166 lines
6.9 KiB
Python
166 lines
6.9 KiB
Python
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from argparse import ArgumentParser, Namespace
|
||
|
|
||
|
from ..utils import logging
|
||
|
from . import BaseTransformersCLICommand
|
||
|
|
||
|
|
||
|
def convert_command_factory(args: Namespace):
|
||
|
"""
|
||
|
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
||
|
|
||
|
Returns: ServeCommand
|
||
|
"""
|
||
|
return ConvertCommand(
|
||
|
args.model_type, args.tf_checkpoint, args.pytorch_dump_output, args.config, args.finetuning_task_name
|
||
|
)
|
||
|
|
||
|
|
||
|
IMPORT_ERROR_MESSAGE = """
|
||
|
transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires
|
||
|
TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.
|
||
|
"""
|
||
|
|
||
|
|
||
|
class ConvertCommand(BaseTransformersCLICommand):
|
||
|
@staticmethod
|
||
|
def register_subcommand(parser: ArgumentParser):
|
||
|
"""
|
||
|
Register this command to argparse so it's available for the transformer-cli
|
||
|
|
||
|
Args:
|
||
|
parser: Root parser to register command-specific arguments
|
||
|
"""
|
||
|
train_parser = parser.add_parser(
|
||
|
"convert",
|
||
|
help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.",
|
||
|
)
|
||
|
train_parser.add_argument("--model_type", type=str, required=True, help="Model's type.")
|
||
|
train_parser.add_argument(
|
||
|
"--tf_checkpoint", type=str, required=True, help="TensorFlow checkpoint path or folder."
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--pytorch_dump_output", type=str, required=True, help="Path to the PyTorch saved model output."
|
||
|
)
|
||
|
train_parser.add_argument("--config", type=str, default="", help="Configuration file path or folder.")
|
||
|
train_parser.add_argument(
|
||
|
"--finetuning_task_name",
|
||
|
type=str,
|
||
|
default=None,
|
||
|
help="Optional fine-tuning task name if the TF model was a finetuned model.",
|
||
|
)
|
||
|
train_parser.set_defaults(func=convert_command_factory)
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_type: str,
|
||
|
tf_checkpoint: str,
|
||
|
pytorch_dump_output: str,
|
||
|
config: str,
|
||
|
finetuning_task_name: str,
|
||
|
*args,
|
||
|
):
|
||
|
self._logger = logging.get_logger("transformers-cli/converting")
|
||
|
|
||
|
self._logger.info(f"Loading model {model_type}")
|
||
|
self._model_type = model_type
|
||
|
self._tf_checkpoint = tf_checkpoint
|
||
|
self._pytorch_dump_output = pytorch_dump_output
|
||
|
self._config = config
|
||
|
self._finetuning_task_name = finetuning_task_name
|
||
|
|
||
|
def run(self):
|
||
|
if self._model_type == "albert":
|
||
|
try:
|
||
|
from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_tf_checkpoint_to_pytorch,
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "bert":
|
||
|
try:
|
||
|
from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_tf_checkpoint_to_pytorch,
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "funnel":
|
||
|
try:
|
||
|
from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_tf_checkpoint_to_pytorch,
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "t5":
|
||
|
try:
|
||
|
from ..models.t5.convert_t5_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "gpt":
|
||
|
from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_openai_checkpoint_to_pytorch,
|
||
|
)
|
||
|
|
||
|
convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "gpt2":
|
||
|
try:
|
||
|
from ..models.gpt2.convert_gpt2_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_gpt2_checkpoint_to_pytorch,
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_gpt2_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
elif self._model_type == "xlnet":
|
||
|
try:
|
||
|
from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_xlnet_checkpoint_to_pytorch,
|
||
|
)
|
||
|
except ImportError:
|
||
|
raise ImportError(IMPORT_ERROR_MESSAGE)
|
||
|
|
||
|
convert_xlnet_checkpoint_to_pytorch(
|
||
|
self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name
|
||
|
)
|
||
|
elif self._model_type == "xlm":
|
||
|
from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import (
|
||
|
convert_xlm_checkpoint_to_pytorch,
|
||
|
)
|
||
|
|
||
|
convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
||
|
elif self._model_type == "lxmert":
|
||
|
from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import (
|
||
|
convert_lxmert_checkpoint_to_pytorch,
|
||
|
)
|
||
|
|
||
|
convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output)
|
||
|
elif self._model_type == "rembert":
|
||
|
from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import (
|
||
|
convert_rembert_tf_checkpoint_to_pytorch,
|
||
|
)
|
||
|
|
||
|
convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output)
|
||
|
else:
|
||
|
raise ValueError("--model_type should be selected in the list [bert, gpt, gpt2, t5, xlnet, xlm, lxmert]")
|