ai-content-maker/.venv/Lib/site-packages/torch/utils/_sympy/reference.py

215 lines
4.6 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import math
import sympy
import torch
# The sympy interpretation of operators. It will also sometimes work with
# plain int/float, but if you do certain operations you will get out a
# sympy.Basic in the end. If you want the Python/FX traceable interpretation,
# check PythonReferenceAnalysis.
# NB: For magic methods this needs to use normal magic methods
# so that test_magic_methods works
class ReferenceAnalysis:
@staticmethod
def constant(c, dtype):
return sympy.sympify(c)
@staticmethod
def or_(a, b):
return a | b
@staticmethod
def and_(a, b):
return a & b
@staticmethod
def eq(a, b):
if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
return sympy.Eq(a, b)
return a == b
@classmethod
def ne(cls, a, b):
return cls.not_(cls.eq(a, b))
@staticmethod
def lt(a, b):
return a < b
@staticmethod
def gt(a, b):
return a > b
@staticmethod
def le(a, b):
return a <= b
@staticmethod
def ge(a, b):
return a >= b
@staticmethod
def not_(a):
assert not isinstance(a, bool)
return ~a
@staticmethod
def reciprocal(x):
return 1 / x
@staticmethod
def square(x):
return x * x
@staticmethod
def mod(x, y):
return x % y
@staticmethod
def abs(x):
return abs(x)
@staticmethod
def neg(x):
return -x
@staticmethod
def truediv(a, b):
return a / b
@staticmethod
def div(a, b):
return ReferenceAnalysis.truediv(a, b)
@staticmethod
def floordiv(a, b):
if b == 0:
return sympy.nan if a == 0 else sympy.zoo
return a // b
@staticmethod
def truncdiv(a, b):
result = a / b
if result.is_finite:
result = sympy.Integer(result)
return result
@staticmethod
def add(a, b):
return a + b
@staticmethod
def mul(a, b):
return a * b
@staticmethod
def sub(a, b):
return a - b
@staticmethod
def exp(x):
return sympy.exp(x)
@staticmethod
def log(x):
return sympy.log(x)
@staticmethod
def sqrt(x):
return sympy.sqrt(x)
@staticmethod
def pow(a, b):
return a**b
@staticmethod
def minimum(a, b):
# Poorman's version of upcasting in Sympy
# This won't do for sympy.Expr as the casting does nothing for those
if a.is_Float or not a.is_finite or b.is_Float or not b.is_finite:
result_type = sympy.Float
else:
assert a.is_Integer
assert b.is_Integer
result_type = sympy.Integer
return sympy.Min(result_type(a), result_type(b))
@staticmethod
def maximum(a, b):
# Poorman's version of upcasting in Sympy
# This won't do for sympy.Expr as the casting does nothing for those
if a.is_Float or not a.is_finite or b.is_Float or not b.is_finite:
result_type = sympy.Float
else:
assert a.is_Integer
assert b.is_Integer
result_type = sympy.Integer
return sympy.Max(result_type(a), result_type(b))
@staticmethod
def floor(x):
return sympy.floor(x)
@staticmethod
def ceil(x):
return sympy.ceiling(x)
# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
# Python types and is FX traceable. Inheritance here is purely for code
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
class PythonReferenceAnalysis(ReferenceAnalysis):
@staticmethod
def constant(c, dtype):
if dtype is torch.int64:
return int(c)
elif dtype is torch.double:
return float(c)
elif dtype is torch.bool:
return bool(c)
else:
raise AssertionError(f"unrecognized dtype {dtype}")
@staticmethod
def not_(a):
return torch.sym_not(a)
@staticmethod
def floordiv(a, b):
return a // b
@staticmethod
def truncdiv(a, b):
return a / b
@staticmethod
def exp(x):
raise AssertionError("exp is not valid shape sympy expr")
@staticmethod
def log(x):
raise AssertionError("log is not valid shape sympy expr")
@staticmethod
def sqrt(x):
return torch._sym_sqrt(x) # type: ignore[attr-defined]
@staticmethod
def minimum(a, b):
return torch.sym_min(a, b)
@staticmethod
def maximum(a, b):
return torch.sym_max(a, b)
@staticmethod
def floor(x):
return math.floor(x)
@staticmethod
def ceil(x):
return math.ceil(x)