ai-content-maker/.venv/Lib/site-packages/transformers/data/metrics/squad_metrics.py

781 lines
29 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Very heavily inspired by the official evaluation script for SQuAD version 2.0 which was modified by XLNet authors to
update `find_best_threshold` scripts for SQuAD V2.0
In addition to basic functionality, we also compute additional statistics and plot precision-recall curves if an
additional na_prob.json file is provided. This file is expected to map question ID's to the model's predicted
probability that a question is unanswerable.
"""
import collections
import json
import math
import re
import string
from ...models.bert import BasicTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
def normalize_answer(s):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(text):
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
return re.sub(regex, " ", text)
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(s))))
def get_tokens(s):
if not s:
return []
return normalize_answer(s).split()
def compute_exact(a_gold, a_pred):
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
def compute_f1(a_gold, a_pred):
gold_toks = get_tokens(a_gold)
pred_toks = get_tokens(a_pred)
common = collections.Counter(gold_toks) & collections.Counter(pred_toks)
num_same = sum(common.values())
if len(gold_toks) == 0 or len(pred_toks) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks)
if num_same == 0:
return 0
precision = 1.0 * num_same / len(pred_toks)
recall = 1.0 * num_same / len(gold_toks)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def get_raw_scores(examples, preds):
"""
Computes the exact and f1 scores from the examples and the model predictions
"""
exact_scores = {}
f1_scores = {}
for example in examples:
qas_id = example.qas_id
gold_answers = [answer["text"] for answer in example.answers if normalize_answer(answer["text"])]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
gold_answers = [""]
if qas_id not in preds:
print(f"Missing prediction for {qas_id}")
continue
prediction = preds[qas_id]
exact_scores[qas_id] = max(compute_exact(a, prediction) for a in gold_answers)
f1_scores[qas_id] = max(compute_f1(a, prediction) for a in gold_answers)
return exact_scores, f1_scores
def apply_no_ans_threshold(scores, na_probs, qid_to_has_ans, na_prob_thresh):
new_scores = {}
for qid, s in scores.items():
pred_na = na_probs[qid] > na_prob_thresh
if pred_na:
new_scores[qid] = float(not qid_to_has_ans[qid])
else:
new_scores[qid] = s
return new_scores
def make_eval_dict(exact_scores, f1_scores, qid_list=None):
if not qid_list:
total = len(exact_scores)
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores.values()) / total),
("f1", 100.0 * sum(f1_scores.values()) / total),
("total", total),
]
)
else:
total = len(qid_list)
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores[k] for k in qid_list) / total),
("f1", 100.0 * sum(f1_scores[k] for k in qid_list) / total),
("total", total),
]
)
def merge_eval(main_eval, new_eval, prefix):
for k in new_eval:
main_eval[f"{prefix}_{k}"] = new_eval[k]
def find_best_thresh_v2(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for i, qid in enumerate(qid_list):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
has_ans_score, has_ans_cnt = 0, 0
for qid in qid_list:
if not qid_to_has_ans[qid]:
continue
has_ans_cnt += 1
if qid not in scores:
continue
has_ans_score += scores[qid]
return 100.0 * best_score / len(scores), best_thresh, 1.0 * has_ans_score / has_ans_cnt
def find_all_best_thresh_v2(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh, has_ans_exact = find_best_thresh_v2(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh, has_ans_f1 = find_best_thresh_v2(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval["best_exact"] = best_exact
main_eval["best_exact_thresh"] = exact_thresh
main_eval["best_f1"] = best_f1
main_eval["best_f1_thresh"] = f1_thresh
main_eval["has_ans_exact"] = has_ans_exact
main_eval["has_ans_f1"] = has_ans_f1
def find_best_thresh(preds, scores, na_probs, qid_to_has_ans):
num_no_ans = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k])
cur_score = num_no_ans
best_score = cur_score
best_thresh = 0.0
qid_list = sorted(na_probs, key=lambda k: na_probs[k])
for _, qid in enumerate(qid_list):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
diff = scores[qid]
else:
if preds[qid]:
diff = -1
else:
diff = 0
cur_score += diff
if cur_score > best_score:
best_score = cur_score
best_thresh = na_probs[qid]
return 100.0 * best_score / len(scores), best_thresh
def find_all_best_thresh(main_eval, preds, exact_raw, f1_raw, na_probs, qid_to_has_ans):
best_exact, exact_thresh = find_best_thresh(preds, exact_raw, na_probs, qid_to_has_ans)
best_f1, f1_thresh = find_best_thresh(preds, f1_raw, na_probs, qid_to_has_ans)
main_eval["best_exact"] = best_exact
main_eval["best_exact_thresh"] = exact_thresh
main_eval["best_f1"] = best_f1
main_eval["best_f1_thresh"] = f1_thresh
def squad_evaluate(examples, preds, no_answer_probs=None, no_answer_probability_threshold=1.0):
qas_id_to_has_answer = {example.qas_id: bool(example.answers) for example in examples}
has_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if has_answer]
no_answer_qids = [qas_id for qas_id, has_answer in qas_id_to_has_answer.items() if not has_answer]
if no_answer_probs is None:
no_answer_probs = {k: 0.0 for k in preds}
exact, f1 = get_raw_scores(examples, preds)
exact_threshold = apply_no_ans_threshold(
exact, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold
)
f1_threshold = apply_no_ans_threshold(f1, no_answer_probs, qas_id_to_has_answer, no_answer_probability_threshold)
evaluation = make_eval_dict(exact_threshold, f1_threshold)
if has_answer_qids:
has_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=has_answer_qids)
merge_eval(evaluation, has_ans_eval, "HasAns")
if no_answer_qids:
no_ans_eval = make_eval_dict(exact_threshold, f1_threshold, qid_list=no_answer_qids)
merge_eval(evaluation, no_ans_eval, "NoAns")
if no_answer_probs:
find_all_best_thresh(evaluation, preds, exact, f1, no_answer_probs, qas_id_to_has_answer)
return evaluation
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the SQuAD eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heuristic between
# `pred_text` and `orig_text` to get a character-to-character alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for i, c in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose_logging:
logger.info(f"Unable to find text: '{pred_text}' in '{orig_text}'")
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose_logging:
logger.info(f"Length not equal after stripping spaces: '{orig_ns_text}' vs '{tok_ns_text}'")
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for i, tok_index in tok_ns_to_s_map.items():
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose_logging:
logger.info("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose_logging:
logger.info("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position : (orig_end_position + 1)]
return output_text
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
def compute_predictions_logits(
all_examples,
all_features,
all_results,
n_best_size,
max_answer_length,
do_lower_case,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
verbose_logging,
version_2_with_negative,
null_score_diff_threshold,
tokenizer,
):
"""Write final predictions to the json file and log-odds of null if needed."""
if output_prediction_file:
logger.info(f"Writing predictions to: {output_prediction_file}")
if output_nbest_file:
logger.info(f"Writing nbest to: {output_nbest_file}")
if output_null_log_odds_file and version_2_with_negative:
logger.info(f"Writing null_log_odds to: {output_null_log_odds_file}")
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]
)
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for example_index, example in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min null score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
for feature_index, feature in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
if version_2_with_negative:
feature_null_score = result.start_logits[0] + result.end_logits[0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index],
)
)
if version_2_with_negative:
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit,
)
)
prelim_predictions = sorted(prelim_predictions, key=lambda x: (x.start_logit + x.end_logit), reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit"]
)
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# tok_text = " ".join(tok_tokens)
#
# # De-tokenize WordPieces that have been split off.
# tok_text = tok_text.replace(" ##", "")
# tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
nbest.append(_NbestPrediction(text=final_text, start_logit=pred.start_logit, end_logit=pred.end_logit))
# if we didn't include the empty option in the n-best, include it
if version_2_with_negative:
if "" not in seen_predictions:
nbest.append(_NbestPrediction(text="", start_logit=null_start_logit, end_logit=null_end_logit))
# In very rare edge cases we could only have single null prediction.
# So we just create a nonce prediction in this case to avoid failure.
if len(nbest) == 1:
nbest.insert(0, _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(_NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))
if len(nbest) < 1:
raise ValueError("No valid predictions")
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for i, entry in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
if len(nbest_json) < 1:
raise ValueError("No valid predictions")
if not version_2_with_negative:
all_predictions[example.qas_id] = nbest_json[0]["text"]
else:
# predict "" iff the null score - the score of best non-null > threshold
score_diff = score_null - best_non_null_entry.start_logit - (best_non_null_entry.end_logit)
scores_diff_json[example.qas_id] = score_diff
if score_diff > null_score_diff_threshold:
all_predictions[example.qas_id] = ""
else:
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
if output_prediction_file:
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
if output_nbest_file:
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if output_null_log_odds_file and version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions
def compute_predictions_log_probs(
all_examples,
all_features,
all_results,
n_best_size,
max_answer_length,
output_prediction_file,
output_nbest_file,
output_null_log_odds_file,
start_n_top,
end_n_top,
version_2_with_negative,
tokenizer,
verbose_logging,
):
"""
XLNet write prediction logic (more complex than Bert's). Write final predictions to the json file and log-odds of
null if needed.
Requires utils_squad_evaluate.py
"""
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction", ["feature_index", "start_index", "end_index", "start_log_prob", "end_log_prob"]
)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_log_prob", "end_log_prob"]
)
logger.info(f"Writing predictions to: {output_prediction_file}")
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for example_index, example in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
for feature_index, feature in enumerate(features):
result = unique_id_to_result[feature.unique_id]
cur_null_score = result.cls_logits
# if we could have irrelevant answers, get the min score of irrelevant
score_null = min(score_null, cur_null_score)
for i in range(start_n_top):
for j in range(end_n_top):
start_log_prob = result.start_logits[i]
start_index = result.start_top_index[i]
j_index = i * end_n_top + j
end_log_prob = result.end_logits[j_index]
end_index = result.end_top_index[j_index]
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= feature.paragraph_len - 1:
continue
if end_index >= feature.paragraph_len - 1:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_log_prob=start_log_prob,
end_log_prob=end_log_prob,
)
)
prelim_predictions = sorted(
prelim_predictions, key=lambda x: (x.start_log_prob + x.end_log_prob), reverse=True
)
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
# XLNet un-tokenizer
# Let's keep it simple for now and see if we need all this later.
#
# tok_start_to_orig_index = feature.tok_start_to_orig_index
# tok_end_to_orig_index = feature.tok_end_to_orig_index
# start_orig_pos = tok_start_to_orig_index[pred.start_index]
# end_orig_pos = tok_end_to_orig_index[pred.end_index]
# paragraph_text = example.paragraph_text
# final_text = paragraph_text[start_orig_pos: end_orig_pos + 1].strip()
# Previously used Bert untokenizer
tok_tokens = feature.tokens[pred.start_index : (pred.end_index + 1)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start : (orig_doc_end + 1)]
tok_text = tokenizer.convert_tokens_to_string(tok_tokens)
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
if hasattr(tokenizer, "do_lower_case"):
do_lower_case = tokenizer.do_lower_case
else:
do_lower_case = tokenizer.do_lowercase_and_remove_accent
final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(text=final_text, start_log_prob=pred.start_log_prob, end_log_prob=pred.end_log_prob)
)
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(_NbestPrediction(text="", start_log_prob=-1e6, end_log_prob=-1e6))
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_log_prob + entry.end_log_prob)
if not best_non_null_entry:
best_non_null_entry = entry
probs = _compute_softmax(total_scores)
nbest_json = []
for i, entry in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_log_prob"] = entry.start_log_prob
output["end_log_prob"] = entry.end_log_prob
nbest_json.append(output)
if len(nbest_json) < 1:
raise ValueError("No valid predictions")
if best_non_null_entry is None:
raise ValueError("No valid predictions")
score_diff = score_null
scores_diff_json[example.qas_id] = score_diff
# note(zhiliny): always predict best_non_null_entry
# and the evaluation script will search for the best threshold
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if version_2_with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
return all_predictions