826 lines
36 KiB
Python
826 lines
36 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2023 The HuggingFace Inc. team and the librosa & torchaudio authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""
|
||
|
Audio processing functions to extract features from audio waveforms. This code is pure numpy to support all frameworks
|
||
|
and remove unnecessary dependencies.
|
||
|
"""
|
||
|
import warnings
|
||
|
from typing import Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def hertz_to_mel(freq: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
||
|
"""
|
||
|
Convert frequency from hertz to mels.
|
||
|
|
||
|
Args:
|
||
|
freq (`float` or `np.ndarray`):
|
||
|
The frequency, or multiple frequencies, in hertz (Hz).
|
||
|
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
||
|
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
||
|
|
||
|
Returns:
|
||
|
`float` or `np.ndarray`: The frequencies on the mel scale.
|
||
|
"""
|
||
|
|
||
|
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
||
|
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
||
|
|
||
|
if mel_scale == "htk":
|
||
|
return 2595.0 * np.log10(1.0 + (freq / 700.0))
|
||
|
elif mel_scale == "kaldi":
|
||
|
return 1127.0 * np.log(1.0 + (freq / 700.0))
|
||
|
|
||
|
min_log_hertz = 1000.0
|
||
|
min_log_mel = 15.0
|
||
|
logstep = 27.0 / np.log(6.4)
|
||
|
mels = 3.0 * freq / 200.0
|
||
|
|
||
|
if isinstance(freq, np.ndarray):
|
||
|
log_region = freq >= min_log_hertz
|
||
|
mels[log_region] = min_log_mel + np.log(freq[log_region] / min_log_hertz) * logstep
|
||
|
elif freq >= min_log_hertz:
|
||
|
mels = min_log_mel + np.log(freq / min_log_hertz) * logstep
|
||
|
|
||
|
return mels
|
||
|
|
||
|
|
||
|
def mel_to_hertz(mels: Union[float, np.ndarray], mel_scale: str = "htk") -> Union[float, np.ndarray]:
|
||
|
"""
|
||
|
Convert frequency from mels to hertz.
|
||
|
|
||
|
Args:
|
||
|
mels (`float` or `np.ndarray`):
|
||
|
The frequency, or multiple frequencies, in mels.
|
||
|
mel_scale (`str`, *optional*, `"htk"`):
|
||
|
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
||
|
|
||
|
Returns:
|
||
|
`float` or `np.ndarray`: The frequencies in hertz.
|
||
|
"""
|
||
|
|
||
|
if mel_scale not in ["slaney", "htk", "kaldi"]:
|
||
|
raise ValueError('mel_scale should be one of "htk", "slaney" or "kaldi".')
|
||
|
|
||
|
if mel_scale == "htk":
|
||
|
return 700.0 * (np.power(10, mels / 2595.0) - 1.0)
|
||
|
elif mel_scale == "kaldi":
|
||
|
return 700.0 * (np.exp(mels / 1127.0) - 1.0)
|
||
|
|
||
|
min_log_hertz = 1000.0
|
||
|
min_log_mel = 15.0
|
||
|
logstep = np.log(6.4) / 27.0
|
||
|
freq = 200.0 * mels / 3.0
|
||
|
|
||
|
if isinstance(mels, np.ndarray):
|
||
|
log_region = mels >= min_log_mel
|
||
|
freq[log_region] = min_log_hertz * np.exp(logstep * (mels[log_region] - min_log_mel))
|
||
|
elif mels >= min_log_mel:
|
||
|
freq = min_log_hertz * np.exp(logstep * (mels - min_log_mel))
|
||
|
|
||
|
return freq
|
||
|
|
||
|
|
||
|
def hertz_to_octave(
|
||
|
freq: Union[float, np.ndarray], tuning: Optional[float] = 0.0, bins_per_octave: Optional[int] = 12
|
||
|
):
|
||
|
"""
|
||
|
Convert frequency from hertz to fractional octave numbers.
|
||
|
Adapted from *librosa*.
|
||
|
|
||
|
Args:
|
||
|
freq (`float` or `np.ndarray`):
|
||
|
The frequency, or multiple frequencies, in hertz (Hz).
|
||
|
tuning (`float`, defaults to `0.`):
|
||
|
Tuning deviation from the Stuttgart pitch (A440) in (fractional) bins per octave.
|
||
|
bins_per_octave (`int`, defaults to `12`):
|
||
|
Number of bins per octave.
|
||
|
|
||
|
Returns:
|
||
|
`float` or `np.ndarray`: The frequencies on the octave scale.
|
||
|
"""
|
||
|
stuttgart_pitch = 440.0 * 2.0 ** (tuning / bins_per_octave)
|
||
|
octave = np.log2(freq / (float(stuttgart_pitch) / 16))
|
||
|
return octave
|
||
|
|
||
|
|
||
|
def _create_triangular_filter_bank(fft_freqs: np.ndarray, filter_freqs: np.ndarray) -> np.ndarray:
|
||
|
"""
|
||
|
Creates a triangular filter bank.
|
||
|
|
||
|
Adapted from *torchaudio* and *librosa*.
|
||
|
|
||
|
Args:
|
||
|
fft_freqs (`np.ndarray` of shape `(num_frequency_bins,)`):
|
||
|
Discrete frequencies of the FFT bins in Hz.
|
||
|
filter_freqs (`np.ndarray` of shape `(num_mel_filters,)`):
|
||
|
Center frequencies of the triangular filters to create, in Hz.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray` of shape `(num_frequency_bins, num_mel_filters)`
|
||
|
"""
|
||
|
filter_diff = np.diff(filter_freqs)
|
||
|
slopes = np.expand_dims(filter_freqs, 0) - np.expand_dims(fft_freqs, 1)
|
||
|
down_slopes = -slopes[:, :-2] / filter_diff[:-1]
|
||
|
up_slopes = slopes[:, 2:] / filter_diff[1:]
|
||
|
return np.maximum(np.zeros(1), np.minimum(down_slopes, up_slopes))
|
||
|
|
||
|
|
||
|
def chroma_filter_bank(
|
||
|
num_frequency_bins: int,
|
||
|
num_chroma: int,
|
||
|
sampling_rate: int,
|
||
|
tuning: float = 0.0,
|
||
|
power: Optional[float] = 2.0,
|
||
|
weighting_parameters: Optional[Tuple[float]] = (5.0, 2),
|
||
|
start_at_c_chroma: Optional[bool] = True,
|
||
|
):
|
||
|
"""
|
||
|
Creates a chroma filter bank, i.e a linear transformation to project spectrogram bins onto chroma bins.
|
||
|
|
||
|
Adapted from *librosa*.
|
||
|
|
||
|
Args:
|
||
|
num_frequency_bins (`int`):
|
||
|
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
||
|
num_chroma (`int`):
|
||
|
Number of chroma bins (i.e pitch classes).
|
||
|
sampling_rate (`float`):
|
||
|
Sample rate of the audio waveform.
|
||
|
tuning (`float`):
|
||
|
Tuning deviation from A440 in fractions of a chroma bin.
|
||
|
power (`float`, *optional*, defaults to 2.0):
|
||
|
If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm.
|
||
|
weighting_parameters (`Tuple[float]`, *optional*, defaults to `(5., 2.)`):
|
||
|
If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and
|
||
|
the second element being the Gaussian half-width.
|
||
|
start_at_c_chroma (`float`, *optional*, defaults to `True`):
|
||
|
If True, the filter bank will start at the 'C' pitch class. Otherwise, it will start at 'A'.
|
||
|
Returns:
|
||
|
`np.ndarray` of shape `(num_frequency_bins, num_chroma)`
|
||
|
"""
|
||
|
# Get the FFT bins, not counting the DC component
|
||
|
frequencies = np.linspace(0, sampling_rate, num_frequency_bins, endpoint=False)[1:]
|
||
|
|
||
|
freq_bins = num_chroma * hertz_to_octave(frequencies, tuning=tuning, bins_per_octave=num_chroma)
|
||
|
|
||
|
# make up a value for the 0 Hz bin = 1.5 octaves below bin 1
|
||
|
# (so chroma is 50% rotated from bin 1, and bin width is broad)
|
||
|
freq_bins = np.concatenate(([freq_bins[0] - 1.5 * num_chroma], freq_bins))
|
||
|
|
||
|
bins_width = np.concatenate((np.maximum(freq_bins[1:] - freq_bins[:-1], 1.0), [1]))
|
||
|
|
||
|
chroma_filters = np.subtract.outer(freq_bins, np.arange(0, num_chroma, dtype="d")).T
|
||
|
|
||
|
num_chroma2 = np.round(float(num_chroma) / 2)
|
||
|
|
||
|
# Project into range -num_chroma/2 .. num_chroma/2
|
||
|
# add on fixed offset of 10*num_chroma to ensure all values passed to
|
||
|
# rem are positive
|
||
|
chroma_filters = np.remainder(chroma_filters + num_chroma2 + 10 * num_chroma, num_chroma) - num_chroma2
|
||
|
|
||
|
# Gaussian bumps - 2*D to make them narrower
|
||
|
chroma_filters = np.exp(-0.5 * (2 * chroma_filters / np.tile(bins_width, (num_chroma, 1))) ** 2)
|
||
|
|
||
|
# normalize each column
|
||
|
if power is not None:
|
||
|
chroma_filters = chroma_filters / np.sum(chroma_filters**power, axis=0, keepdims=True) ** (1.0 / power)
|
||
|
|
||
|
# Maybe apply scaling for fft bins
|
||
|
if weighting_parameters is not None:
|
||
|
center, half_width = weighting_parameters
|
||
|
chroma_filters *= np.tile(
|
||
|
np.exp(-0.5 * (((freq_bins / num_chroma - center) / half_width) ** 2)),
|
||
|
(num_chroma, 1),
|
||
|
)
|
||
|
|
||
|
if start_at_c_chroma:
|
||
|
chroma_filters = np.roll(chroma_filters, -3 * (num_chroma // 12), axis=0)
|
||
|
|
||
|
# remove aliasing columns, copy to ensure row-contiguity
|
||
|
return np.ascontiguousarray(chroma_filters[:, : int(1 + num_frequency_bins / 2)])
|
||
|
|
||
|
|
||
|
def mel_filter_bank(
|
||
|
num_frequency_bins: int,
|
||
|
num_mel_filters: int,
|
||
|
min_frequency: float,
|
||
|
max_frequency: float,
|
||
|
sampling_rate: int,
|
||
|
norm: Optional[str] = None,
|
||
|
mel_scale: str = "htk",
|
||
|
triangularize_in_mel_space: bool = False,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Creates a frequency bin conversion matrix used to obtain a mel spectrogram. This is called a *mel filter bank*, and
|
||
|
various implementation exist, which differ in the number of filters, the shape of the filters, the way the filters
|
||
|
are spaced, the bandwidth of the filters, and the manner in which the spectrum is warped. The goal of these
|
||
|
features is to approximate the non-linear human perception of the variation in pitch with respect to the frequency.
|
||
|
|
||
|
Different banks of mel filters were introduced in the literature. The following variations are supported:
|
||
|
|
||
|
- MFCC FB-20: introduced in 1980 by Davis and Mermelstein, it assumes a sampling frequency of 10 kHz and a speech
|
||
|
bandwidth of `[0, 4600]` Hz.
|
||
|
- MFCC FB-24 HTK: from the Cambridge HMM Toolkit (HTK) (1995) uses a filter bank of 24 filters for a speech
|
||
|
bandwidth of `[0, 8000]` Hz. This assumes sampling rate ≥ 16 kHz.
|
||
|
- MFCC FB-40: from the Auditory Toolbox for MATLAB written by Slaney in 1998, assumes a sampling rate of 16 kHz and
|
||
|
speech bandwidth of `[133, 6854]` Hz. This version also includes area normalization.
|
||
|
- HFCC-E FB-29 (Human Factor Cepstral Coefficients) of Skowronski and Harris (2004), assumes a sampling rate of
|
||
|
12.5 kHz and speech bandwidth of `[0, 6250]` Hz.
|
||
|
|
||
|
This code is adapted from *torchaudio* and *librosa*. Note that the default parameters of torchaudio's
|
||
|
`melscale_fbanks` implement the `"htk"` filters while librosa uses the `"slaney"` implementation.
|
||
|
|
||
|
Args:
|
||
|
num_frequency_bins (`int`):
|
||
|
Number of frequencies used to compute the spectrogram (should be the same as in `stft`).
|
||
|
num_mel_filters (`int`):
|
||
|
Number of mel filters to generate.
|
||
|
min_frequency (`float`):
|
||
|
Lowest frequency of interest in Hz.
|
||
|
max_frequency (`float`):
|
||
|
Highest frequency of interest in Hz. This should not exceed `sampling_rate / 2`.
|
||
|
sampling_rate (`int`):
|
||
|
Sample rate of the audio waveform.
|
||
|
norm (`str`, *optional*):
|
||
|
If `"slaney"`, divide the triangular mel weights by the width of the mel band (area normalization).
|
||
|
mel_scale (`str`, *optional*, defaults to `"htk"`):
|
||
|
The mel frequency scale to use, `"htk"`, `"kaldi"` or `"slaney"`.
|
||
|
triangularize_in_mel_space (`bool`, *optional*, defaults to `False`):
|
||
|
If this option is enabled, the triangular filter is applied in mel space rather than frequency space. This
|
||
|
should be set to `true` in order to get the same results as `torchaudio` when computing mel filters.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray` of shape (`num_frequency_bins`, `num_mel_filters`): Triangular filter bank matrix. This is a
|
||
|
projection matrix to go from a spectrogram to a mel spectrogram.
|
||
|
"""
|
||
|
if norm is not None and norm != "slaney":
|
||
|
raise ValueError('norm must be one of None or "slaney"')
|
||
|
|
||
|
# center points of the triangular mel filters
|
||
|
mel_min = hertz_to_mel(min_frequency, mel_scale=mel_scale)
|
||
|
mel_max = hertz_to_mel(max_frequency, mel_scale=mel_scale)
|
||
|
mel_freqs = np.linspace(mel_min, mel_max, num_mel_filters + 2)
|
||
|
filter_freqs = mel_to_hertz(mel_freqs, mel_scale=mel_scale)
|
||
|
|
||
|
if triangularize_in_mel_space:
|
||
|
# frequencies of FFT bins in Hz, but filters triangularized in mel space
|
||
|
fft_bin_width = sampling_rate / (num_frequency_bins * 2)
|
||
|
fft_freqs = hertz_to_mel(fft_bin_width * np.arange(num_frequency_bins), mel_scale=mel_scale)
|
||
|
filter_freqs = mel_freqs
|
||
|
else:
|
||
|
# frequencies of FFT bins in Hz
|
||
|
fft_freqs = np.linspace(0, sampling_rate // 2, num_frequency_bins)
|
||
|
|
||
|
mel_filters = _create_triangular_filter_bank(fft_freqs, filter_freqs)
|
||
|
|
||
|
if norm is not None and norm == "slaney":
|
||
|
# Slaney-style mel is scaled to be approx constant energy per channel
|
||
|
enorm = 2.0 / (filter_freqs[2 : num_mel_filters + 2] - filter_freqs[:num_mel_filters])
|
||
|
mel_filters *= np.expand_dims(enorm, 0)
|
||
|
|
||
|
if (mel_filters.max(axis=0) == 0.0).any():
|
||
|
warnings.warn(
|
||
|
"At least one mel filter has all zero values. "
|
||
|
f"The value for `num_mel_filters` ({num_mel_filters}) may be set too high. "
|
||
|
f"Or, the value for `num_frequency_bins` ({num_frequency_bins}) may be set too low."
|
||
|
)
|
||
|
|
||
|
return mel_filters
|
||
|
|
||
|
|
||
|
def optimal_fft_length(window_length: int) -> int:
|
||
|
"""
|
||
|
Finds the best FFT input size for a given `window_length`. This function takes a given window length and, if not
|
||
|
already a power of two, rounds it up to the next power or two.
|
||
|
|
||
|
The FFT algorithm works fastest when the length of the input is a power of two, which may be larger than the size
|
||
|
of the window or analysis frame. For example, if the window is 400 samples, using an FFT input size of 512 samples
|
||
|
is more optimal than an FFT size of 400 samples. Using a larger FFT size does not affect the detected frequencies,
|
||
|
it simply gives a higher frequency resolution (i.e. the frequency bins are smaller).
|
||
|
"""
|
||
|
return 2 ** int(np.ceil(np.log2(window_length)))
|
||
|
|
||
|
|
||
|
def window_function(
|
||
|
window_length: int,
|
||
|
name: str = "hann",
|
||
|
periodic: bool = True,
|
||
|
frame_length: Optional[int] = None,
|
||
|
center: bool = True,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Returns an array containing the specified window. This window is intended to be used with `stft`.
|
||
|
|
||
|
The following window types are supported:
|
||
|
|
||
|
- `"boxcar"`: a rectangular window
|
||
|
- `"hamming"`: the Hamming window
|
||
|
- `"hann"`: the Hann window
|
||
|
- `"povey"`: the Povey window
|
||
|
|
||
|
Args:
|
||
|
window_length (`int`):
|
||
|
The length of the window in samples.
|
||
|
name (`str`, *optional*, defaults to `"hann"`):
|
||
|
The name of the window function.
|
||
|
periodic (`bool`, *optional*, defaults to `True`):
|
||
|
Whether the window is periodic or symmetric.
|
||
|
frame_length (`int`, *optional*):
|
||
|
The length of the analysis frames in samples. Provide a value for `frame_length` if the window is smaller
|
||
|
than the frame length, so that it will be zero-padded.
|
||
|
center (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to center the window inside the FFT buffer. Only used when `frame_length` is provided.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray` of shape `(window_length,)` or `(frame_length,)` containing the window.
|
||
|
"""
|
||
|
length = window_length + 1 if periodic else window_length
|
||
|
|
||
|
if name == "boxcar":
|
||
|
window = np.ones(length)
|
||
|
elif name in ["hamming", "hamming_window"]:
|
||
|
window = np.hamming(length)
|
||
|
elif name in ["hann", "hann_window"]:
|
||
|
window = np.hanning(length)
|
||
|
elif name in ["povey"]:
|
||
|
window = np.power(np.hanning(length), 0.85)
|
||
|
else:
|
||
|
raise ValueError(f"Unknown window function '{name}'")
|
||
|
|
||
|
if periodic:
|
||
|
window = window[:-1]
|
||
|
|
||
|
if frame_length is None:
|
||
|
return window
|
||
|
|
||
|
if window_length > frame_length:
|
||
|
raise ValueError(
|
||
|
f"Length of the window ({window_length}) may not be larger than frame_length ({frame_length})"
|
||
|
)
|
||
|
|
||
|
padded_window = np.zeros(frame_length)
|
||
|
offset = (frame_length - window_length) // 2 if center else 0
|
||
|
padded_window[offset : offset + window_length] = window
|
||
|
return padded_window
|
||
|
|
||
|
|
||
|
# TODO This method does not support batching yet as we are mainly focused on inference.
|
||
|
def spectrogram(
|
||
|
waveform: np.ndarray,
|
||
|
window: np.ndarray,
|
||
|
frame_length: int,
|
||
|
hop_length: int,
|
||
|
fft_length: Optional[int] = None,
|
||
|
power: Optional[float] = 1.0,
|
||
|
center: bool = True,
|
||
|
pad_mode: str = "reflect",
|
||
|
onesided: bool = True,
|
||
|
preemphasis: Optional[float] = None,
|
||
|
mel_filters: Optional[np.ndarray] = None,
|
||
|
mel_floor: float = 1e-10,
|
||
|
log_mel: Optional[str] = None,
|
||
|
reference: float = 1.0,
|
||
|
min_value: float = 1e-10,
|
||
|
db_range: Optional[float] = None,
|
||
|
remove_dc_offset: Optional[bool] = None,
|
||
|
dtype: np.dtype = np.float32,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Calculates a spectrogram over one waveform using the Short-Time Fourier Transform.
|
||
|
|
||
|
This function can create the following kinds of spectrograms:
|
||
|
|
||
|
- amplitude spectrogram (`power = 1.0`)
|
||
|
- power spectrogram (`power = 2.0`)
|
||
|
- complex-valued spectrogram (`power = None`)
|
||
|
- log spectrogram (use `log_mel` argument)
|
||
|
- mel spectrogram (provide `mel_filters`)
|
||
|
- log-mel spectrogram (provide `mel_filters` and `log_mel`)
|
||
|
|
||
|
How this works:
|
||
|
|
||
|
1. The input waveform is split into frames of size `frame_length` that are partially overlapping by `frame_length
|
||
|
- hop_length` samples.
|
||
|
2. Each frame is multiplied by the window and placed into a buffer of size `fft_length`.
|
||
|
3. The DFT is taken of each windowed frame.
|
||
|
4. The results are stacked into a spectrogram.
|
||
|
|
||
|
We make a distinction between the following "blocks" of sample data, each of which may have a different lengths:
|
||
|
|
||
|
- The analysis frame. This is the size of the time slices that the input waveform is split into.
|
||
|
- The window. Each analysis frame is multiplied by the window to avoid spectral leakage.
|
||
|
- The FFT input buffer. The length of this determines how many frequency bins are in the spectrogram.
|
||
|
|
||
|
In this implementation, the window is assumed to be zero-padded to have the same size as the analysis frame. A
|
||
|
padded window can be obtained from `window_function()`. The FFT input buffer may be larger than the analysis frame,
|
||
|
typically the next power of two.
|
||
|
|
||
|
Note: This function is not optimized for speed yet. It should be mostly compatible with `librosa.stft` and
|
||
|
`torchaudio.functional.transforms.Spectrogram`, although it is more flexible due to the different ways spectrograms
|
||
|
can be constructed.
|
||
|
|
||
|
Args:
|
||
|
waveform (`np.ndarray` of shape `(length,)`):
|
||
|
The input waveform. This must be a single real-valued, mono waveform.
|
||
|
window (`np.ndarray` of shape `(frame_length,)`):
|
||
|
The windowing function to apply, including zero-padding if necessary. The actual window length may be
|
||
|
shorter than `frame_length`, but we're assuming the array has already been zero-padded.
|
||
|
frame_length (`int`):
|
||
|
The length of the analysis frames in samples. With librosa this is always equal to `fft_length` but we also
|
||
|
allow smaller sizes.
|
||
|
hop_length (`int`):
|
||
|
The stride between successive analysis frames in samples.
|
||
|
fft_length (`int`, *optional*):
|
||
|
The size of the FFT buffer in samples. This determines how many frequency bins the spectrogram will have.
|
||
|
For optimal speed, this should be a power of two. If `None`, uses `frame_length`.
|
||
|
power (`float`, *optional*, defaults to 1.0):
|
||
|
If 1.0, returns the amplitude spectrogram. If 2.0, returns the power spectrogram. If `None`, returns
|
||
|
complex numbers.
|
||
|
center (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
|
||
|
`t` will start at time `t * hop_length`.
|
||
|
pad_mode (`str`, *optional*, defaults to `"reflect"`):
|
||
|
Padding mode used when `center` is `True`. Possible values are: `"constant"` (pad with zeros), `"edge"`
|
||
|
(pad with edge values), `"reflect"` (pads with mirrored values).
|
||
|
onesided (`bool`, *optional*, defaults to `True`):
|
||
|
If True, only computes the positive frequencies and returns a spectrogram containing `fft_length // 2 + 1`
|
||
|
frequency bins. If False, also computes the negative frequencies and returns `fft_length` frequency bins.
|
||
|
preemphasis (`float`, *optional*)
|
||
|
Coefficient for a low-pass filter that applies pre-emphasis before the DFT.
|
||
|
mel_filters (`np.ndarray` of shape `(num_freq_bins, num_mel_filters)`, *optional*):
|
||
|
The mel filter bank. If supplied, applies a this filter bank to create a mel spectrogram.
|
||
|
mel_floor (`float`, *optional*, defaults to 1e-10):
|
||
|
Minimum value of mel frequency banks.
|
||
|
log_mel (`str`, *optional*):
|
||
|
How to convert the spectrogram to log scale. Possible options are: `None` (don't convert), `"log"` (take
|
||
|
the natural logarithm) `"log10"` (take the base-10 logarithm), `"dB"` (convert to decibels). Can only be
|
||
|
used when `power` is not `None`.
|
||
|
reference (`float`, *optional*, defaults to 1.0):
|
||
|
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
||
|
the loudest part to 0 dB. Must be greater than zero.
|
||
|
min_value (`float`, *optional*, defaults to `1e-10`):
|
||
|
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
||
|
`log(0)`. For a power spectrogram, the default of `1e-10` corresponds to a minimum of -100 dB. For an
|
||
|
amplitude spectrogram, the value `1e-5` corresponds to -100 dB. Must be greater than zero.
|
||
|
db_range (`float`, *optional*):
|
||
|
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
||
|
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
||
|
remove_dc_offset (`bool`, *optional*):
|
||
|
Subtract mean from waveform on each frame, applied before pre-emphasis. This should be set to `true` in
|
||
|
order to get the same results as `torchaudio.compliance.kaldi.fbank` when computing mel filters.
|
||
|
dtype (`np.dtype`, *optional*, defaults to `np.float32`):
|
||
|
Data type of the spectrogram tensor. If `power` is None, this argument is ignored and the dtype will be
|
||
|
`np.complex64`.
|
||
|
|
||
|
Returns:
|
||
|
`nd.array` containing a spectrogram of shape `(num_frequency_bins, length)` for a regular spectrogram or shape
|
||
|
`(num_mel_filters, length)` for a mel spectrogram.
|
||
|
"""
|
||
|
window_length = len(window)
|
||
|
|
||
|
if fft_length is None:
|
||
|
fft_length = frame_length
|
||
|
|
||
|
if frame_length > fft_length:
|
||
|
raise ValueError(f"frame_length ({frame_length}) may not be larger than fft_length ({fft_length})")
|
||
|
|
||
|
if window_length != frame_length:
|
||
|
raise ValueError(f"Length of the window ({window_length}) must equal frame_length ({frame_length})")
|
||
|
|
||
|
if hop_length <= 0:
|
||
|
raise ValueError("hop_length must be greater than zero")
|
||
|
|
||
|
if waveform.ndim != 1:
|
||
|
raise ValueError(f"Input waveform must have only one dimension, shape is {waveform.shape}")
|
||
|
|
||
|
if np.iscomplexobj(waveform):
|
||
|
raise ValueError("Complex-valued input waveforms are not currently supported")
|
||
|
|
||
|
if power is None and mel_filters is not None:
|
||
|
raise ValueError(
|
||
|
"You have provided `mel_filters` but `power` is `None`. Mel spectrogram computation is not yet supported for complex-valued spectrogram."
|
||
|
"Specify `power` to fix this issue."
|
||
|
)
|
||
|
|
||
|
# center pad the waveform
|
||
|
if center:
|
||
|
padding = [(int(frame_length // 2), int(frame_length // 2))]
|
||
|
waveform = np.pad(waveform, padding, mode=pad_mode)
|
||
|
|
||
|
# promote to float64, since np.fft uses float64 internally
|
||
|
waveform = waveform.astype(np.float64)
|
||
|
window = window.astype(np.float64)
|
||
|
|
||
|
# split waveform into frames of frame_length size
|
||
|
num_frames = int(1 + np.floor((waveform.size - frame_length) / hop_length))
|
||
|
|
||
|
num_frequency_bins = (fft_length // 2) + 1 if onesided else fft_length
|
||
|
spectrogram = np.empty((num_frames, num_frequency_bins), dtype=np.complex64)
|
||
|
|
||
|
# rfft is faster than fft
|
||
|
fft_func = np.fft.rfft if onesided else np.fft.fft
|
||
|
buffer = np.zeros(fft_length)
|
||
|
|
||
|
timestep = 0
|
||
|
for frame_idx in range(num_frames):
|
||
|
buffer[:frame_length] = waveform[timestep : timestep + frame_length]
|
||
|
|
||
|
if remove_dc_offset:
|
||
|
buffer[:frame_length] = buffer[:frame_length] - buffer[:frame_length].mean()
|
||
|
|
||
|
if preemphasis is not None:
|
||
|
buffer[1:frame_length] -= preemphasis * buffer[: frame_length - 1]
|
||
|
buffer[0] *= 1 - preemphasis
|
||
|
|
||
|
buffer[:frame_length] *= window
|
||
|
|
||
|
spectrogram[frame_idx] = fft_func(buffer)
|
||
|
timestep += hop_length
|
||
|
|
||
|
# note: ** is much faster than np.power
|
||
|
if power is not None:
|
||
|
spectrogram = np.abs(spectrogram, dtype=np.float64) ** power
|
||
|
|
||
|
spectrogram = spectrogram.T
|
||
|
|
||
|
if mel_filters is not None:
|
||
|
spectrogram = np.maximum(mel_floor, np.dot(mel_filters.T, spectrogram))
|
||
|
|
||
|
if power is not None and log_mel is not None:
|
||
|
if log_mel == "log":
|
||
|
spectrogram = np.log(spectrogram)
|
||
|
elif log_mel == "log10":
|
||
|
spectrogram = np.log10(spectrogram)
|
||
|
elif log_mel == "dB":
|
||
|
if power == 1.0:
|
||
|
spectrogram = amplitude_to_db(spectrogram, reference, min_value, db_range)
|
||
|
elif power == 2.0:
|
||
|
spectrogram = power_to_db(spectrogram, reference, min_value, db_range)
|
||
|
else:
|
||
|
raise ValueError(f"Cannot use log_mel option '{log_mel}' with power {power}")
|
||
|
else:
|
||
|
raise ValueError(f"Unknown log_mel option: {log_mel}")
|
||
|
|
||
|
spectrogram = np.asarray(spectrogram, dtype)
|
||
|
|
||
|
return spectrogram
|
||
|
|
||
|
|
||
|
def power_to_db(
|
||
|
spectrogram: np.ndarray,
|
||
|
reference: float = 1.0,
|
||
|
min_value: float = 1e-10,
|
||
|
db_range: Optional[float] = None,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Converts a power spectrogram to the decibel scale. This computes `10 * log10(spectrogram / reference)`, using basic
|
||
|
logarithm properties for numerical stability.
|
||
|
|
||
|
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
||
|
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
||
|
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
||
|
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
||
|
|
||
|
Based on the implementation of `librosa.power_to_db`.
|
||
|
|
||
|
Args:
|
||
|
spectrogram (`np.ndarray`):
|
||
|
The input power (mel) spectrogram. Note that a power spectrogram has the amplitudes squared!
|
||
|
reference (`float`, *optional*, defaults to 1.0):
|
||
|
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
||
|
the loudest part to 0 dB. Must be greater than zero.
|
||
|
min_value (`float`, *optional*, defaults to `1e-10`):
|
||
|
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
||
|
`log(0)`. The default of `1e-10` corresponds to a minimum of -100 dB. Must be greater than zero.
|
||
|
db_range (`float`, *optional*):
|
||
|
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
||
|
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray`: the spectrogram in decibels
|
||
|
"""
|
||
|
if reference <= 0.0:
|
||
|
raise ValueError("reference must be greater than zero")
|
||
|
if min_value <= 0.0:
|
||
|
raise ValueError("min_value must be greater than zero")
|
||
|
|
||
|
reference = max(min_value, reference)
|
||
|
|
||
|
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
||
|
spectrogram = 10.0 * (np.log10(spectrogram) - np.log10(reference))
|
||
|
|
||
|
if db_range is not None:
|
||
|
if db_range <= 0.0:
|
||
|
raise ValueError("db_range must be greater than zero")
|
||
|
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
||
|
|
||
|
return spectrogram
|
||
|
|
||
|
|
||
|
def amplitude_to_db(
|
||
|
spectrogram: np.ndarray,
|
||
|
reference: float = 1.0,
|
||
|
min_value: float = 1e-5,
|
||
|
db_range: Optional[float] = None,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Converts an amplitude spectrogram to the decibel scale. This computes `20 * log10(spectrogram / reference)`, using
|
||
|
basic logarithm properties for numerical stability.
|
||
|
|
||
|
The motivation behind applying the log function on the (mel) spectrogram is that humans do not hear loudness on a
|
||
|
linear scale. Generally to double the perceived volume of a sound we need to put 8 times as much energy into it.
|
||
|
This means that large variations in energy may not sound all that different if the sound is loud to begin with.
|
||
|
This compression operation makes the (mel) spectrogram features match more closely what humans actually hear.
|
||
|
|
||
|
Args:
|
||
|
spectrogram (`np.ndarray`):
|
||
|
The input amplitude (mel) spectrogram.
|
||
|
reference (`float`, *optional*, defaults to 1.0):
|
||
|
Sets the input spectrogram value that corresponds to 0 dB. For example, use `np.max(spectrogram)` to set
|
||
|
the loudest part to 0 dB. Must be greater than zero.
|
||
|
min_value (`float`, *optional*, defaults to `1e-5`):
|
||
|
The spectrogram will be clipped to this minimum value before conversion to decibels, to avoid taking
|
||
|
`log(0)`. The default of `1e-5` corresponds to a minimum of -100 dB. Must be greater than zero.
|
||
|
db_range (`float`, *optional*):
|
||
|
Sets the maximum dynamic range in decibels. For example, if `db_range = 80`, the difference between the
|
||
|
peak value and the smallest value will never be more than 80 dB. Must be greater than zero.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray`: the spectrogram in decibels
|
||
|
"""
|
||
|
if reference <= 0.0:
|
||
|
raise ValueError("reference must be greater than zero")
|
||
|
if min_value <= 0.0:
|
||
|
raise ValueError("min_value must be greater than zero")
|
||
|
|
||
|
reference = max(min_value, reference)
|
||
|
|
||
|
spectrogram = np.clip(spectrogram, a_min=min_value, a_max=None)
|
||
|
spectrogram = 20.0 * (np.log10(spectrogram) - np.log10(reference))
|
||
|
|
||
|
if db_range is not None:
|
||
|
if db_range <= 0.0:
|
||
|
raise ValueError("db_range must be greater than zero")
|
||
|
spectrogram = np.clip(spectrogram, a_min=spectrogram.max() - db_range, a_max=None)
|
||
|
|
||
|
return spectrogram
|
||
|
|
||
|
|
||
|
### deprecated functions below this line ###
|
||
|
|
||
|
|
||
|
def get_mel_filter_banks(
|
||
|
nb_frequency_bins: int,
|
||
|
nb_mel_filters: int,
|
||
|
frequency_min: float,
|
||
|
frequency_max: float,
|
||
|
sample_rate: int,
|
||
|
norm: Optional[str] = None,
|
||
|
mel_scale: str = "htk",
|
||
|
) -> np.array:
|
||
|
warnings.warn(
|
||
|
"The function `get_mel_filter_banks` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
return mel_filter_bank(
|
||
|
num_frequency_bins=nb_frequency_bins,
|
||
|
num_mel_filters=nb_mel_filters,
|
||
|
min_frequency=frequency_min,
|
||
|
max_frequency=frequency_max,
|
||
|
sampling_rate=sample_rate,
|
||
|
norm=norm,
|
||
|
mel_scale=mel_scale,
|
||
|
)
|
||
|
|
||
|
|
||
|
def fram_wave(waveform: np.array, hop_length: int = 160, fft_window_size: int = 400, center: bool = True):
|
||
|
"""
|
||
|
In order to compute the short time fourier transform, the waveform needs to be split in overlapping windowed
|
||
|
segments called `frames`.
|
||
|
|
||
|
The window length (window_length) defines how much of the signal is contained in each frame, while the hop length
|
||
|
defines the step between the beginning of each new frame.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
waveform (`np.array` of shape `(sample_length,)`):
|
||
|
The raw waveform which will be split into smaller chunks.
|
||
|
hop_length (`int`, *optional*, defaults to 160):
|
||
|
Step between each window of the waveform.
|
||
|
fft_window_size (`int`, *optional*, defaults to 400):
|
||
|
Defines the size of the window.
|
||
|
center (`bool`, defaults to `True`):
|
||
|
Whether or not to center each frame around the middle of the frame. Centering is done by reflecting the
|
||
|
waveform on the left and on the right.
|
||
|
|
||
|
Return:
|
||
|
framed_waveform (`np.array` of shape `(waveform.shape // hop_length , fft_window_size)`):
|
||
|
The framed waveforms that can be fed to `np.fft`.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The function `fram_wave` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
frames = []
|
||
|
for i in range(0, waveform.shape[0] + 1, hop_length):
|
||
|
if center:
|
||
|
half_window = (fft_window_size - 1) // 2 + 1
|
||
|
start = i - half_window if i > half_window else 0
|
||
|
end = i + half_window if i < waveform.shape[0] - half_window else waveform.shape[0]
|
||
|
frame = waveform[start:end]
|
||
|
if start == 0:
|
||
|
padd_width = (-i + half_window, 0)
|
||
|
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||
|
|
||
|
elif end == waveform.shape[0]:
|
||
|
padd_width = (0, (i - waveform.shape[0] + half_window))
|
||
|
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||
|
|
||
|
else:
|
||
|
frame = waveform[i : i + fft_window_size]
|
||
|
frame_width = frame.shape[0]
|
||
|
if frame_width < waveform.shape[0]:
|
||
|
frame = np.lib.pad(
|
||
|
frame, pad_width=(0, fft_window_size - frame_width), mode="constant", constant_values=0
|
||
|
)
|
||
|
frames.append(frame)
|
||
|
|
||
|
frames = np.stack(frames, 0)
|
||
|
return frames
|
||
|
|
||
|
|
||
|
def stft(frames: np.array, windowing_function: np.array, fft_window_size: int = None):
|
||
|
"""
|
||
|
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal. Should give the same results
|
||
|
as `torch.stft`.
|
||
|
|
||
|
Args:
|
||
|
frames (`np.array` of dimension `(num_frames, fft_window_size)`):
|
||
|
A framed audio signal obtained using `audio_utils.fram_wav`.
|
||
|
windowing_function (`np.array` of dimension `(nb_frequency_bins, nb_mel_filters)`:
|
||
|
A array reprensenting the function that will be used to reduces the amplitude of the discontinuities at the
|
||
|
boundaries of each frame when computing the STFT. Each frame will be multiplied by the windowing_function.
|
||
|
For more information on the discontinuities, called *Spectral leakage*, refer to [this
|
||
|
tutorial]https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
|
||
|
fft_window_size (`int`, *optional*):
|
||
|
Size of the window om which the Fourier transform is applied. This controls the frequency resolution of the
|
||
|
spectrogram. 400 means that the fourrier transform is computed on windows of 400 samples. The number of
|
||
|
frequency bins (`nb_frequency_bins`) used to divide the window into equal strips is equal to
|
||
|
`(1+fft_window_size)//2`. An increase of the fft_window_size slows the calculus time proportionnally.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers.audio_utils import stft, fram_wave
|
||
|
>>> import numpy as np
|
||
|
|
||
|
>>> audio = np.random.rand(50)
|
||
|
>>> fft_window_size = 10
|
||
|
>>> hop_length = 2
|
||
|
>>> framed_audio = fram_wave(audio, hop_length, fft_window_size)
|
||
|
>>> spectrogram = stft(framed_audio, np.hanning(fft_window_size + 1))
|
||
|
```
|
||
|
|
||
|
Returns:
|
||
|
spectrogram (`np.ndarray`):
|
||
|
A spectrogram of shape `(num_frames, nb_frequency_bins)` obtained using the STFT algorithm
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"The function `stft` is deprecated and will be removed in version 4.31.0 of Transformers",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
frame_size = frames.shape[1]
|
||
|
|
||
|
if fft_window_size is None:
|
||
|
fft_window_size = frame_size
|
||
|
|
||
|
if fft_window_size < frame_size:
|
||
|
raise ValueError("FFT size must greater or equal the frame size")
|
||
|
# number of FFT bins to store
|
||
|
nb_frequency_bins = (fft_window_size >> 1) + 1
|
||
|
|
||
|
spectrogram = np.empty((len(frames), nb_frequency_bins), dtype=np.complex64)
|
||
|
fft_signal = np.zeros(fft_window_size)
|
||
|
|
||
|
for f, frame in enumerate(frames):
|
||
|
if windowing_function is not None:
|
||
|
np.multiply(frame, windowing_function, out=fft_signal[:frame_size])
|
||
|
else:
|
||
|
fft_signal[:frame_size] = frame
|
||
|
spectrogram[f] = np.fft.fft(fft_signal, axis=0)[:nb_frequency_bins]
|
||
|
return spectrogram.T
|