _T,
other: Tensor,
non_blocking: bool = False,
copy: bool = False,
) -> _T: ...
@property
def is_cuda(self) -> bool: ...
def is_pinned(self) -> bool: ...
def invert_permutation(permutation: Optional[Tensor]): ...
def pack_padded_sequence(
input: Tensor,
lengths: Tensor,
batch_first: bool = ...,
enforce_sorted: bool = ...,
) -> PackedSequence: ...
def pad_packed_sequence(
sequence: PackedSequence,
batch_first: bool = ...,
padding_value: float = ...,
total_length: Optional[int] = ...,
) -> Tuple[Tensor, ...]: ...
def pad_sequence(
sequences: Union[Tensor, Iterable[Tensor]],
batch_first: bool = False,
padding_value: float = ...,
) -> Tensor: ...
def pack_sequence(
sequences: Sequence[Tensor],
enforce_sorted: bool = ...,
) -> PackedSequence: ...
def get_packed_sequence(
data: Tensor,
batch_sizes: Optional[Tensor],
sorted_indices: Optional[Tensor],
unsorted_indices: Optional[Tensor],
) -> PackedSequence: ...