426 lines
20 KiB
Python
426 lines
20 KiB
Python
|
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import inspect
|
||
|
import os
|
||
|
from argparse import ArgumentParser, Namespace
|
||
|
from importlib import import_module
|
||
|
|
||
|
import huggingface_hub
|
||
|
import numpy as np
|
||
|
from packaging import version
|
||
|
|
||
|
from .. import (
|
||
|
FEATURE_EXTRACTOR_MAPPING,
|
||
|
IMAGE_PROCESSOR_MAPPING,
|
||
|
PROCESSOR_MAPPING,
|
||
|
TOKENIZER_MAPPING,
|
||
|
AutoConfig,
|
||
|
AutoFeatureExtractor,
|
||
|
AutoImageProcessor,
|
||
|
AutoProcessor,
|
||
|
AutoTokenizer,
|
||
|
is_datasets_available,
|
||
|
is_tf_available,
|
||
|
is_torch_available,
|
||
|
)
|
||
|
from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging
|
||
|
from . import BaseTransformersCLICommand
|
||
|
|
||
|
|
||
|
if is_tf_available():
|
||
|
import tensorflow as tf
|
||
|
|
||
|
tf.config.experimental.enable_tensor_float_32_execution(False)
|
||
|
|
||
|
if is_torch_available():
|
||
|
import torch
|
||
|
|
||
|
if is_datasets_available():
|
||
|
from datasets import load_dataset
|
||
|
|
||
|
|
||
|
MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors
|
||
|
|
||
|
|
||
|
def convert_command_factory(args: Namespace):
|
||
|
"""
|
||
|
Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint.
|
||
|
|
||
|
Returns: ServeCommand
|
||
|
"""
|
||
|
return PTtoTFCommand(
|
||
|
args.model_name,
|
||
|
args.local_dir,
|
||
|
args.max_error,
|
||
|
args.new_weights,
|
||
|
args.no_pr,
|
||
|
args.push,
|
||
|
args.extra_commit_description,
|
||
|
args.override_model_class,
|
||
|
)
|
||
|
|
||
|
|
||
|
class PTtoTFCommand(BaseTransformersCLICommand):
|
||
|
@staticmethod
|
||
|
def register_subcommand(parser: ArgumentParser):
|
||
|
"""
|
||
|
Register this command to argparse so it's available for the transformer-cli
|
||
|
|
||
|
Args:
|
||
|
parser: Root parser to register command-specific arguments
|
||
|
"""
|
||
|
train_parser = parser.add_parser(
|
||
|
"pt-to-tf",
|
||
|
help=(
|
||
|
"CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint."
|
||
|
" Can also be used to validate existing weights without opening PRs, with --no-pr."
|
||
|
),
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--model-name",
|
||
|
type=str,
|
||
|
required=True,
|
||
|
help="The model name, including owner/organization, as seen on the hub.",
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--local-dir",
|
||
|
type=str,
|
||
|
default="",
|
||
|
help="Optional local directory of the model repository. Defaults to /tmp/{model_name}",
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--max-error",
|
||
|
type=float,
|
||
|
default=MAX_ERROR,
|
||
|
help=(
|
||
|
f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk."
|
||
|
),
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--new-weights",
|
||
|
action="store_true",
|
||
|
help="Optional flag to create new TensorFlow weights, even if they already exist.",
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights."
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--push",
|
||
|
action="store_true",
|
||
|
help="Optional flag to push the weights directly to `main` (requires permissions)",
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--extra-commit-description",
|
||
|
type=str,
|
||
|
default="",
|
||
|
help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).",
|
||
|
)
|
||
|
train_parser.add_argument(
|
||
|
"--override-model-class",
|
||
|
type=str,
|
||
|
default=None,
|
||
|
help="If you think you know better than the auto-detector, you can specify the model class here. "
|
||
|
"Can be either an AutoModel class or a specific model class like BertForSequenceClassification.",
|
||
|
)
|
||
|
train_parser.set_defaults(func=convert_command_factory)
|
||
|
|
||
|
@staticmethod
|
||
|
def find_pt_tf_differences(pt_outputs, tf_outputs):
|
||
|
"""
|
||
|
Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences.
|
||
|
"""
|
||
|
# 1. All output attributes must be the same
|
||
|
pt_out_attrs = set(pt_outputs.keys())
|
||
|
tf_out_attrs = set(tf_outputs.keys())
|
||
|
if pt_out_attrs != tf_out_attrs:
|
||
|
raise ValueError(
|
||
|
f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:"
|
||
|
f" {tf_out_attrs})"
|
||
|
)
|
||
|
|
||
|
# 2. For each output attribute, computes the difference
|
||
|
def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""):
|
||
|
# If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in
|
||
|
# recursivelly, keeping the name of the attribute.
|
||
|
if isinstance(pt_out, torch.Tensor):
|
||
|
tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy()))
|
||
|
differences[attr_name] = tensor_difference
|
||
|
else:
|
||
|
root_name = attr_name
|
||
|
for i, pt_item in enumerate(pt_out):
|
||
|
# If it is a named attribute, we keep the name. Otherwise, just its index.
|
||
|
if isinstance(pt_item, str):
|
||
|
branch_name = root_name + pt_item
|
||
|
tf_item = tf_out[pt_item]
|
||
|
pt_item = pt_out[pt_item]
|
||
|
else:
|
||
|
branch_name = root_name + f"[{i}]"
|
||
|
tf_item = tf_out[i]
|
||
|
differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name)
|
||
|
|
||
|
return differences
|
||
|
|
||
|
return _find_pt_tf_differences(pt_outputs, tf_outputs, {})
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str,
|
||
|
local_dir: str,
|
||
|
max_error: float,
|
||
|
new_weights: bool,
|
||
|
no_pr: bool,
|
||
|
push: bool,
|
||
|
extra_commit_description: str,
|
||
|
override_model_class: str,
|
||
|
*args,
|
||
|
):
|
||
|
self._logger = logging.get_logger("transformers-cli/pt_to_tf")
|
||
|
self._model_name = model_name
|
||
|
self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name)
|
||
|
self._max_error = max_error
|
||
|
self._new_weights = new_weights
|
||
|
self._no_pr = no_pr
|
||
|
self._push = push
|
||
|
self._extra_commit_description = extra_commit_description
|
||
|
self._override_model_class = override_model_class
|
||
|
|
||
|
def get_inputs(self, pt_model, tf_dummy_inputs, config):
|
||
|
"""
|
||
|
Returns the right inputs for the model, based on its signature.
|
||
|
"""
|
||
|
|
||
|
def _get_audio_input():
|
||
|
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
||
|
speech_samples = ds.sort("id").select(range(2))[:2]["audio"]
|
||
|
raw_samples = [x["array"] for x in speech_samples]
|
||
|
return raw_samples
|
||
|
|
||
|
model_config_class = type(pt_model.config)
|
||
|
if model_config_class in PROCESSOR_MAPPING:
|
||
|
processor = AutoProcessor.from_pretrained(self._local_dir)
|
||
|
if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None:
|
||
|
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
||
|
elif model_config_class in IMAGE_PROCESSOR_MAPPING:
|
||
|
processor = AutoImageProcessor.from_pretrained(self._local_dir)
|
||
|
elif model_config_class in FEATURE_EXTRACTOR_MAPPING:
|
||
|
processor = AutoFeatureExtractor.from_pretrained(self._local_dir)
|
||
|
elif model_config_class in TOKENIZER_MAPPING:
|
||
|
processor = AutoTokenizer.from_pretrained(self._local_dir)
|
||
|
if processor.pad_token is None:
|
||
|
processor.pad_token = processor.eos_token
|
||
|
else:
|
||
|
raise ValueError(f"Unknown data processing type (model config type: {model_config_class})")
|
||
|
|
||
|
model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys())
|
||
|
processor_inputs = {}
|
||
|
if "input_ids" in model_forward_signature:
|
||
|
processor_inputs.update(
|
||
|
{
|
||
|
"text": ["Hi there!", "I am a batch with more than one row and different input lengths."],
|
||
|
"padding": True,
|
||
|
"truncation": True,
|
||
|
}
|
||
|
)
|
||
|
if "pixel_values" in model_forward_signature:
|
||
|
sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"]
|
||
|
processor_inputs.update({"images": sample_images})
|
||
|
if "input_features" in model_forward_signature:
|
||
|
feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters
|
||
|
# Pad to the largest input length by default but take feature extractor default
|
||
|
# padding value if it exists e.g. "max_length" and is not False or None
|
||
|
if "padding" in feature_extractor_signature:
|
||
|
default_strategy = feature_extractor_signature["padding"].default
|
||
|
if default_strategy is not False and default_strategy is not None:
|
||
|
padding_strategy = default_strategy
|
||
|
else:
|
||
|
padding_strategy = True
|
||
|
else:
|
||
|
padding_strategy = True
|
||
|
processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy})
|
||
|
if "input_values" in model_forward_signature: # Wav2Vec2 audio input
|
||
|
processor_inputs.update({"audio": _get_audio_input(), "padding": True})
|
||
|
pt_input = processor(**processor_inputs, return_tensors="pt")
|
||
|
tf_input = processor(**processor_inputs, return_tensors="tf")
|
||
|
|
||
|
# Extra input requirements, in addition to the input modality
|
||
|
if (
|
||
|
config.is_encoder_decoder
|
||
|
or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder"))
|
||
|
or "decoder_input_ids" in tf_dummy_inputs
|
||
|
):
|
||
|
decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0)
|
||
|
pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)})
|
||
|
tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)})
|
||
|
|
||
|
return pt_input, tf_input
|
||
|
|
||
|
def run(self):
|
||
|
# hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens.
|
||
|
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
||
|
raise ImportError(
|
||
|
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
||
|
" installation."
|
||
|
)
|
||
|
else:
|
||
|
from huggingface_hub import Repository, create_commit
|
||
|
from huggingface_hub._commit_api import CommitOperationAdd
|
||
|
|
||
|
# Fetch remote data
|
||
|
repo = Repository(local_dir=self._local_dir, clone_from=self._model_name)
|
||
|
|
||
|
# Load config and get the appropriate architecture -- the latter is needed to convert the head's weights
|
||
|
config = AutoConfig.from_pretrained(self._local_dir)
|
||
|
architectures = config.architectures
|
||
|
if self._override_model_class is not None:
|
||
|
if self._override_model_class.startswith("TF"):
|
||
|
architectures = [self._override_model_class[2:]]
|
||
|
else:
|
||
|
architectures = [self._override_model_class]
|
||
|
try:
|
||
|
pt_class = getattr(import_module("transformers"), architectures[0])
|
||
|
except AttributeError:
|
||
|
raise ValueError(f"Model class {self._override_model_class} not found in transformers.")
|
||
|
try:
|
||
|
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
||
|
except AttributeError:
|
||
|
raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.")
|
||
|
elif architectures is None: # No architecture defined -- use auto classes
|
||
|
pt_class = getattr(import_module("transformers"), "AutoModel")
|
||
|
tf_class = getattr(import_module("transformers"), "TFAutoModel")
|
||
|
self._logger.warning("No detected architecture, using AutoModel/TFAutoModel")
|
||
|
else: # Architecture defined -- use it
|
||
|
if len(architectures) > 1:
|
||
|
raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})")
|
||
|
self._logger.warning(f"Detected architecture: {architectures[0]}")
|
||
|
pt_class = getattr(import_module("transformers"), architectures[0])
|
||
|
try:
|
||
|
tf_class = getattr(import_module("transformers"), "TF" + architectures[0])
|
||
|
except AttributeError:
|
||
|
raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.")
|
||
|
|
||
|
# Check the TF dummy inputs to see what keys we need in the forward pass
|
||
|
tf_from_pt_model = tf_class.from_config(config)
|
||
|
tf_dummy_inputs = tf_from_pt_model.dummy_inputs
|
||
|
|
||
|
del tf_from_pt_model # Try to keep only one model in memory at a time
|
||
|
|
||
|
# Load the model and get some basic inputs
|
||
|
pt_model = pt_class.from_pretrained(self._local_dir)
|
||
|
pt_model.eval()
|
||
|
|
||
|
pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config)
|
||
|
|
||
|
with torch.no_grad():
|
||
|
pt_outputs = pt_model(**pt_input, output_hidden_states=True)
|
||
|
del pt_model # will no longer be used, and may have a large memory footprint
|
||
|
|
||
|
tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True)
|
||
|
tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False)
|
||
|
|
||
|
# Confirms that cross loading PT weights into TF worked.
|
||
|
crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs)
|
||
|
output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k}
|
||
|
hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k}
|
||
|
if len(output_differences) == 0 and architectures is not None:
|
||
|
raise ValueError(
|
||
|
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
||
|
" output was found. All outputs start with 'hidden'"
|
||
|
)
|
||
|
max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0
|
||
|
max_crossload_hidden_diff = max(hidden_differences.values())
|
||
|
if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error:
|
||
|
raise ValueError(
|
||
|
"The cross-loaded TensorFlow model has different outputs, something went wrong!\n"
|
||
|
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
||
|
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
||
|
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
||
|
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
||
|
)
|
||
|
|
||
|
# Save the weights in a TF format (if needed) and confirms that the results are still good
|
||
|
tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME)
|
||
|
tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME)
|
||
|
if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights:
|
||
|
tf_from_pt_model.save_pretrained(self._local_dir)
|
||
|
del tf_from_pt_model # will no longer be used, and may have a large memory footprint
|
||
|
|
||
|
tf_model = tf_class.from_pretrained(self._local_dir)
|
||
|
tf_outputs = tf_model(**tf_input, output_hidden_states=True)
|
||
|
|
||
|
conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs)
|
||
|
output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k}
|
||
|
hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k}
|
||
|
if len(output_differences) == 0 and architectures is not None:
|
||
|
raise ValueError(
|
||
|
f"Something went wrong -- the config file has architectures ({architectures}), but no model head"
|
||
|
" output was found. All outputs start with 'hidden'"
|
||
|
)
|
||
|
max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0
|
||
|
max_conversion_hidden_diff = max(hidden_differences.values())
|
||
|
if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error:
|
||
|
raise ValueError(
|
||
|
"The converted TensorFlow model has different outputs, something went wrong!\n"
|
||
|
+ f"\nList of maximum output differences above the threshold ({self._max_error}):\n"
|
||
|
+ "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error])
|
||
|
+ f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n"
|
||
|
+ "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error])
|
||
|
)
|
||
|
|
||
|
commit_message = "Update TF weights" if self._new_weights else "Add TF weights"
|
||
|
if self._push:
|
||
|
repo.git_add(auto_lfs_track=True)
|
||
|
repo.git_commit(commit_message)
|
||
|
repo.git_push(blocking=True) # this prints a progress bar with the upload
|
||
|
self._logger.warning(f"TF weights pushed into {self._model_name}")
|
||
|
elif not self._no_pr:
|
||
|
self._logger.warning("Uploading the weights into a new PR...")
|
||
|
commit_descrition = (
|
||
|
"Model converted by the [`transformers`' `pt_to_tf`"
|
||
|
" CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). "
|
||
|
"All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n"
|
||
|
f"Maximum crossload output difference={max_crossload_output_diff:.3e}; "
|
||
|
f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n"
|
||
|
f"Maximum conversion output difference={max_conversion_output_diff:.3e}; "
|
||
|
f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n"
|
||
|
)
|
||
|
if self._max_error > MAX_ERROR:
|
||
|
commit_descrition += (
|
||
|
f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!"
|
||
|
)
|
||
|
if self._extra_commit_description:
|
||
|
commit_descrition += "\n\n" + self._extra_commit_description
|
||
|
|
||
|
# sharded model -> adds all related files (index and .h5 shards)
|
||
|
if os.path.exists(tf_weights_index_path):
|
||
|
operations = [
|
||
|
CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path)
|
||
|
]
|
||
|
for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"):
|
||
|
operations += [
|
||
|
CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path)
|
||
|
]
|
||
|
else:
|
||
|
operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)]
|
||
|
|
||
|
hub_pr_url = create_commit(
|
||
|
repo_id=self._model_name,
|
||
|
operations=operations,
|
||
|
commit_message=commit_message,
|
||
|
commit_description=commit_descrition,
|
||
|
repo_type="model",
|
||
|
create_pr=True,
|
||
|
).pr_url
|
||
|
self._logger.warning(f"PR open in {hub_pr_url}")
|