ai-content-maker/.venv/Lib/site-packages/torchgen/api/dispatcher.py

119 lines
3.3 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
import itertools
from typing import List, Sequence, Union
from torchgen.api import cpp
from torchgen.api.types import ArgName, Binding, CType, NamedCType
from torchgen.model import (
Argument,
FunctionSchema,
Return,
SelfArgument,
TensorOptionsArguments,
Type,
)
from torchgen.utils import assert_never, concatMap
# This file describes the translation of JIT schema to the dispatcher
# API, the *unboxed* calling convention by which invocations through
# the dispatcher are made. Historically, the dispatcher API matched
# the C++ API, but with the establishment of the boxed API, we've
# made changes to the dispatcher API to so that the unboxed API
# better aligns with the boxed API. The dispatcher API hooks heavily
# into our template based boxing/unboxing machinery, so changes
# to this convention will usually need template updates too.
#
# Prominent characteristics of the dispatcher API:
#
# - dtype, layout, device and pin_memory are represented as separate
# arguments.
#
def name(func: FunctionSchema) -> str:
return cpp.name(func)
def argumenttype_type(
t: Type,
*,
mutable: bool,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
symint: bool = True,
) -> NamedCType:
# This is a faux amis. If it makes sense in the future to add
# more special cases here, or invert things so cpp.argument_type
# calls this, or just completely inline the function, please do
# it.
return cpp.argumenttype_type(
t,
mutable=mutable,
binds=binds,
symint=symint,
remove_non_owning_ref_types=remove_non_owning_ref_types,
)
def argument_type(
a: Argument,
*,
binds: ArgName,
remove_non_owning_ref_types: bool = False,
symint: bool = True,
) -> NamedCType:
return argumenttype_type(
a.type,
mutable=a.is_write,
binds=binds,
remove_non_owning_ref_types=remove_non_owning_ref_types,
symint=symint,
)
def returns_type(rs: Sequence[Return], *, symint: bool = True) -> CType:
# At present, there is no difference. But there could be!
return cpp.returns_type(rs, symint=symint)
def jit_arguments(func: FunctionSchema) -> List[Argument]:
def to_argument(
a: Union[Argument, TensorOptionsArguments, SelfArgument]
) -> List[Argument]:
if isinstance(a, Argument):
return [a]
elif isinstance(a, SelfArgument):
return [a.argument]
elif isinstance(a, TensorOptionsArguments):
return [a.dtype, a.layout, a.device, a.pin_memory]
else:
assert_never(a)
return list(
concatMap(
to_argument,
itertools.chain(
func.arguments.positional, func.arguments.kwarg_only, func.arguments.out
),
)
)
def argument(
a: Argument, *, remove_non_owning_ref_types: bool = False, symint: bool = True
) -> Binding:
return Binding(
nctype=argument_type(
a,
binds=a.name,
remove_non_owning_ref_types=remove_non_owning_ref_types,
symint=symint,
),
name=a.name,
argument=a,
)
def arguments(func: FunctionSchema, *, symint: bool = True) -> List[Binding]:
return [argument(a, symint=symint) for a in jit_arguments(func)]