531 lines
23 KiB
Python
531 lines
23 KiB
Python
|
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import json
|
||
|
import os
|
||
|
import pickle
|
||
|
import random
|
||
|
import time
|
||
|
import warnings
|
||
|
from typing import Dict, List, Optional
|
||
|
|
||
|
import torch
|
||
|
from filelock import FileLock
|
||
|
from torch.utils.data import Dataset
|
||
|
|
||
|
from ...tokenization_utils import PreTrainedTokenizer
|
||
|
from ...utils import logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
DEPRECATION_WARNING = (
|
||
|
"This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets "
|
||
|
"library. You can have a look at this example script for pointers: {0}"
|
||
|
)
|
||
|
|
||
|
|
||
|
class TextDataset(Dataset):
|
||
|
"""
|
||
|
This will be superseded by a framework-agnostic approach soon.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
file_path: str,
|
||
|
block_size: int,
|
||
|
overwrite_cache=False,
|
||
|
cache_dir: Optional[str] = None,
|
||
|
):
|
||
|
warnings.warn(
|
||
|
DEPRECATION_WARNING.format(
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if os.path.isfile(file_path) is False:
|
||
|
raise ValueError(f"Input file path {file_path} not found")
|
||
|
|
||
|
block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False)
|
||
|
|
||
|
directory, filename = os.path.split(file_path)
|
||
|
cached_features_file = os.path.join(
|
||
|
cache_dir if cache_dir is not None else directory,
|
||
|
f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
||
|
)
|
||
|
|
||
|
# Make sure only the first process in distributed training processes the dataset,
|
||
|
# and the others will use the cache.
|
||
|
lock_path = cached_features_file + ".lock"
|
||
|
with FileLock(lock_path):
|
||
|
if os.path.exists(cached_features_file) and not overwrite_cache:
|
||
|
start = time.time()
|
||
|
with open(cached_features_file, "rb") as handle:
|
||
|
self.examples = pickle.load(handle)
|
||
|
logger.info(
|
||
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
||
|
)
|
||
|
|
||
|
else:
|
||
|
logger.info(f"Creating features from dataset file at {directory}")
|
||
|
|
||
|
self.examples = []
|
||
|
with open(file_path, encoding="utf-8") as f:
|
||
|
text = f.read()
|
||
|
|
||
|
tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text))
|
||
|
|
||
|
for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size
|
||
|
self.examples.append(
|
||
|
tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size])
|
||
|
)
|
||
|
# Note that we are losing the last truncated example here for the sake of simplicity (no padding)
|
||
|
# If your dataset is small, first you should look for a bigger one :-) and second you
|
||
|
# can change this behavior by adding (model specific) padding.
|
||
|
|
||
|
start = time.time()
|
||
|
with open(cached_features_file, "wb") as handle:
|
||
|
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
||
|
logger.info(
|
||
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
||
|
)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.examples)
|
||
|
|
||
|
def __getitem__(self, i) -> torch.Tensor:
|
||
|
return torch.tensor(self.examples[i], dtype=torch.long)
|
||
|
|
||
|
|
||
|
class LineByLineTextDataset(Dataset):
|
||
|
"""
|
||
|
This will be superseded by a framework-agnostic approach soon.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int):
|
||
|
warnings.warn(
|
||
|
DEPRECATION_WARNING.format(
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if os.path.isfile(file_path) is False:
|
||
|
raise ValueError(f"Input file path {file_path} not found")
|
||
|
# Here, we do not cache the features, operating under the assumption
|
||
|
# that we will soon use fast multithreaded tokenizers from the
|
||
|
# `tokenizers` repo everywhere =)
|
||
|
logger.info(f"Creating features from dataset file at {file_path}")
|
||
|
|
||
|
with open(file_path, encoding="utf-8") as f:
|
||
|
lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
||
|
|
||
|
batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size)
|
||
|
self.examples = batch_encoding["input_ids"]
|
||
|
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.examples)
|
||
|
|
||
|
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
||
|
return self.examples[i]
|
||
|
|
||
|
|
||
|
class LineByLineWithRefDataset(Dataset):
|
||
|
"""
|
||
|
This will be superseded by a framework-agnostic approach soon.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str):
|
||
|
warnings.warn(
|
||
|
DEPRECATION_WARNING.format(
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py"
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if os.path.isfile(file_path) is False:
|
||
|
raise ValueError(f"Input file path {file_path} not found")
|
||
|
if os.path.isfile(ref_path) is False:
|
||
|
raise ValueError(f"Ref file path {file_path} not found")
|
||
|
# Here, we do not cache the features, operating under the assumption
|
||
|
# that we will soon use fast multithreaded tokenizers from the
|
||
|
# `tokenizers` repo everywhere =)
|
||
|
logger.info(f"Creating features from dataset file at {file_path}")
|
||
|
logger.info(f"Use ref segment results at {ref_path}")
|
||
|
with open(file_path, encoding="utf-8") as f:
|
||
|
data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line
|
||
|
data = [line.strip() for line in data if len(line) > 0 and not line.isspace()]
|
||
|
# Get ref inf from file
|
||
|
with open(ref_path, encoding="utf-8") as f:
|
||
|
ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
||
|
if len(data) != len(ref):
|
||
|
raise ValueError(
|
||
|
f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} "
|
||
|
f"while length of {ref_path} is {len(ref)}"
|
||
|
)
|
||
|
|
||
|
batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size)
|
||
|
self.examples = batch_encoding["input_ids"]
|
||
|
self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples]
|
||
|
|
||
|
n = len(self.examples)
|
||
|
for i in range(n):
|
||
|
self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.examples)
|
||
|
|
||
|
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
||
|
return self.examples[i]
|
||
|
|
||
|
|
||
|
class LineByLineWithSOPTextDataset(Dataset):
|
||
|
"""
|
||
|
Dataset for sentence order prediction task, prepare sentence pairs for SOP task
|
||
|
"""
|
||
|
|
||
|
def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int):
|
||
|
warnings.warn(
|
||
|
DEPRECATION_WARNING.format(
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if os.path.isdir(file_dir) is False:
|
||
|
raise ValueError(f"{file_dir} is not a directory")
|
||
|
logger.info(f"Creating features from dataset file folder at {file_dir}")
|
||
|
self.examples = []
|
||
|
# TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed)
|
||
|
# file path looks like ./dataset/wiki_1, ./dataset/wiki_2
|
||
|
for file_name in os.listdir(file_dir):
|
||
|
file_path = os.path.join(file_dir, file_name)
|
||
|
if os.path.isfile(file_path) is False:
|
||
|
raise ValueError(f"{file_path} is not a file")
|
||
|
article_open = False
|
||
|
with open(file_path, encoding="utf-8") as f:
|
||
|
original_lines = f.readlines()
|
||
|
article_lines = []
|
||
|
for line in original_lines:
|
||
|
if "<doc id=" in line:
|
||
|
article_open = True
|
||
|
elif "</doc>" in line:
|
||
|
article_open = False
|
||
|
document = [
|
||
|
tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line))
|
||
|
for line in article_lines[1:]
|
||
|
if (len(line) > 0 and not line.isspace())
|
||
|
]
|
||
|
|
||
|
examples = self.create_examples_from_document(document, block_size, tokenizer)
|
||
|
self.examples.extend(examples)
|
||
|
article_lines = []
|
||
|
else:
|
||
|
if article_open:
|
||
|
article_lines.append(line)
|
||
|
|
||
|
logger.info("Dataset parse finished.")
|
||
|
|
||
|
def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1):
|
||
|
"""Creates examples for a single document."""
|
||
|
|
||
|
# Account for special tokens
|
||
|
max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True)
|
||
|
|
||
|
# We *usually* want to fill up the entire sequence since we are padding
|
||
|
# to `block_size` anyways, so short sequences are generally wasted
|
||
|
# computation. However, we *sometimes*
|
||
|
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
||
|
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
||
|
# The `target_seq_length` is just a rough target however, whereas
|
||
|
# `block_size` is a hard limit.
|
||
|
target_seq_length = max_num_tokens
|
||
|
if random.random() < short_seq_prob:
|
||
|
target_seq_length = random.randint(2, max_num_tokens)
|
||
|
|
||
|
# We DON'T just concatenate all of the tokens from a document into a long
|
||
|
# sequence and choose an arbitrary split point because this would make the
|
||
|
# next sentence prediction task too easy. Instead, we split the input into
|
||
|
# segments "A" and "B" based on the actual "sentences" provided by the user
|
||
|
# input.
|
||
|
examples = []
|
||
|
current_chunk = [] # a buffer stored current working segments
|
||
|
current_length = 0
|
||
|
i = 0
|
||
|
while i < len(document):
|
||
|
segment = document[i] # get a segment
|
||
|
if not segment:
|
||
|
i += 1
|
||
|
continue
|
||
|
current_chunk.append(segment) # add a segment to current chunk
|
||
|
current_length += len(segment) # overall token length
|
||
|
# if current length goes to the target length or reaches the end of file, start building token a and b
|
||
|
if i == len(document) - 1 or current_length >= target_seq_length:
|
||
|
if current_chunk:
|
||
|
# `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence.
|
||
|
a_end = 1
|
||
|
# if current chunk has more than 2 sentences, pick part of it `A` (first) sentence
|
||
|
if len(current_chunk) >= 2:
|
||
|
a_end = random.randint(1, len(current_chunk) - 1)
|
||
|
# token a
|
||
|
tokens_a = []
|
||
|
for j in range(a_end):
|
||
|
tokens_a.extend(current_chunk[j])
|
||
|
|
||
|
# token b
|
||
|
tokens_b = []
|
||
|
for j in range(a_end, len(current_chunk)):
|
||
|
tokens_b.extend(current_chunk[j])
|
||
|
|
||
|
if len(tokens_a) == 0 or len(tokens_b) == 0:
|
||
|
continue
|
||
|
|
||
|
# switch tokens_a and tokens_b randomly
|
||
|
if random.random() < 0.5:
|
||
|
is_next = False
|
||
|
tokens_a, tokens_b = tokens_b, tokens_a
|
||
|
else:
|
||
|
is_next = True
|
||
|
|
||
|
def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens):
|
||
|
"""Truncates a pair of sequences to a maximum sequence length."""
|
||
|
while True:
|
||
|
total_length = len(tokens_a) + len(tokens_b)
|
||
|
if total_length <= max_num_tokens:
|
||
|
break
|
||
|
trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b
|
||
|
if not (len(trunc_tokens) >= 1):
|
||
|
raise ValueError("Sequence length to be truncated must be no less than one")
|
||
|
# We want to sometimes truncate from the front and sometimes from the
|
||
|
# back to add more randomness and avoid biases.
|
||
|
if random.random() < 0.5:
|
||
|
del trunc_tokens[0]
|
||
|
else:
|
||
|
trunc_tokens.pop()
|
||
|
|
||
|
truncate_seq_pair(tokens_a, tokens_b, max_num_tokens)
|
||
|
if not (len(tokens_a) >= 1):
|
||
|
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
||
|
if not (len(tokens_b) >= 1):
|
||
|
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
||
|
|
||
|
# add special tokens
|
||
|
input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
||
|
# add token type ids, 0 for sentence a, 1 for sentence b
|
||
|
token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
||
|
|
||
|
example = {
|
||
|
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
||
|
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
||
|
"sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long),
|
||
|
}
|
||
|
examples.append(example)
|
||
|
current_chunk = [] # clear current chunk
|
||
|
current_length = 0 # reset current text length
|
||
|
i += 1 # go to next line
|
||
|
return examples
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.examples)
|
||
|
|
||
|
def __getitem__(self, i) -> Dict[str, torch.tensor]:
|
||
|
return self.examples[i]
|
||
|
|
||
|
|
||
|
class TextDatasetForNextSentencePrediction(Dataset):
|
||
|
"""
|
||
|
This will be superseded by a framework-agnostic approach soon.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
tokenizer: PreTrainedTokenizer,
|
||
|
file_path: str,
|
||
|
block_size: int,
|
||
|
overwrite_cache=False,
|
||
|
short_seq_probability=0.1,
|
||
|
nsp_probability=0.5,
|
||
|
):
|
||
|
warnings.warn(
|
||
|
DEPRECATION_WARNING.format(
|
||
|
"https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py"
|
||
|
),
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if not os.path.isfile(file_path):
|
||
|
raise ValueError(f"Input file path {file_path} not found")
|
||
|
|
||
|
self.short_seq_probability = short_seq_probability
|
||
|
self.nsp_probability = nsp_probability
|
||
|
|
||
|
directory, filename = os.path.split(file_path)
|
||
|
cached_features_file = os.path.join(
|
||
|
directory,
|
||
|
f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}",
|
||
|
)
|
||
|
|
||
|
self.tokenizer = tokenizer
|
||
|
|
||
|
# Make sure only the first process in distributed training processes the dataset,
|
||
|
# and the others will use the cache.
|
||
|
lock_path = cached_features_file + ".lock"
|
||
|
|
||
|
# Input file format:
|
||
|
# (1) One sentence per line. These should ideally be actual sentences, not
|
||
|
# entire paragraphs or arbitrary spans of text. (Because we use the
|
||
|
# sentence boundaries for the "next sentence prediction" task).
|
||
|
# (2) Blank lines between documents. Document boundaries are needed so
|
||
|
# that the "next sentence prediction" task doesn't span between documents.
|
||
|
#
|
||
|
# Example:
|
||
|
# I am very happy.
|
||
|
# Here is the second sentence.
|
||
|
#
|
||
|
# A new document.
|
||
|
|
||
|
with FileLock(lock_path):
|
||
|
if os.path.exists(cached_features_file) and not overwrite_cache:
|
||
|
start = time.time()
|
||
|
with open(cached_features_file, "rb") as handle:
|
||
|
self.examples = pickle.load(handle)
|
||
|
logger.info(
|
||
|
f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start
|
||
|
)
|
||
|
else:
|
||
|
logger.info(f"Creating features from dataset file at {directory}")
|
||
|
|
||
|
self.documents = [[]]
|
||
|
with open(file_path, encoding="utf-8") as f:
|
||
|
while True:
|
||
|
line = f.readline()
|
||
|
if not line:
|
||
|
break
|
||
|
line = line.strip()
|
||
|
|
||
|
# Empty lines are used as document delimiters
|
||
|
if not line and len(self.documents[-1]) != 0:
|
||
|
self.documents.append([])
|
||
|
tokens = tokenizer.tokenize(line)
|
||
|
tokens = tokenizer.convert_tokens_to_ids(tokens)
|
||
|
if tokens:
|
||
|
self.documents[-1].append(tokens)
|
||
|
|
||
|
logger.info(f"Creating examples from {len(self.documents)} documents.")
|
||
|
self.examples = []
|
||
|
for doc_index, document in enumerate(self.documents):
|
||
|
self.create_examples_from_document(document, doc_index, block_size)
|
||
|
|
||
|
start = time.time()
|
||
|
with open(cached_features_file, "wb") as handle:
|
||
|
pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL)
|
||
|
logger.info(
|
||
|
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
|
||
|
)
|
||
|
|
||
|
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
|
||
|
"""Creates examples for a single document."""
|
||
|
|
||
|
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)
|
||
|
|
||
|
# We *usually* want to fill up the entire sequence since we are padding
|
||
|
# to `block_size` anyways, so short sequences are generally wasted
|
||
|
# computation. However, we *sometimes*
|
||
|
# (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter
|
||
|
# sequences to minimize the mismatch between pretraining and fine-tuning.
|
||
|
# The `target_seq_length` is just a rough target however, whereas
|
||
|
# `block_size` is a hard limit.
|
||
|
target_seq_length = max_num_tokens
|
||
|
if random.random() < self.short_seq_probability:
|
||
|
target_seq_length = random.randint(2, max_num_tokens)
|
||
|
|
||
|
current_chunk = [] # a buffer stored current working segments
|
||
|
current_length = 0
|
||
|
i = 0
|
||
|
|
||
|
while i < len(document):
|
||
|
segment = document[i]
|
||
|
current_chunk.append(segment)
|
||
|
current_length += len(segment)
|
||
|
if i == len(document) - 1 or current_length >= target_seq_length:
|
||
|
if current_chunk:
|
||
|
# `a_end` is how many segments from `current_chunk` go into the `A`
|
||
|
# (first) sentence.
|
||
|
a_end = 1
|
||
|
if len(current_chunk) >= 2:
|
||
|
a_end = random.randint(1, len(current_chunk) - 1)
|
||
|
|
||
|
tokens_a = []
|
||
|
for j in range(a_end):
|
||
|
tokens_a.extend(current_chunk[j])
|
||
|
|
||
|
tokens_b = []
|
||
|
|
||
|
if len(current_chunk) == 1 or random.random() < self.nsp_probability:
|
||
|
is_random_next = True
|
||
|
target_b_length = target_seq_length - len(tokens_a)
|
||
|
|
||
|
# This should rarely go for more than one iteration for large
|
||
|
# corpora. However, just to be careful, we try to make sure that
|
||
|
# the random document is not the same as the document
|
||
|
# we're processing.
|
||
|
for _ in range(10):
|
||
|
random_document_index = random.randint(0, len(self.documents) - 1)
|
||
|
if random_document_index != doc_index:
|
||
|
break
|
||
|
|
||
|
random_document = self.documents[random_document_index]
|
||
|
random_start = random.randint(0, len(random_document) - 1)
|
||
|
for j in range(random_start, len(random_document)):
|
||
|
tokens_b.extend(random_document[j])
|
||
|
if len(tokens_b) >= target_b_length:
|
||
|
break
|
||
|
# We didn't actually use these segments so we "put them back" so
|
||
|
# they don't go to waste.
|
||
|
num_unused_segments = len(current_chunk) - a_end
|
||
|
i -= num_unused_segments
|
||
|
# Actual next
|
||
|
else:
|
||
|
is_random_next = False
|
||
|
for j in range(a_end, len(current_chunk)):
|
||
|
tokens_b.extend(current_chunk[j])
|
||
|
|
||
|
if not (len(tokens_a) >= 1):
|
||
|
raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1")
|
||
|
if not (len(tokens_b) >= 1):
|
||
|
raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1")
|
||
|
|
||
|
# add special tokens
|
||
|
input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b)
|
||
|
# add token type ids, 0 for sentence a, 1 for sentence b
|
||
|
token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b)
|
||
|
|
||
|
example = {
|
||
|
"input_ids": torch.tensor(input_ids, dtype=torch.long),
|
||
|
"token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
|
||
|
"next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long),
|
||
|
}
|
||
|
|
||
|
self.examples.append(example)
|
||
|
|
||
|
current_chunk = []
|
||
|
current_length = 0
|
||
|
|
||
|
i += 1
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.examples)
|
||
|
|
||
|
def __getitem__(self, i):
|
||
|
return self.examples[i]
|