545 lines
22 KiB
Python
545 lines
22 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2021 The HuggingFace Inc. team
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import inspect
|
||
|
|
||
|
import jax
|
||
|
import jax.lax as lax
|
||
|
import jax.numpy as jnp
|
||
|
from jax.experimental import sparse
|
||
|
|
||
|
from ..utils import add_start_docstrings
|
||
|
from ..utils.logging import get_logger
|
||
|
|
||
|
|
||
|
logger = get_logger(__name__)
|
||
|
|
||
|
|
||
|
LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
|
||
|
Args:
|
||
|
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
|
||
|
Indices of input sequence tokens in the vocabulary.
|
||
|
|
||
|
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
||
|
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
|
||
|
[What are input IDs?](../glossary#input-ids)
|
||
|
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
|
||
|
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
|
||
|
search or log softmax for each vocabulary token when using beam search
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
Additional logits processor specific kwargs.
|
||
|
|
||
|
Return:
|
||
|
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
class FlaxLogitsProcessor:
|
||
|
"""Abstract base class for all logit processors that can be applied during generation."""
|
||
|
|
||
|
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray:
|
||
|
"""Flax method for processing logits."""
|
||
|
raise NotImplementedError(
|
||
|
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
||
|
)
|
||
|
|
||
|
|
||
|
class FlaxLogitsWarper:
|
||
|
"""Abstract base class for all logit warpers that can be applied during generation with multinomial sampling."""
|
||
|
|
||
|
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray) -> jnp.ndarray:
|
||
|
"""Flax method for warping logits."""
|
||
|
raise NotImplementedError(
|
||
|
f"{self.__class__} is an abstract class. Only classes inheriting this class can be called."
|
||
|
)
|
||
|
|
||
|
|
||
|
class FlaxLogitsProcessorList(list):
|
||
|
"""
|
||
|
This class can be used to create a list of [`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to subsequently process
|
||
|
a `scores` input tensor. This class inherits from list and adds a specific *__call__* method to apply each
|
||
|
[`FlaxLogitsProcessor`] or [`FlaxLogitsWarper`] to the inputs.
|
||
|
"""
|
||
|
|
||
|
@add_start_docstrings(LOGITS_PROCESSOR_INPUTS_DOCSTRING)
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int, **kwargs) -> jnp.ndarray:
|
||
|
for processor in self:
|
||
|
function_args = inspect.signature(processor.__call__).parameters
|
||
|
if len(function_args) > 3:
|
||
|
if not all(arg in kwargs for arg in list(function_args.keys())[2:]):
|
||
|
raise ValueError(
|
||
|
f"Make sure that all the required parameters: {list(function_args.keys())} for "
|
||
|
f"{processor.__class__} are passed to the logits processor."
|
||
|
)
|
||
|
scores = processor(input_ids, scores, cur_len, **kwargs)
|
||
|
else:
|
||
|
scores = processor(input_ids, scores, cur_len)
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxTemperatureLogitsWarper(FlaxLogitsWarper):
|
||
|
r"""
|
||
|
[`FlaxLogitsWarper`] for temperature (exponential scaling output probability distribution).
|
||
|
|
||
|
Args:
|
||
|
temperature (`float`):
|
||
|
The value used to module the logits distribution.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, temperature: float):
|
||
|
if not isinstance(temperature, float) or not (temperature > 0):
|
||
|
raise ValueError(f"`temperature` has to be a strictly positive float, but is {temperature}")
|
||
|
|
||
|
self.temperature = temperature
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
scores = scores / self.temperature
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxTopPLogitsWarper(FlaxLogitsWarper):
|
||
|
"""
|
||
|
[`FlaxLogitsWarper`] that performs top-p, i.e. restricting to top tokens summing to prob_cut_off <= prob_cut_off.
|
||
|
|
||
|
Args:
|
||
|
top_p (`float`):
|
||
|
If set to < 1, only the smallest set of most probable tokens with probabilities that add up to `top_p` or
|
||
|
higher are kept for generation.
|
||
|
filter_value (`float`, *optional*, defaults to -inf):
|
||
|
All filtered values will be set to this float value.
|
||
|
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
||
|
Minimum number of tokens that cannot be filtered.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, top_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||
|
if not isinstance(top_p, float) or (top_p < 0 or top_p > 1.0):
|
||
|
raise ValueError(f"`top_p` has to be a float > 0 and < 1, but is {top_p}")
|
||
|
if not isinstance(min_tokens_to_keep, int) or (min_tokens_to_keep < 1):
|
||
|
raise ValueError(f"`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}")
|
||
|
|
||
|
self.top_p = top_p
|
||
|
self.filter_value = filter_value
|
||
|
self.min_tokens_to_keep = min_tokens_to_keep
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
topk_scores, topk_indices = lax.top_k(scores, scores.shape[-1])
|
||
|
|
||
|
mask_scores = jnp.full_like(scores, self.filter_value)
|
||
|
cumulative_probs = jax.nn.softmax(topk_scores, axis=-1).cumsum(axis=-1)
|
||
|
score_mask = cumulative_probs < self.top_p
|
||
|
|
||
|
# include the token that is higher than top_p as well
|
||
|
score_mask = jnp.roll(score_mask, 1)
|
||
|
score_mask |= score_mask.at[:, 0].set(True)
|
||
|
|
||
|
# min tokens to keep
|
||
|
score_mask = score_mask.at[:, : self.min_tokens_to_keep].set(True)
|
||
|
|
||
|
topk_next_scores = jnp.where(score_mask, topk_scores, mask_scores)
|
||
|
next_scores = jax.lax.sort_key_val(topk_indices, topk_next_scores)[-1]
|
||
|
|
||
|
return next_scores
|
||
|
|
||
|
|
||
|
class FlaxTopKLogitsWarper(FlaxLogitsWarper):
|
||
|
r"""
|
||
|
[`FlaxLogitsWarper`] that performs top-k, i.e. restricting to the k highest probability elements.
|
||
|
|
||
|
Args:
|
||
|
top_k (`int`):
|
||
|
The number of highest probability vocabulary tokens to keep for top-k-filtering.
|
||
|
filter_value (`float`, *optional*, defaults to -inf):
|
||
|
All filtered values will be set to this float value.
|
||
|
min_tokens_to_keep (`int`, *optional*, defaults to 1):
|
||
|
Minimum number of tokens that cannot be filtered.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, top_k: int, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
|
||
|
if not isinstance(top_k, int) or top_k <= 0:
|
||
|
raise ValueError(f"`top_k` has to be a strictly positive integer, but is {top_k}")
|
||
|
|
||
|
self.top_k = max(top_k, min_tokens_to_keep)
|
||
|
self.filter_value = filter_value
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
batch_size, vocab_size = scores.shape
|
||
|
next_scores_flat = jnp.full(batch_size * vocab_size, self.filter_value)
|
||
|
|
||
|
topk = min(self.top_k, scores.shape[-1]) # Safety check
|
||
|
topk_scores, topk_indices = lax.top_k(scores, topk)
|
||
|
shift = jnp.broadcast_to((jnp.arange(batch_size) * vocab_size)[:, None], (batch_size, topk)).flatten()
|
||
|
topk_scores_flat = topk_scores.flatten()
|
||
|
topk_indices_flat = topk_indices.flatten() + shift
|
||
|
|
||
|
next_scores_flat = next_scores_flat.at[topk_indices_flat].set(topk_scores_flat)
|
||
|
next_scores = next_scores_flat.reshape(batch_size, vocab_size)
|
||
|
return next_scores
|
||
|
|
||
|
|
||
|
class FlaxForcedBOSTokenLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] that enforces the specified token as the first generated token.
|
||
|
|
||
|
Args:
|
||
|
bos_token_id (`int`):
|
||
|
The id of the token to force as the first generated token.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, bos_token_id: int):
|
||
|
self.bos_token_id = bos_token_id
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
new_scores = jnp.full(scores.shape, -float("inf"))
|
||
|
|
||
|
apply_penalty = 1 - jnp.bool_(cur_len - 1)
|
||
|
|
||
|
scores = jnp.where(apply_penalty, new_scores.at[:, self.bos_token_id].set(0), scores)
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxForcedEOSTokenLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] that enforces the specified token as the last generated token when `max_length` is reached.
|
||
|
|
||
|
Args:
|
||
|
max_length (`int`):
|
||
|
The maximum length of the sequence to be generated.
|
||
|
eos_token_id (`int`):
|
||
|
The id of the token to force as the last generated token when `max_length` is reached.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, max_length: int, eos_token_id: int):
|
||
|
self.max_length = max_length
|
||
|
self.eos_token_id = eos_token_id
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
new_scores = jnp.full(scores.shape, -float("inf"))
|
||
|
|
||
|
apply_penalty = 1 - jnp.bool_(cur_len - self.max_length + 1)
|
||
|
|
||
|
scores = jnp.where(apply_penalty, new_scores.at[:, self.eos_token_id].set(0), scores)
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxMinLengthLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] enforcing a min-length by setting EOS probability to 0.
|
||
|
|
||
|
Args:
|
||
|
min_length (`int`):
|
||
|
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
|
||
|
eos_token_id (`int`):
|
||
|
The id of the *end-of-sequence* token.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, min_length: int, eos_token_id: int):
|
||
|
if not isinstance(min_length, int) or min_length < 0:
|
||
|
raise ValueError(f"`min_length` has to be a positive integer, but is {min_length}")
|
||
|
|
||
|
if not isinstance(eos_token_id, int) or eos_token_id < 0:
|
||
|
raise ValueError(f"`eos_token_id` has to be a positive integer, but is {eos_token_id}")
|
||
|
|
||
|
self.min_length = min_length
|
||
|
self.eos_token_id = eos_token_id
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
# create boolean flag to decide if min length penalty should be applied
|
||
|
apply_penalty = 1 - jnp.clip(cur_len - self.min_length, 0, 1)
|
||
|
|
||
|
scores = jnp.where(apply_penalty, scores.at[:, self.eos_token_id].set(-float("inf")), scores)
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxSuppressTokensAtBeginLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] supressing a list of tokens as soon as the `generate` function starts generating using
|
||
|
`begin_index` tokens. This should ensure that the tokens defined by `begin_suppress_tokens` are not sampled at the
|
||
|
begining of the generation.
|
||
|
|
||
|
Args:
|
||
|
begin_suppress_tokens (`List[int]`):
|
||
|
Tokens to not sample.
|
||
|
begin_index (`int`):
|
||
|
Index where the tokens are suppressed.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, begin_suppress_tokens, begin_index):
|
||
|
self.begin_suppress_tokens = list(begin_suppress_tokens)
|
||
|
self.begin_index = begin_index
|
||
|
|
||
|
def __call__(self, input_ids, scores, cur_len: int):
|
||
|
apply_penalty = 1 - jnp.bool_(cur_len - self.begin_index)
|
||
|
|
||
|
scores = jnp.where(apply_penalty, scores.at[:, self.begin_suppress_tokens].set(-float("inf")), scores)
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxSuppressTokensLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] suppressing a list of tokens at each decoding step. The processor will set their log probs
|
||
|
to be `-inf` so they are not sampled.
|
||
|
|
||
|
Args:
|
||
|
suppress_tokens (`list`):
|
||
|
Tokens to not sample.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, suppress_tokens: list):
|
||
|
self.suppress_tokens = list(suppress_tokens)
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
scores = scores.at[..., self.suppress_tokens].set(-float("inf"))
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxForceTokensLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] that takes a list of pairs of integers which indicates a mapping from generation indices to
|
||
|
token indices that will be forced before sampling. The processor will set their log probs to 0 and all other tokens
|
||
|
to `-inf` so that they are sampled at their corresponding index.
|
||
|
|
||
|
Args:
|
||
|
force_token_map (`list`):
|
||
|
Map giving token ids and indices where they will be forced to be sampled.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, force_token_map):
|
||
|
force_token_map = dict(force_token_map)
|
||
|
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
|
||
|
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
|
||
|
# Indexes without forced tokens will have a negative value.
|
||
|
force_token_array = jnp.ones((max(force_token_map.keys()) + 1), dtype=jnp.int32) * -1
|
||
|
for index, token in force_token_map.items():
|
||
|
if token is not None:
|
||
|
force_token_array = force_token_array.at[index].set(token)
|
||
|
self.force_token_array = jnp.int32(force_token_array)
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
def _force_token(generation_idx):
|
||
|
batch_size = scores.shape[0]
|
||
|
current_token = self.force_token_array[generation_idx]
|
||
|
|
||
|
new_scores = jnp.ones_like(scores, dtype=scores.dtype) * -float("inf")
|
||
|
updates = jnp.zeros((batch_size, 1), dtype=scores.dtype)
|
||
|
new_scores = lax.dynamic_update_slice(new_scores, updates, (0, current_token))
|
||
|
return new_scores
|
||
|
|
||
|
scores = lax.cond(
|
||
|
cur_len >= self.force_token_array.shape[0],
|
||
|
# If the current length is geq than the length of force_token_array, the processor does nothing.
|
||
|
lambda: scores,
|
||
|
# Otherwise, it may force a certain token.
|
||
|
lambda: lax.cond(
|
||
|
self.force_token_array[cur_len] >= 0,
|
||
|
# Only valid (positive) tokens are forced
|
||
|
lambda: _force_token(cur_len),
|
||
|
# Otherwise, the processor does nothing.
|
||
|
lambda: scores,
|
||
|
),
|
||
|
)
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxWhisperTimeStampLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
Whisper specific Processor. This processor can be used to force a list of tokens. The processor will set their log
|
||
|
probs to `inf` so that they are sampled at their corresponding index.
|
||
|
|
||
|
Args:
|
||
|
generate_config (`GenerateConfig`):
|
||
|
The generate config used to generate the output. The following parameters are required:
|
||
|
eos_token_id (`int`, *optional*, defaults to 50257):
|
||
|
The id of the *end-of-sequence* token.
|
||
|
no_timestamps_token_id (`int`, *optional*, defaults to 50363):
|
||
|
The id of the `"<|notimestamps|>"` token.
|
||
|
max_initial_timestamp_index (`int`, *optional*, defaults to 1):
|
||
|
Used to set the maximum value of the initial timestamp. This is used to prevent the model from
|
||
|
predicting timestamps that are too far in the future.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, generate_config, model_config, decoder_input_length):
|
||
|
self.eos_token_id = generate_config.eos_token_id
|
||
|
self.no_timestamps_token_id = generate_config.no_timestamps_token_id
|
||
|
self.timestamp_begin = generate_config.no_timestamps_token_id + 1
|
||
|
|
||
|
self.begin_index = decoder_input_length + 1
|
||
|
|
||
|
if generate_config.is_multilingual:
|
||
|
# room for language token and task token
|
||
|
self.begin_index += 2
|
||
|
if hasattr(generate_config, "max_initial_timestamp_index"):
|
||
|
self.max_initial_timestamp_index = generate_config.max_initial_timestamp_index
|
||
|
else:
|
||
|
self.max_initial_timestamp_index = model_config.vocab_size
|
||
|
if self.max_initial_timestamp_index is None:
|
||
|
self.max_initial_timestamp_index = model_config.vocab_size
|
||
|
|
||
|
def __call__(self, input_ids, scores, cur_len):
|
||
|
# suppress <|notimestamps|> which is handled by without_timestamps
|
||
|
scores = scores.at[:, self.no_timestamps_token_id].set(-float("inf"))
|
||
|
|
||
|
def handle_pairs(input_ids_k, scores_k):
|
||
|
last_was_timestamp = jnp.where((cur_len - self.begin_index) >= 1, True, False)
|
||
|
last_was_timestamp = jnp.where(
|
||
|
input_ids_k[cur_len - 1] >= self.timestamp_begin,
|
||
|
True and last_was_timestamp,
|
||
|
False,
|
||
|
)
|
||
|
|
||
|
penultimate_was_timestamp = jnp.where((cur_len - self.begin_index) < 2, True, False)
|
||
|
penultimate_was_timestamp = jnp.where(
|
||
|
input_ids_k[cur_len - 2] >= self.timestamp_begin,
|
||
|
True,
|
||
|
penultimate_was_timestamp,
|
||
|
)
|
||
|
|
||
|
return jnp.where(
|
||
|
last_was_timestamp,
|
||
|
jnp.where(
|
||
|
penultimate_was_timestamp > 0,
|
||
|
scores_k.at[self.timestamp_begin :].set(-float("inf")),
|
||
|
scores_k.at[: self.eos_token_id].set(-float("inf")),
|
||
|
),
|
||
|
scores_k,
|
||
|
)
|
||
|
|
||
|
scores = jax.vmap(handle_pairs)(input_ids, scores)
|
||
|
|
||
|
apply_max_initial_timestamp = jnp.where(cur_len == self.begin_index, True, False)
|
||
|
apply_max_initial_timestamp = jnp.where(
|
||
|
self.max_initial_timestamp_index is not None,
|
||
|
True and apply_max_initial_timestamp,
|
||
|
False,
|
||
|
)
|
||
|
|
||
|
last_allowed = self.timestamp_begin + self.max_initial_timestamp_index
|
||
|
|
||
|
scores = jnp.where(
|
||
|
apply_max_initial_timestamp,
|
||
|
scores.at[:, last_allowed + 1 :].set(-float("inf")),
|
||
|
scores,
|
||
|
)
|
||
|
|
||
|
# if sum of probability over timestamps is above any other token, sample timestamp
|
||
|
logprobs = jax.nn.log_softmax(scores, axis=-1)
|
||
|
|
||
|
def handle_cumulative_probs(logprobs_k, scores_k):
|
||
|
timestamp_logprob = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1)
|
||
|
max_text_token_logprob = jnp.max(logprobs_k[: self.timestamp_begin])
|
||
|
return jnp.where(
|
||
|
timestamp_logprob > max_text_token_logprob,
|
||
|
scores_k.at[: self.timestamp_begin].set(-float("inf")),
|
||
|
scores_k,
|
||
|
)
|
||
|
|
||
|
scores = jax.vmap(handle_cumulative_probs)(logprobs, scores)
|
||
|
|
||
|
return scores
|
||
|
|
||
|
|
||
|
class FlaxNoRepeatNGramLogitsProcessor(FlaxLogitsProcessor):
|
||
|
r"""
|
||
|
[`FlaxLogitsProcessor`] that enforces no repetition of n-grams. See
|
||
|
[Fairseq](https://github.com/pytorch/fairseq/blob/a07cb6f40480928c9e0548b737aadd36ee66ac76/fairseq/sequence_generator.py#L345).
|
||
|
|
||
|
Args:
|
||
|
ngram_size (`int`):
|
||
|
All ngrams of size `ngram_size` can only occur once.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, ngram_size: int):
|
||
|
if not isinstance(ngram_size, int) or ngram_size <= 0:
|
||
|
raise ValueError(f"`ngram_size` has to be a strictly positive integer, but is {ngram_size}")
|
||
|
self.ngram_size = ngram_size
|
||
|
|
||
|
def get_previous_ngrams(self, input_ids: jnp.ndarray, vocab_size: int, cur_len: int):
|
||
|
"""
|
||
|
get a matrix of size (batch_size,) + (vocab_size,)*n (for n-grams) that
|
||
|
represent the n-grams that occured previously.
|
||
|
The BCOO representation allow to store only the few non-zero entries, instead of the full (huge) matrix
|
||
|
"""
|
||
|
batch_size, seq_len = input_ids.shape
|
||
|
# number of n-grams in the whole sequence
|
||
|
seq_ngrams = seq_len - (self.ngram_size - 1)
|
||
|
# number of n-grams in the currently generated sequence
|
||
|
cur_ngrams = cur_len - (self.ngram_size - 1)
|
||
|
|
||
|
def body_fun(i, val):
|
||
|
b = i % batch_size
|
||
|
pos = i // batch_size
|
||
|
return val.at[i].set(
|
||
|
jnp.array(
|
||
|
[
|
||
|
b,
|
||
|
]
|
||
|
+ [jnp.array(input_ids)[b, pos + j] for j in range(self.ngram_size)]
|
||
|
)
|
||
|
)
|
||
|
|
||
|
shape = (batch_size * seq_ngrams, self.ngram_size + 1)
|
||
|
all_update_indices = jax.lax.fori_loop(
|
||
|
0, batch_size * cur_ngrams, body_fun, jnp.zeros(shape, dtype=input_ids.dtype)
|
||
|
)
|
||
|
|
||
|
# ignore the n-grams not yet generated
|
||
|
data = (jnp.arange(batch_size * seq_ngrams) < batch_size * cur_ngrams).astype("float32")
|
||
|
|
||
|
return sparse.BCOO((data, all_update_indices), shape=(batch_size,) + (vocab_size,) * self.ngram_size)
|
||
|
|
||
|
def get_banned_tokens_mask(self, latest_tokens: jnp.ndarray, previous_ngrams) -> jnp.ndarray:
|
||
|
"""
|
||
|
Determines which tokens must be banned given latest tokens and the previously seen
|
||
|
ngrams.
|
||
|
"""
|
||
|
|
||
|
@sparse.sparsify
|
||
|
@jax.vmap
|
||
|
def inner_fn(latest_tokens, previous_ngrams):
|
||
|
return previous_ngrams[tuple(latest_tokens)]
|
||
|
|
||
|
return sparse.bcoo_todense(inner_fn(latest_tokens, previous_ngrams))
|
||
|
|
||
|
def __call__(self, input_ids: jnp.ndarray, scores: jnp.ndarray, cur_len: int) -> jnp.ndarray:
|
||
|
def true_fn():
|
||
|
_, vocab_size = scores.shape
|
||
|
# store the previously seen n-grams
|
||
|
previous_ngrams = self.get_previous_ngrams(input_ids, vocab_size, cur_len)
|
||
|
|
||
|
# get the n-1 last tokens that prefix the n-gram being generated
|
||
|
latest_tokens = jnp.zeros((input_ids.shape[0], self.ngram_size - 1), dtype=input_ids.dtype)
|
||
|
latest_tokens = jax.lax.dynamic_update_slice(
|
||
|
latest_tokens,
|
||
|
jax.lax.dynamic_slice(
|
||
|
input_ids, (0, cur_len - (self.ngram_size - 1)), (input_ids.shape[0], (self.ngram_size - 1))
|
||
|
),
|
||
|
(0, 0),
|
||
|
)
|
||
|
|
||
|
# compute the banned tokens, ie all the tokens that when added to the latest tokens lead to a n-gram that was previously generated
|
||
|
banned_tokens_indices_mask = self.get_banned_tokens_mask(latest_tokens, previous_ngrams).astype("bool")
|
||
|
return jnp.where(banned_tokens_indices_mask, -float("inf"), scores)
|
||
|
|
||
|
output = jax.lax.cond((cur_len >= self.ngram_size - 1), true_fn, lambda: scores)
|
||
|
return output
|