1271 lines
48 KiB
Python
1271 lines
48 KiB
Python
|
"""Provide an API for writing protocol buffers to event files to be consumed by TensorBoard for visualization."""
|
||
|
|
||
|
import os
|
||
|
import time
|
||
|
from typing import List, Optional, Union, TYPE_CHECKING
|
||
|
|
||
|
import torch
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from matplotlib.figure import Figure
|
||
|
from tensorboard.compat import tf
|
||
|
from tensorboard.compat.proto import event_pb2
|
||
|
from tensorboard.compat.proto.event_pb2 import Event, SessionLog
|
||
|
from tensorboard.plugins.projector.projector_config_pb2 import ProjectorConfig
|
||
|
from tensorboard.summary.writer.event_file_writer import EventFileWriter
|
||
|
|
||
|
from ._convert_np import make_np
|
||
|
from ._embedding import get_embedding_info, make_mat, make_sprite, make_tsv, write_pbtxt
|
||
|
from ._onnx_graph import load_onnx_graph
|
||
|
from ._pytorch_graph import graph
|
||
|
from ._utils import figure_to_image
|
||
|
from .summary import (
|
||
|
audio,
|
||
|
custom_scalars,
|
||
|
histogram,
|
||
|
histogram_raw,
|
||
|
hparams,
|
||
|
image,
|
||
|
image_boxes,
|
||
|
mesh,
|
||
|
pr_curve,
|
||
|
pr_curve_raw,
|
||
|
scalar,
|
||
|
tensor_proto,
|
||
|
text,
|
||
|
video,
|
||
|
)
|
||
|
|
||
|
__all__ = ["FileWriter", "SummaryWriter"]
|
||
|
|
||
|
|
||
|
class FileWriter:
|
||
|
"""Writes protocol buffers to event files to be consumed by TensorBoard.
|
||
|
|
||
|
The `FileWriter` class provides a mechanism to create an event file in a
|
||
|
given directory and add summaries and events to it. The class updates the
|
||
|
file contents asynchronously. This allows a training program to call methods
|
||
|
to add data to the file directly from the training loop, without slowing down
|
||
|
training.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, log_dir, max_queue=10, flush_secs=120, filename_suffix=""):
|
||
|
"""Create a `FileWriter` and an event file.
|
||
|
|
||
|
On construction the writer creates a new event file in `log_dir`.
|
||
|
The other arguments to the constructor control the asynchronous writes to
|
||
|
the event file.
|
||
|
|
||
|
Args:
|
||
|
log_dir: A string. Directory where event file will be written.
|
||
|
max_queue: Integer. Size of the queue for pending events and
|
||
|
summaries before one of the 'add' calls forces a flush to disk.
|
||
|
Default is ten items.
|
||
|
flush_secs: Number. How often, in seconds, to flush the
|
||
|
pending events and summaries to disk. Default is every two minutes.
|
||
|
filename_suffix: A string. Suffix added to all event filenames
|
||
|
in the log_dir directory. More details on filename construction in
|
||
|
tensorboard.summary.writer.event_file_writer.EventFileWriter.
|
||
|
"""
|
||
|
# Sometimes PosixPath is passed in and we need to coerce it to
|
||
|
# a string in all cases
|
||
|
# TODO: See if we can remove this in the future if we are
|
||
|
# actually the ones passing in a PosixPath
|
||
|
log_dir = str(log_dir)
|
||
|
self.event_writer = EventFileWriter(
|
||
|
log_dir, max_queue, flush_secs, filename_suffix
|
||
|
)
|
||
|
|
||
|
def get_logdir(self):
|
||
|
"""Return the directory where event file will be written."""
|
||
|
return self.event_writer.get_logdir()
|
||
|
|
||
|
def add_event(self, event, step=None, walltime=None):
|
||
|
"""Add an event to the event file.
|
||
|
|
||
|
Args:
|
||
|
event: An `Event` protocol buffer.
|
||
|
step: Number. Optional global step value for training process
|
||
|
to record with the event.
|
||
|
walltime: float. Optional walltime to override the default (current)
|
||
|
walltime (from time.time()) seconds after epoch
|
||
|
"""
|
||
|
event.wall_time = time.time() if walltime is None else walltime
|
||
|
if step is not None:
|
||
|
# Make sure step is converted from numpy or other formats
|
||
|
# since protobuf might not convert depending on version
|
||
|
event.step = int(step)
|
||
|
self.event_writer.add_event(event)
|
||
|
|
||
|
def add_summary(self, summary, global_step=None, walltime=None):
|
||
|
"""Add a `Summary` protocol buffer to the event file.
|
||
|
|
||
|
This method wraps the provided summary in an `Event` protocol buffer
|
||
|
and adds it to the event file.
|
||
|
|
||
|
Args:
|
||
|
summary: A `Summary` protocol buffer.
|
||
|
global_step: Number. Optional global step value for training process
|
||
|
to record with the summary.
|
||
|
walltime: float. Optional walltime to override the default (current)
|
||
|
walltime (from time.time()) seconds after epoch
|
||
|
"""
|
||
|
event = event_pb2.Event(summary=summary)
|
||
|
self.add_event(event, global_step, walltime)
|
||
|
|
||
|
def add_graph(self, graph_profile, walltime=None):
|
||
|
"""Add a `Graph` and step stats protocol buffer to the event file.
|
||
|
|
||
|
Args:
|
||
|
graph_profile: A `Graph` and step stats protocol buffer.
|
||
|
walltime: float. Optional walltime to override the default (current)
|
||
|
walltime (from time.time()) seconds after epoch
|
||
|
"""
|
||
|
graph = graph_profile[0]
|
||
|
stepstats = graph_profile[1]
|
||
|
event = event_pb2.Event(graph_def=graph.SerializeToString())
|
||
|
self.add_event(event, None, walltime)
|
||
|
|
||
|
trm = event_pb2.TaggedRunMetadata(
|
||
|
tag="step1", run_metadata=stepstats.SerializeToString()
|
||
|
)
|
||
|
event = event_pb2.Event(tagged_run_metadata=trm)
|
||
|
self.add_event(event, None, walltime)
|
||
|
|
||
|
def add_onnx_graph(self, graph, walltime=None):
|
||
|
"""Add a `Graph` protocol buffer to the event file.
|
||
|
|
||
|
Args:
|
||
|
graph: A `Graph` protocol buffer.
|
||
|
walltime: float. Optional walltime to override the default (current)
|
||
|
_get_file_writerfrom time.time())
|
||
|
"""
|
||
|
event = event_pb2.Event(graph_def=graph.SerializeToString())
|
||
|
self.add_event(event, None, walltime)
|
||
|
|
||
|
def flush(self):
|
||
|
"""Flushes the event file to disk.
|
||
|
|
||
|
Call this method to make sure that all pending events have been written to
|
||
|
disk.
|
||
|
"""
|
||
|
self.event_writer.flush()
|
||
|
|
||
|
def close(self):
|
||
|
"""Flushes the event file to disk and close the file.
|
||
|
|
||
|
Call this method when you do not need the summary writer anymore.
|
||
|
"""
|
||
|
self.event_writer.close()
|
||
|
|
||
|
def reopen(self):
|
||
|
"""Reopens the EventFileWriter.
|
||
|
|
||
|
Can be called after `close()` to add more events in the same directory.
|
||
|
The events will go into a new events file.
|
||
|
Does nothing if the EventFileWriter was not closed.
|
||
|
"""
|
||
|
self.event_writer.reopen()
|
||
|
|
||
|
|
||
|
class SummaryWriter:
|
||
|
"""Writes entries directly to event files in the log_dir to be consumed by TensorBoard.
|
||
|
|
||
|
The `SummaryWriter` class provides a high-level API to create an event file
|
||
|
in a given directory and add summaries and events to it. The class updates the
|
||
|
file contents asynchronously. This allows a training program to call methods
|
||
|
to add data to the file directly from the training loop, without slowing down
|
||
|
training.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
log_dir=None,
|
||
|
comment="",
|
||
|
purge_step=None,
|
||
|
max_queue=10,
|
||
|
flush_secs=120,
|
||
|
filename_suffix="",
|
||
|
):
|
||
|
"""Create a `SummaryWriter` that will write out events and summaries to the event file.
|
||
|
|
||
|
Args:
|
||
|
log_dir (str): Save directory location. Default is
|
||
|
runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run.
|
||
|
Use hierarchical folder structure to compare
|
||
|
between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc.
|
||
|
for each new experiment to compare across them.
|
||
|
comment (str): Comment log_dir suffix appended to the default
|
||
|
``log_dir``. If ``log_dir`` is assigned, this argument has no effect.
|
||
|
purge_step (int):
|
||
|
When logging crashes at step :math:`T+X` and restarts at step :math:`T`,
|
||
|
any events whose global_step larger or equal to :math:`T` will be
|
||
|
purged and hidden from TensorBoard.
|
||
|
Note that crashed and resumed experiments should have the same ``log_dir``.
|
||
|
max_queue (int): Size of the queue for pending events and
|
||
|
summaries before one of the 'add' calls forces a flush to disk.
|
||
|
Default is ten items.
|
||
|
flush_secs (int): How often, in seconds, to flush the
|
||
|
pending events and summaries to disk. Default is every two minutes.
|
||
|
filename_suffix (str): Suffix added to all event filenames in
|
||
|
the log_dir directory. More details on filename construction in
|
||
|
tensorboard.summary.writer.event_file_writer.EventFileWriter.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
||
|
# create a summary writer with automatically generated folder name.
|
||
|
writer = SummaryWriter()
|
||
|
# folder location: runs/May04_22-14-54_s-MacBook-Pro.local/
|
||
|
|
||
|
# create a summary writer using the specified folder name.
|
||
|
writer = SummaryWriter("my_experiment")
|
||
|
# folder location: my_experiment
|
||
|
|
||
|
# create a summary writer with comment appended.
|
||
|
writer = SummaryWriter(comment="LR_0.1_BATCH_16")
|
||
|
# folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.create.summarywriter")
|
||
|
if not log_dir:
|
||
|
import socket
|
||
|
from datetime import datetime
|
||
|
|
||
|
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
|
||
|
log_dir = os.path.join(
|
||
|
"runs", current_time + "_" + socket.gethostname() + comment
|
||
|
)
|
||
|
self.log_dir = log_dir
|
||
|
self.purge_step = purge_step
|
||
|
self.max_queue = max_queue
|
||
|
self.flush_secs = flush_secs
|
||
|
self.filename_suffix = filename_suffix
|
||
|
|
||
|
# Initialize the file writers, but they can be cleared out on close
|
||
|
# and recreated later as needed.
|
||
|
self.file_writer = self.all_writers = None
|
||
|
self._get_file_writer()
|
||
|
|
||
|
# Create default bins for histograms, see generate_testdata.py in tensorflow/tensorboard
|
||
|
v = 1e-12
|
||
|
buckets = []
|
||
|
neg_buckets = []
|
||
|
while v < 1e20:
|
||
|
buckets.append(v)
|
||
|
neg_buckets.append(-v)
|
||
|
v *= 1.1
|
||
|
self.default_bins = neg_buckets[::-1] + [0] + buckets
|
||
|
|
||
|
def _check_caffe2_blob(self, item):
|
||
|
"""
|
||
|
Check if the input is a string representing a Caffe2 blob name.
|
||
|
|
||
|
Caffe2 users have the option of passing a string representing the name of a blob
|
||
|
in the workspace instead of passing the actual Tensor/array containing the numeric values.
|
||
|
Thus, we need to check if we received a string as input
|
||
|
instead of an actual Tensor/array, and if so, we need to fetch the Blob
|
||
|
from the workspace corresponding to that name. Fetching can be done with the
|
||
|
following:
|
||
|
|
||
|
from caffe2.python import workspace (if not already imported)
|
||
|
workspace.FetchBlob(blob_name)
|
||
|
workspace.FetchBlobs([blob_name1, blob_name2, ...])
|
||
|
"""
|
||
|
return isinstance(item, str)
|
||
|
|
||
|
def _get_file_writer(self):
|
||
|
"""Return the default FileWriter instance. Recreates it if closed."""
|
||
|
if self.all_writers is None or self.file_writer is None:
|
||
|
self.file_writer = FileWriter(
|
||
|
self.log_dir, self.max_queue, self.flush_secs, self.filename_suffix
|
||
|
)
|
||
|
self.all_writers = {self.file_writer.get_logdir(): self.file_writer}
|
||
|
if self.purge_step is not None:
|
||
|
most_recent_step = self.purge_step
|
||
|
self.file_writer.add_event(
|
||
|
Event(step=most_recent_step, file_version="brain.Event:2")
|
||
|
)
|
||
|
self.file_writer.add_event(
|
||
|
Event(
|
||
|
step=most_recent_step,
|
||
|
session_log=SessionLog(status=SessionLog.START),
|
||
|
)
|
||
|
)
|
||
|
self.purge_step = None
|
||
|
return self.file_writer
|
||
|
|
||
|
def get_logdir(self):
|
||
|
"""Return the directory where event files will be written."""
|
||
|
return self.log_dir
|
||
|
|
||
|
def add_hparams(
|
||
|
self, hparam_dict, metric_dict, hparam_domain_discrete=None, run_name=None, global_step=None
|
||
|
):
|
||
|
"""Add a set of hyperparameters to be compared in TensorBoard.
|
||
|
|
||
|
Args:
|
||
|
hparam_dict (dict): Each key-value pair in the dictionary is the
|
||
|
name of the hyper parameter and it's corresponding value.
|
||
|
The type of the value can be one of `bool`, `string`, `float`,
|
||
|
`int`, or `None`.
|
||
|
metric_dict (dict): Each key-value pair in the dictionary is the
|
||
|
name of the metric and it's corresponding value. Note that the key used
|
||
|
here should be unique in the tensorboard record. Otherwise the value
|
||
|
you added by ``add_scalar`` will be displayed in hparam plugin. In most
|
||
|
cases, this is unwanted.
|
||
|
hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that
|
||
|
contains names of the hyperparameters and all discrete values they can hold
|
||
|
run_name (str): Name of the run, to be included as part of the logdir.
|
||
|
If unspecified, will use current timestamp.
|
||
|
global_step (int): Global step value to record
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
with SummaryWriter() as w:
|
||
|
for i in range(5):
|
||
|
w.add_hparams({'lr': 0.1*i, 'bsize': i},
|
||
|
{'hparam/accuracy': 10*i, 'hparam/loss': 10*i})
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_hparam.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_hparams")
|
||
|
if type(hparam_dict) is not dict or type(metric_dict) is not dict:
|
||
|
raise TypeError("hparam_dict and metric_dict should be dictionary.")
|
||
|
exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete)
|
||
|
|
||
|
if not run_name:
|
||
|
run_name = str(time.time())
|
||
|
logdir = os.path.join(self._get_file_writer().get_logdir(), run_name)
|
||
|
with SummaryWriter(log_dir=logdir) as w_hp:
|
||
|
w_hp.file_writer.add_summary(exp, global_step)
|
||
|
w_hp.file_writer.add_summary(ssi, global_step)
|
||
|
w_hp.file_writer.add_summary(sei, global_step)
|
||
|
for k, v in metric_dict.items():
|
||
|
w_hp.add_scalar(k, v, global_step)
|
||
|
|
||
|
def add_scalar(
|
||
|
self,
|
||
|
tag,
|
||
|
scalar_value,
|
||
|
global_step=None,
|
||
|
walltime=None,
|
||
|
new_style=False,
|
||
|
double_precision=False,
|
||
|
):
|
||
|
"""Add scalar data to summary.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
scalar_value (float or string/blobname): Value to save
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
with seconds after epoch of event
|
||
|
new_style (boolean): Whether to use new style (tensor field) or old
|
||
|
style (simple_value field). New style could lead to faster data loading.
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
writer = SummaryWriter()
|
||
|
x = range(100)
|
||
|
for i in x:
|
||
|
writer.add_scalar('y=2x', i * 2, i)
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_scalar.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_scalar")
|
||
|
if self._check_caffe2_blob(scalar_value):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
scalar_value = workspace.FetchBlob(scalar_value)
|
||
|
|
||
|
summary = scalar(
|
||
|
tag, scalar_value, new_style=new_style, double_precision=double_precision
|
||
|
)
|
||
|
self._get_file_writer().add_summary(summary, global_step, walltime)
|
||
|
|
||
|
def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None):
|
||
|
"""Add many scalar data to summary.
|
||
|
|
||
|
Args:
|
||
|
main_tag (str): The parent name for the tags
|
||
|
tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
writer = SummaryWriter()
|
||
|
r = 5
|
||
|
for i in range(100):
|
||
|
writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
|
||
|
'xcosx':i*np.cos(i/r),
|
||
|
'tanx': np.tan(i/r)}, i)
|
||
|
writer.close()
|
||
|
# This call adds three values to the same scalar plot with the tag
|
||
|
# 'run_14h' in TensorBoard's scalar section.
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_scalars.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_scalars")
|
||
|
walltime = time.time() if walltime is None else walltime
|
||
|
fw_logdir = self._get_file_writer().get_logdir()
|
||
|
for tag, scalar_value in tag_scalar_dict.items():
|
||
|
fw_tag = fw_logdir + "/" + main_tag.replace("/", "_") + "_" + tag
|
||
|
assert self.all_writers is not None
|
||
|
if fw_tag in self.all_writers.keys():
|
||
|
fw = self.all_writers[fw_tag]
|
||
|
else:
|
||
|
fw = FileWriter(
|
||
|
fw_tag, self.max_queue, self.flush_secs, self.filename_suffix
|
||
|
)
|
||
|
self.all_writers[fw_tag] = fw
|
||
|
if self._check_caffe2_blob(scalar_value):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
scalar_value = workspace.FetchBlob(scalar_value)
|
||
|
fw.add_summary(scalar(main_tag, scalar_value), global_step, walltime)
|
||
|
|
||
|
def add_tensor(
|
||
|
self,
|
||
|
tag,
|
||
|
tensor,
|
||
|
global_step=None,
|
||
|
walltime=None,
|
||
|
):
|
||
|
"""Add tensor data to summary.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
tensor (torch.Tensor): tensor to save
|
||
|
global_step (int): Global step value to record
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
writer = SummaryWriter()
|
||
|
x = torch.tensor([1,2,3])
|
||
|
writer.add_scalar('x', x)
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
Summary::tensor::float_val [1,2,3]
|
||
|
::tensor::shape [3]
|
||
|
::tag 'x'
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_tensor")
|
||
|
if self._check_caffe2_blob(tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
tensor = torch.tensor(workspace.FetchBlob(tensor))
|
||
|
|
||
|
summary = tensor_proto(tag, tensor)
|
||
|
self._get_file_writer().add_summary(summary, global_step, walltime)
|
||
|
|
||
|
def add_histogram(
|
||
|
self,
|
||
|
tag,
|
||
|
values,
|
||
|
global_step=None,
|
||
|
bins="tensorflow",
|
||
|
walltime=None,
|
||
|
max_bins=None,
|
||
|
):
|
||
|
"""Add histogram to summary.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
values (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram
|
||
|
global_step (int): Global step value to record
|
||
|
bins (str): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find
|
||
|
other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
import numpy as np
|
||
|
writer = SummaryWriter()
|
||
|
for i in range(10):
|
||
|
x = np.random.random(1000)
|
||
|
writer.add_histogram('distribution centers', x + i, i)
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_histogram.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_histogram")
|
||
|
if self._check_caffe2_blob(values):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
values = workspace.FetchBlob(values)
|
||
|
if isinstance(bins, str) and bins == "tensorflow":
|
||
|
bins = self.default_bins
|
||
|
self._get_file_writer().add_summary(
|
||
|
histogram(tag, values, bins, max_bins=max_bins), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_histogram_raw(
|
||
|
self,
|
||
|
tag,
|
||
|
min,
|
||
|
max,
|
||
|
num,
|
||
|
sum,
|
||
|
sum_squares,
|
||
|
bucket_limits,
|
||
|
bucket_counts,
|
||
|
global_step=None,
|
||
|
walltime=None,
|
||
|
):
|
||
|
"""Add histogram with raw data.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
min (float or int): Min value
|
||
|
max (float or int): Max value
|
||
|
num (int): Number of values
|
||
|
sum (float or int): Sum of all values
|
||
|
sum_squares (float or int): Sum of squares for all values
|
||
|
bucket_limits (torch.Tensor, numpy.ndarray): Upper value per bucket.
|
||
|
The number of elements of it should be the same as `bucket_counts`.
|
||
|
bucket_counts (torch.Tensor, numpy.ndarray): Number of values per bucket
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/README.md
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
import numpy as np
|
||
|
writer = SummaryWriter()
|
||
|
dummy_data = []
|
||
|
for idx, value in enumerate(range(50)):
|
||
|
dummy_data += [idx + 0.001] * value
|
||
|
|
||
|
bins = list(range(50+2))
|
||
|
bins = np.array(bins)
|
||
|
values = np.array(dummy_data).astype(float).reshape(-1)
|
||
|
counts, limits = np.histogram(values, bins=bins)
|
||
|
sum_sq = values.dot(values)
|
||
|
writer.add_histogram_raw(
|
||
|
tag='histogram_with_raw_data',
|
||
|
min=values.min(),
|
||
|
max=values.max(),
|
||
|
num=len(values),
|
||
|
sum=values.sum(),
|
||
|
sum_squares=sum_sq,
|
||
|
bucket_limits=limits[1:].tolist(),
|
||
|
bucket_counts=counts.tolist(),
|
||
|
global_step=0)
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_histogram_raw.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_histogram_raw")
|
||
|
if len(bucket_limits) != len(bucket_counts):
|
||
|
raise ValueError(
|
||
|
"len(bucket_limits) != len(bucket_counts), see the document."
|
||
|
)
|
||
|
self._get_file_writer().add_summary(
|
||
|
histogram_raw(
|
||
|
tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts
|
||
|
),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
)
|
||
|
|
||
|
def add_image(
|
||
|
self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"
|
||
|
):
|
||
|
"""Add image data to summary.
|
||
|
|
||
|
Note that this requires the ``pillow`` package.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
dataformats (str): Image data format specification of the form
|
||
|
CHW, HWC, HW, WH, etc.
|
||
|
Shape:
|
||
|
img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to
|
||
|
convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.
|
||
|
Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as
|
||
|
corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
import numpy as np
|
||
|
img = np.zeros((3, 100, 100))
|
||
|
img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
|
||
|
img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
|
||
|
|
||
|
img_HWC = np.zeros((100, 100, 3))
|
||
|
img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
|
||
|
img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000
|
||
|
|
||
|
writer = SummaryWriter()
|
||
|
writer.add_image('my_image', img, 0)
|
||
|
|
||
|
# If you have non-default dimension setting, set the dataformats argument.
|
||
|
writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_image.png
|
||
|
:scale: 50 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_image")
|
||
|
if self._check_caffe2_blob(img_tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
img_tensor = workspace.FetchBlob(img_tensor)
|
||
|
self._get_file_writer().add_summary(
|
||
|
image(tag, img_tensor, dataformats=dataformats), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_images(
|
||
|
self, tag, img_tensor, global_step=None, walltime=None, dataformats="NCHW"
|
||
|
):
|
||
|
"""Add batched image data to summary.
|
||
|
|
||
|
Note that this requires the ``pillow`` package.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
dataformats (str): Image data format specification of the form
|
||
|
NCHW, NHWC, CHW, HWC, HW, WH, etc.
|
||
|
Shape:
|
||
|
img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be
|
||
|
accepted. e.g. NCHW or NHWC.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
import numpy as np
|
||
|
|
||
|
img_batch = np.zeros((16, 3, 100, 100))
|
||
|
for i in range(16):
|
||
|
img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
|
||
|
img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i
|
||
|
|
||
|
writer = SummaryWriter()
|
||
|
writer.add_images('my_image_batch', img_batch, 0)
|
||
|
writer.close()
|
||
|
|
||
|
Expected result:
|
||
|
|
||
|
.. image:: _static/img/tensorboard/add_images.png
|
||
|
:scale: 30 %
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_images")
|
||
|
if self._check_caffe2_blob(img_tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
img_tensor = workspace.FetchBlob(img_tensor)
|
||
|
self._get_file_writer().add_summary(
|
||
|
image(tag, img_tensor, dataformats=dataformats), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_image_with_boxes(
|
||
|
self,
|
||
|
tag,
|
||
|
img_tensor,
|
||
|
box_tensor,
|
||
|
global_step=None,
|
||
|
walltime=None,
|
||
|
rescale=1,
|
||
|
dataformats="CHW",
|
||
|
labels=None,
|
||
|
):
|
||
|
"""Add image and draw bounding boxes on the image.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
|
||
|
box_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Box data (for detected objects)
|
||
|
box should be represented as [x1, y1, x2, y2].
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
rescale (float): Optional scale override
|
||
|
dataformats (str): Image data format specification of the form
|
||
|
NCHW, NHWC, CHW, HWC, HW, WH, etc.
|
||
|
labels (list of string): The label to be shown for each bounding box.
|
||
|
Shape:
|
||
|
img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument.
|
||
|
e.g. CHW or HWC
|
||
|
|
||
|
box_tensor: (torch.Tensor, numpy.ndarray, or string/blobname): NX4, where N is the number of
|
||
|
boxes and each 4 elements in a row represents (xmin, ymin, xmax, ymax).
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_image_with_boxes")
|
||
|
if self._check_caffe2_blob(img_tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
img_tensor = workspace.FetchBlob(img_tensor)
|
||
|
if self._check_caffe2_blob(box_tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
box_tensor = workspace.FetchBlob(box_tensor)
|
||
|
if labels is not None:
|
||
|
if isinstance(labels, str):
|
||
|
labels = [labels]
|
||
|
if len(labels) != box_tensor.shape[0]:
|
||
|
labels = None
|
||
|
self._get_file_writer().add_summary(
|
||
|
image_boxes(
|
||
|
tag,
|
||
|
img_tensor,
|
||
|
box_tensor,
|
||
|
rescale=rescale,
|
||
|
dataformats=dataformats,
|
||
|
labels=labels,
|
||
|
),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
)
|
||
|
|
||
|
def add_figure(
|
||
|
self,
|
||
|
tag: str,
|
||
|
figure: Union["Figure", List["Figure"]],
|
||
|
global_step: Optional[int] = None,
|
||
|
close: bool = True,
|
||
|
walltime: Optional[float] = None
|
||
|
) -> None:
|
||
|
"""Render matplotlib figure into an image and add it to summary.
|
||
|
|
||
|
Note that this requires the ``matplotlib`` package.
|
||
|
|
||
|
Args:
|
||
|
tag: Data identifier
|
||
|
figure: Figure or a list of figures
|
||
|
global_step: Global step value to record
|
||
|
close: Flag to automatically close the figure
|
||
|
walltime: Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_figure")
|
||
|
if isinstance(figure, list):
|
||
|
self.add_image(
|
||
|
tag,
|
||
|
figure_to_image(figure, close),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
dataformats="NCHW",
|
||
|
)
|
||
|
else:
|
||
|
self.add_image(
|
||
|
tag,
|
||
|
figure_to_image(figure, close),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
dataformats="CHW",
|
||
|
)
|
||
|
|
||
|
def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None):
|
||
|
"""Add video data to summary.
|
||
|
|
||
|
Note that this requires the ``moviepy`` package.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
vid_tensor (torch.Tensor): Video data
|
||
|
global_step (int): Global step value to record
|
||
|
fps (float or int): Frames per second
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
Shape:
|
||
|
vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`.
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_video")
|
||
|
self._get_file_writer().add_summary(
|
||
|
video(tag, vid_tensor, fps), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_audio(
|
||
|
self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None
|
||
|
):
|
||
|
"""Add audio data to summary.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
snd_tensor (torch.Tensor): Sound data
|
||
|
global_step (int): Global step value to record
|
||
|
sample_rate (int): sample rate in Hz
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
Shape:
|
||
|
snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1].
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_audio")
|
||
|
if self._check_caffe2_blob(snd_tensor):
|
||
|
from caffe2.python import workspace
|
||
|
|
||
|
snd_tensor = workspace.FetchBlob(snd_tensor)
|
||
|
self._get_file_writer().add_summary(
|
||
|
audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_text(self, tag, text_string, global_step=None, walltime=None):
|
||
|
"""Add text data to summary.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
text_string (str): String to save
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
Examples::
|
||
|
|
||
|
writer.add_text('lstm', 'This is an lstm', 0)
|
||
|
writer.add_text('rnn', 'This is an rnn', 10)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_text")
|
||
|
self._get_file_writer().add_summary(
|
||
|
text(tag, text_string), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def add_onnx_graph(self, prototxt):
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_onnx_graph")
|
||
|
self._get_file_writer().add_onnx_graph(load_onnx_graph(prototxt))
|
||
|
|
||
|
def add_graph(
|
||
|
self, model, input_to_model=None, verbose=False, use_strict_trace=True
|
||
|
):
|
||
|
"""Add graph data to summary.
|
||
|
|
||
|
Args:
|
||
|
model (torch.nn.Module): Model to draw.
|
||
|
input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of
|
||
|
variables to be fed.
|
||
|
verbose (bool): Whether to print graph structure in console.
|
||
|
use_strict_trace (bool): Whether to pass keyword argument `strict` to
|
||
|
`torch.jit.trace`. Pass False when you want the tracer to
|
||
|
record your mutable container types (list, dict)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_graph")
|
||
|
if hasattr(model, "forward"):
|
||
|
# A valid PyTorch model should have a 'forward' method
|
||
|
self._get_file_writer().add_graph(
|
||
|
graph(model, input_to_model, verbose, use_strict_trace)
|
||
|
)
|
||
|
else:
|
||
|
# Caffe2 models do not have the 'forward' method
|
||
|
from caffe2.proto import caffe2_pb2
|
||
|
from caffe2.python import core
|
||
|
|
||
|
from ._caffe2_graph import (
|
||
|
model_to_graph_def,
|
||
|
nets_to_graph_def,
|
||
|
protos_to_graph_def,
|
||
|
)
|
||
|
|
||
|
if isinstance(model, list):
|
||
|
if isinstance(model[0], core.Net):
|
||
|
current_graph = nets_to_graph_def(model)
|
||
|
elif isinstance(model[0], caffe2_pb2.NetDef):
|
||
|
current_graph = protos_to_graph_def(model)
|
||
|
else:
|
||
|
# Handles cnn.CNNModelHelper, model_helper.ModelHelper
|
||
|
current_graph = model_to_graph_def(model)
|
||
|
event = event_pb2.Event(graph_def=current_graph.SerializeToString()) # type: ignore[possibly-undefined]
|
||
|
self._get_file_writer().add_event(event)
|
||
|
|
||
|
@staticmethod
|
||
|
def _encode(rawstr):
|
||
|
# I'd use urllib but, I'm unsure about the differences from python3 to python2, etc.
|
||
|
retval = rawstr
|
||
|
retval = retval.replace("%", f"%{ord('%'):02x}")
|
||
|
retval = retval.replace("/", f"%{ord('/'):02x}")
|
||
|
retval = retval.replace("\\", "%%%02x" % (ord("\\")))
|
||
|
return retval
|
||
|
|
||
|
def add_embedding(
|
||
|
self,
|
||
|
mat,
|
||
|
metadata=None,
|
||
|
label_img=None,
|
||
|
global_step=None,
|
||
|
tag="default",
|
||
|
metadata_header=None,
|
||
|
):
|
||
|
"""Add embedding projector data to summary.
|
||
|
|
||
|
Args:
|
||
|
mat (torch.Tensor or numpy.ndarray): A matrix which each row is the feature vector of the data point
|
||
|
metadata (list): A list of labels, each element will be convert to string
|
||
|
label_img (torch.Tensor): Images correspond to each data point
|
||
|
global_step (int): Global step value to record
|
||
|
tag (str): Name for the embedding
|
||
|
Shape:
|
||
|
mat: :math:`(N, D)`, where N is number of data and D is feature dimension
|
||
|
|
||
|
label_img: :math:`(N, C, H, W)`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
import keyword
|
||
|
import torch
|
||
|
meta = []
|
||
|
while len(meta)<100:
|
||
|
meta = meta+keyword.kwlist # get some strings
|
||
|
meta = meta[:100]
|
||
|
|
||
|
for i, v in enumerate(meta):
|
||
|
meta[i] = v+str(i)
|
||
|
|
||
|
label_img = torch.rand(100, 3, 10, 32)
|
||
|
for i in range(100):
|
||
|
label_img[i]*=i/100.0
|
||
|
|
||
|
writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img)
|
||
|
writer.add_embedding(torch.randn(100, 5), label_img=label_img)
|
||
|
writer.add_embedding(torch.randn(100, 5), metadata=meta)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_embedding")
|
||
|
mat = make_np(mat)
|
||
|
if global_step is None:
|
||
|
global_step = 0
|
||
|
# clear pbtxt?
|
||
|
|
||
|
# Maybe we should encode the tag so slashes don't trip us up?
|
||
|
# I don't think this will mess us up, but better safe than sorry.
|
||
|
subdir = f"{str(global_step).zfill(5)}/{self._encode(tag)}"
|
||
|
save_path = os.path.join(self._get_file_writer().get_logdir(), subdir)
|
||
|
|
||
|
fs = tf.io.gfile
|
||
|
if fs.exists(save_path):
|
||
|
if fs.isdir(save_path):
|
||
|
print(
|
||
|
"warning: Embedding dir exists, did you set global_step for add_embedding()?"
|
||
|
)
|
||
|
else:
|
||
|
raise Exception(
|
||
|
f"Path: `{save_path}` exists, but is a file. Cannot proceed."
|
||
|
)
|
||
|
else:
|
||
|
fs.makedirs(save_path)
|
||
|
|
||
|
if metadata is not None:
|
||
|
assert mat.shape[0] == len(
|
||
|
metadata
|
||
|
), "#labels should equal with #data points"
|
||
|
make_tsv(metadata, save_path, metadata_header=metadata_header)
|
||
|
|
||
|
if label_img is not None:
|
||
|
assert (
|
||
|
mat.shape[0] == label_img.shape[0]
|
||
|
), "#images should equal with #data points"
|
||
|
make_sprite(label_img, save_path)
|
||
|
|
||
|
assert (
|
||
|
mat.ndim == 2
|
||
|
), "mat should be 2D, where mat.size(0) is the number of data points"
|
||
|
make_mat(mat, save_path)
|
||
|
|
||
|
# Filesystem doesn't necessarily have append semantics, so we store an
|
||
|
# internal buffer to append to and re-write whole file after each
|
||
|
# embedding is added
|
||
|
if not hasattr(self, "_projector_config"):
|
||
|
self._projector_config = ProjectorConfig()
|
||
|
embedding_info = get_embedding_info(
|
||
|
metadata, label_img, subdir, global_step, tag
|
||
|
)
|
||
|
self._projector_config.embeddings.extend([embedding_info])
|
||
|
|
||
|
from google.protobuf import text_format
|
||
|
|
||
|
config_pbtxt = text_format.MessageToString(self._projector_config)
|
||
|
write_pbtxt(self._get_file_writer().get_logdir(), config_pbtxt)
|
||
|
|
||
|
def add_pr_curve(
|
||
|
self,
|
||
|
tag,
|
||
|
labels,
|
||
|
predictions,
|
||
|
global_step=None,
|
||
|
num_thresholds=127,
|
||
|
weights=None,
|
||
|
walltime=None,
|
||
|
):
|
||
|
"""Add precision recall curve.
|
||
|
|
||
|
Plotting a precision-recall curve lets you understand your model's
|
||
|
performance under different threshold settings. With this function,
|
||
|
you provide the ground truth labeling (T/F) and prediction confidence
|
||
|
(usually the output of your model) for each target. The TensorBoard UI
|
||
|
will let you choose the threshold interactively.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
labels (torch.Tensor, numpy.ndarray, or string/blobname):
|
||
|
Ground truth data. Binary label for each element.
|
||
|
predictions (torch.Tensor, numpy.ndarray, or string/blobname):
|
||
|
The probability that an element be classified as true.
|
||
|
Value should be in [0, 1]
|
||
|
global_step (int): Global step value to record
|
||
|
num_thresholds (int): Number of thresholds used to draw the curve.
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
import numpy as np
|
||
|
labels = np.random.randint(2, size=100) # binary label
|
||
|
predictions = np.random.rand(100)
|
||
|
writer = SummaryWriter()
|
||
|
writer.add_pr_curve('pr_curve', labels, predictions, 0)
|
||
|
writer.close()
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve")
|
||
|
labels, predictions = make_np(labels), make_np(predictions)
|
||
|
self._get_file_writer().add_summary(
|
||
|
pr_curve(tag, labels, predictions, num_thresholds, weights),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
)
|
||
|
|
||
|
def add_pr_curve_raw(
|
||
|
self,
|
||
|
tag,
|
||
|
true_positive_counts,
|
||
|
false_positive_counts,
|
||
|
true_negative_counts,
|
||
|
false_negative_counts,
|
||
|
precision,
|
||
|
recall,
|
||
|
global_step=None,
|
||
|
num_thresholds=127,
|
||
|
weights=None,
|
||
|
walltime=None,
|
||
|
):
|
||
|
"""Add precision recall curve with raw data.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
true_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): true positive counts
|
||
|
false_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): false positive counts
|
||
|
true_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): true negative counts
|
||
|
false_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): false negative counts
|
||
|
precision (torch.Tensor, numpy.ndarray, or string/blobname): precision
|
||
|
recall (torch.Tensor, numpy.ndarray, or string/blobname): recall
|
||
|
global_step (int): Global step value to record
|
||
|
num_thresholds (int): Number of thresholds used to draw the curve.
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/README.md
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve_raw")
|
||
|
self._get_file_writer().add_summary(
|
||
|
pr_curve_raw(
|
||
|
tag,
|
||
|
true_positive_counts,
|
||
|
false_positive_counts,
|
||
|
true_negative_counts,
|
||
|
false_negative_counts,
|
||
|
precision,
|
||
|
recall,
|
||
|
num_thresholds,
|
||
|
weights,
|
||
|
),
|
||
|
global_step,
|
||
|
walltime,
|
||
|
)
|
||
|
|
||
|
def add_custom_scalars_multilinechart(
|
||
|
self, tags, category="default", title="untitled"
|
||
|
):
|
||
|
"""Shorthand for creating multilinechart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*.
|
||
|
|
||
|
Args:
|
||
|
tags (list): list of tags that have been used in ``add_scalar()``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
writer.add_custom_scalars_multilinechart(['twse/0050', 'twse/2330'])
|
||
|
"""
|
||
|
torch._C._log_api_usage_once(
|
||
|
"tensorboard.logging.add_custom_scalars_multilinechart"
|
||
|
)
|
||
|
layout = {category: {title: ["Multiline", tags]}}
|
||
|
self._get_file_writer().add_summary(custom_scalars(layout))
|
||
|
|
||
|
def add_custom_scalars_marginchart(
|
||
|
self, tags, category="default", title="untitled"
|
||
|
):
|
||
|
"""Shorthand for creating marginchart.
|
||
|
|
||
|
Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*,
|
||
|
which should have exactly 3 elements.
|
||
|
|
||
|
Args:
|
||
|
tags (list): list of tags that have been used in ``add_scalar()``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
writer.add_custom_scalars_marginchart(['twse/0050', 'twse/2330', 'twse/2006'])
|
||
|
"""
|
||
|
torch._C._log_api_usage_once(
|
||
|
"tensorboard.logging.add_custom_scalars_marginchart"
|
||
|
)
|
||
|
assert len(tags) == 3
|
||
|
layout = {category: {title: ["Margin", tags]}}
|
||
|
self._get_file_writer().add_summary(custom_scalars(layout))
|
||
|
|
||
|
def add_custom_scalars(self, layout):
|
||
|
"""Create special chart by collecting charts tags in 'scalars'.
|
||
|
|
||
|
NOTE: This function can only be called once for each SummaryWriter() object.
|
||
|
|
||
|
Because it only provides metadata to tensorboard, the function can be called before or after the training loop.
|
||
|
|
||
|
Args:
|
||
|
layout (dict): {categoryName: *charts*}, where *charts* is also a dictionary
|
||
|
{chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type
|
||
|
(one of **Multiline** or **Margin**) and the second element should be a list containing the tags
|
||
|
you have used in add_scalar function, which will be collected into the new chart.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]},
|
||
|
'USA':{ 'dow':['Margin', ['dow/aaa', 'dow/bbb', 'dow/ccc']],
|
||
|
'nasdaq':['Margin', ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}}
|
||
|
|
||
|
writer.add_custom_scalars(layout)
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_custom_scalars")
|
||
|
self._get_file_writer().add_summary(custom_scalars(layout))
|
||
|
|
||
|
def add_mesh(
|
||
|
self,
|
||
|
tag,
|
||
|
vertices,
|
||
|
colors=None,
|
||
|
faces=None,
|
||
|
config_dict=None,
|
||
|
global_step=None,
|
||
|
walltime=None,
|
||
|
):
|
||
|
"""Add meshes or 3D point clouds to TensorBoard.
|
||
|
|
||
|
The visualization is based on Three.js,
|
||
|
so it allows users to interact with the rendered object. Besides the basic definitions
|
||
|
such as vertices, faces, users can further provide camera parameter, lighting condition, etc.
|
||
|
Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for
|
||
|
advanced usage.
|
||
|
|
||
|
Args:
|
||
|
tag (str): Data identifier
|
||
|
vertices (torch.Tensor): List of the 3D coordinates of vertices.
|
||
|
colors (torch.Tensor): Colors for each vertex
|
||
|
faces (torch.Tensor): Indices of vertices within each triangle. (Optional)
|
||
|
config_dict: Dictionary with ThreeJS classes names and configuration.
|
||
|
global_step (int): Global step value to record
|
||
|
walltime (float): Optional override default walltime (time.time())
|
||
|
seconds after epoch of event
|
||
|
|
||
|
Shape:
|
||
|
vertices: :math:`(B, N, 3)`. (batch, number_of_vertices, channels)
|
||
|
|
||
|
colors: :math:`(B, N, 3)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`.
|
||
|
|
||
|
faces: :math:`(B, N, 3)`. The values should lie in [0, number_of_vertices] for type `uint8`.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
vertices_tensor = torch.as_tensor([
|
||
|
[1, 1, 1],
|
||
|
[-1, -1, 1],
|
||
|
[1, -1, -1],
|
||
|
[-1, 1, -1],
|
||
|
], dtype=torch.float).unsqueeze(0)
|
||
|
colors_tensor = torch.as_tensor([
|
||
|
[255, 0, 0],
|
||
|
[0, 255, 0],
|
||
|
[0, 0, 255],
|
||
|
[255, 0, 255],
|
||
|
], dtype=torch.int).unsqueeze(0)
|
||
|
faces_tensor = torch.as_tensor([
|
||
|
[0, 2, 3],
|
||
|
[0, 3, 1],
|
||
|
[0, 1, 2],
|
||
|
[1, 3, 2],
|
||
|
], dtype=torch.int).unsqueeze(0)
|
||
|
|
||
|
writer = SummaryWriter()
|
||
|
writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor)
|
||
|
|
||
|
writer.close()
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("tensorboard.logging.add_mesh")
|
||
|
self._get_file_writer().add_summary(
|
||
|
mesh(tag, vertices, colors, faces, config_dict), global_step, walltime
|
||
|
)
|
||
|
|
||
|
def flush(self):
|
||
|
"""Flushes the event file to disk.
|
||
|
|
||
|
Call this method to make sure that all pending events have been written to
|
||
|
disk.
|
||
|
"""
|
||
|
if self.all_writers is None:
|
||
|
return
|
||
|
for writer in self.all_writers.values():
|
||
|
writer.flush()
|
||
|
|
||
|
def close(self):
|
||
|
if self.all_writers is None:
|
||
|
return # ignore double close
|
||
|
for writer in self.all_writers.values():
|
||
|
writer.flush()
|
||
|
writer.close()
|
||
|
self.file_writer = self.all_writers = None
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||
|
self.close()
|