794 lines
36 KiB
Python
794 lines
36 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2022 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import copy
|
||
|
import json
|
||
|
import os
|
||
|
import warnings
|
||
|
from io import BytesIO
|
||
|
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import requests
|
||
|
|
||
|
from .dynamic_module_utils import custom_object_save
|
||
|
from .feature_extraction_utils import BatchFeature as BaseBatchFeature
|
||
|
from .image_transforms import center_crop, normalize, rescale
|
||
|
from .image_utils import ChannelDimension
|
||
|
from .utils import (
|
||
|
IMAGE_PROCESSOR_NAME,
|
||
|
PushToHubMixin,
|
||
|
add_model_info_to_auto_map,
|
||
|
cached_file,
|
||
|
copy_func,
|
||
|
download_url,
|
||
|
is_offline_mode,
|
||
|
is_remote_url,
|
||
|
is_vision_available,
|
||
|
logging,
|
||
|
)
|
||
|
|
||
|
|
||
|
if is_vision_available():
|
||
|
from PIL import Image
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
# TODO: Move BatchFeature to be imported by both image_processing_utils and image_processing_utils
|
||
|
# We override the class string here, but logic is the same.
|
||
|
class BatchFeature(BaseBatchFeature):
|
||
|
r"""
|
||
|
Holds the output of the image processor specific `__call__` methods.
|
||
|
|
||
|
This class is derived from a python dictionary and can be used as a dictionary.
|
||
|
|
||
|
Args:
|
||
|
data (`dict`):
|
||
|
Dictionary of lists/arrays/tensors returned by the __call__ method ('pixel_values', etc.).
|
||
|
tensor_type (`Union[None, str, TensorType]`, *optional*):
|
||
|
You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at
|
||
|
initialization.
|
||
|
"""
|
||
|
|
||
|
|
||
|
# TODO: (Amy) - factor out the common parts of this and the feature extractor
|
||
|
class ImageProcessingMixin(PushToHubMixin):
|
||
|
"""
|
||
|
This is an image processor mixin used to provide saving/loading functionality for sequential and image feature
|
||
|
extractors.
|
||
|
"""
|
||
|
|
||
|
_auto_class = None
|
||
|
|
||
|
def __init__(self, **kwargs):
|
||
|
"""Set elements of `kwargs` as attributes."""
|
||
|
# This key was saved while we still used `XXXFeatureExtractor` for image processing. Now we use
|
||
|
# `XXXImageProcessor`, this attribute and its value are misleading.
|
||
|
kwargs.pop("feature_extractor_type", None)
|
||
|
# Pop "processor_class" as it should be saved as private attribute
|
||
|
self._processor_class = kwargs.pop("processor_class", None)
|
||
|
# Additional attributes without default values
|
||
|
for key, value in kwargs.items():
|
||
|
try:
|
||
|
setattr(self, key, value)
|
||
|
except AttributeError as err:
|
||
|
logger.error(f"Can't set {key} with value {value} for {self}")
|
||
|
raise err
|
||
|
|
||
|
def _set_processor_class(self, processor_class: str):
|
||
|
"""Sets processor class as an attribute."""
|
||
|
self._processor_class = processor_class
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(
|
||
|
cls,
|
||
|
pretrained_model_name_or_path: Union[str, os.PathLike],
|
||
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||
|
force_download: bool = False,
|
||
|
local_files_only: bool = False,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
revision: str = "main",
|
||
|
**kwargs,
|
||
|
):
|
||
|
r"""
|
||
|
Instantiate a type of [`~image_processing_utils.ImageProcessingMixin`] from an image processor.
|
||
|
|
||
|
Args:
|
||
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||
|
This can be either:
|
||
|
|
||
|
- a string, the *model id* of a pretrained image_processor hosted inside a model repo on
|
||
|
huggingface.co.
|
||
|
- a path to a *directory* containing a image processor file saved using the
|
||
|
[`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g.,
|
||
|
`./my_model_directory/`.
|
||
|
- a path or url to a saved image processor JSON *file*, e.g.,
|
||
|
`./my_model_directory/preprocessor_config.json`.
|
||
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
||
|
Path to a directory in which a downloaded pretrained model image processor should be cached if the
|
||
|
standard cache should not be used.
|
||
|
force_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force to (re-)download the image processor files and override the cached versions if
|
||
|
they exist.
|
||
|
resume_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
|
||
|
exists.
|
||
|
proxies (`Dict[str, str]`, *optional*):
|
||
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||
|
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
||
|
token (`str` or `bool`, *optional*):
|
||
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||
|
revision (`str`, *optional*, defaults to `"main"`):
|
||
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||
|
identifier allowed by git.
|
||
|
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
||
|
If `False`, then this function returns just the final image processor object. If `True`, then this
|
||
|
functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary
|
||
|
consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of
|
||
|
`kwargs` which has not been used to update `image_processor` and is otherwise ignored.
|
||
|
subfolder (`str`, *optional*, defaults to `""`):
|
||
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
||
|
specify the folder name here.
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
The values in kwargs of any keys which are image processor attributes will be used to override the
|
||
|
loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is
|
||
|
controlled by the `return_unused_kwargs` keyword parameter.
|
||
|
|
||
|
Returns:
|
||
|
A image processor of type [`~image_processing_utils.ImageProcessingMixin`].
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
|
||
|
# derived class: *CLIPImageProcessor*
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(
|
||
|
"openai/clip-vit-base-patch32"
|
||
|
) # Download image_processing_config from huggingface.co and cache.
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(
|
||
|
"./test/saved_model/"
|
||
|
) # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
|
||
|
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(
|
||
|
"openai/clip-vit-base-patch32", do_normalize=False, foo=False
|
||
|
)
|
||
|
assert image_processor.do_normalize is False
|
||
|
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
|
||
|
"openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
|
||
|
)
|
||
|
assert image_processor.do_normalize is False
|
||
|
assert unused_kwargs == {"foo": False}
|
||
|
```"""
|
||
|
kwargs["cache_dir"] = cache_dir
|
||
|
kwargs["force_download"] = force_download
|
||
|
kwargs["local_files_only"] = local_files_only
|
||
|
kwargs["revision"] = revision
|
||
|
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
if token is not None:
|
||
|
kwargs["token"] = token
|
||
|
|
||
|
image_processor_dict, kwargs = cls.get_image_processor_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
return cls.from_dict(image_processor_dict, **kwargs)
|
||
|
|
||
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
||
|
"""
|
||
|
Save an image processor object to the directory `save_directory`, so that it can be re-loaded using the
|
||
|
[`~image_processing_utils.ImageProcessingMixin.from_pretrained`] class method.
|
||
|
|
||
|
Args:
|
||
|
save_directory (`str` or `os.PathLike`):
|
||
|
Directory where the image processor JSON file will be saved (will be created if it does not exist).
|
||
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
||
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||
|
namespace).
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||
|
"""
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if kwargs.get("token", None) is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
kwargs["token"] = use_auth_token
|
||
|
|
||
|
if os.path.isfile(save_directory):
|
||
|
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
||
|
|
||
|
os.makedirs(save_directory, exist_ok=True)
|
||
|
|
||
|
if push_to_hub:
|
||
|
commit_message = kwargs.pop("commit_message", None)
|
||
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
||
|
repo_id = self._create_repo(repo_id, **kwargs)
|
||
|
files_timestamps = self._get_files_timestamps(save_directory)
|
||
|
|
||
|
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
|
||
|
# loaded from the Hub.
|
||
|
if self._auto_class is not None:
|
||
|
custom_object_save(self, save_directory, config=self)
|
||
|
|
||
|
# If we save using the predefined names, we can load using `from_pretrained`
|
||
|
output_image_processor_file = os.path.join(save_directory, IMAGE_PROCESSOR_NAME)
|
||
|
|
||
|
self.to_json_file(output_image_processor_file)
|
||
|
logger.info(f"Image processor saved in {output_image_processor_file}")
|
||
|
|
||
|
if push_to_hub:
|
||
|
self._upload_modified_files(
|
||
|
save_directory,
|
||
|
repo_id,
|
||
|
files_timestamps,
|
||
|
commit_message=commit_message,
|
||
|
token=kwargs.get("token"),
|
||
|
)
|
||
|
|
||
|
return [output_image_processor_file]
|
||
|
|
||
|
@classmethod
|
||
|
def get_image_processor_dict(
|
||
|
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
||
|
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
||
|
"""
|
||
|
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
|
||
|
image processor of type [`~image_processor_utils.ImageProcessingMixin`] using `from_dict`.
|
||
|
|
||
|
Parameters:
|
||
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||
|
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
|
||
|
subfolder (`str`, *optional*, defaults to `""`):
|
||
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
||
|
specify the folder name here.
|
||
|
|
||
|
Returns:
|
||
|
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the image processor object.
|
||
|
"""
|
||
|
cache_dir = kwargs.pop("cache_dir", None)
|
||
|
force_download = kwargs.pop("force_download", False)
|
||
|
resume_download = kwargs.pop("resume_download", False)
|
||
|
proxies = kwargs.pop("proxies", None)
|
||
|
token = kwargs.pop("token", None)
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
local_files_only = kwargs.pop("local_files_only", False)
|
||
|
revision = kwargs.pop("revision", None)
|
||
|
subfolder = kwargs.pop("subfolder", "")
|
||
|
|
||
|
from_pipeline = kwargs.pop("_from_pipeline", None)
|
||
|
from_auto_class = kwargs.pop("_from_auto", False)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
user_agent = {"file_type": "image processor", "from_auto_class": from_auto_class}
|
||
|
if from_pipeline is not None:
|
||
|
user_agent["using_pipeline"] = from_pipeline
|
||
|
|
||
|
if is_offline_mode() and not local_files_only:
|
||
|
logger.info("Offline mode: forcing local_files_only=True")
|
||
|
local_files_only = True
|
||
|
|
||
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||
|
is_local = os.path.isdir(pretrained_model_name_or_path)
|
||
|
if os.path.isdir(pretrained_model_name_or_path):
|
||
|
image_processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
|
||
|
if os.path.isfile(pretrained_model_name_or_path):
|
||
|
resolved_image_processor_file = pretrained_model_name_or_path
|
||
|
is_local = True
|
||
|
elif is_remote_url(pretrained_model_name_or_path):
|
||
|
image_processor_file = pretrained_model_name_or_path
|
||
|
resolved_image_processor_file = download_url(pretrained_model_name_or_path)
|
||
|
else:
|
||
|
image_processor_file = IMAGE_PROCESSOR_NAME
|
||
|
try:
|
||
|
# Load from local folder or from cache or download from model Hub and cache
|
||
|
resolved_image_processor_file = cached_file(
|
||
|
pretrained_model_name_or_path,
|
||
|
image_processor_file,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
proxies=proxies,
|
||
|
resume_download=resume_download,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
user_agent=user_agent,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
)
|
||
|
except EnvironmentError:
|
||
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
|
||
|
# the original exception.
|
||
|
raise
|
||
|
except Exception:
|
||
|
# For any other exception, we throw a generic error.
|
||
|
raise EnvironmentError(
|
||
|
f"Can't load image processor for '{pretrained_model_name_or_path}'. If you were trying to load"
|
||
|
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
||
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
||
|
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
# Load image_processor dict
|
||
|
with open(resolved_image_processor_file, "r", encoding="utf-8") as reader:
|
||
|
text = reader.read()
|
||
|
image_processor_dict = json.loads(text)
|
||
|
|
||
|
except json.JSONDecodeError:
|
||
|
raise EnvironmentError(
|
||
|
f"It looks like the config file at '{resolved_image_processor_file}' is not a valid JSON file."
|
||
|
)
|
||
|
|
||
|
if is_local:
|
||
|
logger.info(f"loading configuration file {resolved_image_processor_file}")
|
||
|
else:
|
||
|
logger.info(
|
||
|
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
|
||
|
)
|
||
|
|
||
|
if "auto_map" in image_processor_dict and not is_local:
|
||
|
image_processor_dict["auto_map"] = add_model_info_to_auto_map(
|
||
|
image_processor_dict["auto_map"], pretrained_model_name_or_path
|
||
|
)
|
||
|
|
||
|
return image_processor_dict, kwargs
|
||
|
|
||
|
@classmethod
|
||
|
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
|
||
|
"""
|
||
|
Instantiates a type of [`~image_processing_utils.ImageProcessingMixin`] from a Python dictionary of parameters.
|
||
|
|
||
|
Args:
|
||
|
image_processor_dict (`Dict[str, Any]`):
|
||
|
Dictionary that will be used to instantiate the image processor object. Such a dictionary can be
|
||
|
retrieved from a pretrained checkpoint by leveraging the
|
||
|
[`~image_processing_utils.ImageProcessingMixin.to_dict`] method.
|
||
|
kwargs (`Dict[str, Any]`):
|
||
|
Additional parameters from which to initialize the image processor object.
|
||
|
|
||
|
Returns:
|
||
|
[`~image_processing_utils.ImageProcessingMixin`]: The image processor object instantiated from those
|
||
|
parameters.
|
||
|
"""
|
||
|
image_processor_dict = image_processor_dict.copy()
|
||
|
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
|
||
|
|
||
|
# The `size` parameter is a dict and was previously an int or tuple in feature extractors.
|
||
|
# We set `size` here directly to the `image_processor_dict` so that it is converted to the appropriate
|
||
|
# dict within the image processor and isn't overwritten if `size` is passed in as a kwarg.
|
||
|
if "size" in kwargs and "size" in image_processor_dict:
|
||
|
image_processor_dict["size"] = kwargs.pop("size")
|
||
|
if "crop_size" in kwargs and "crop_size" in image_processor_dict:
|
||
|
image_processor_dict["crop_size"] = kwargs.pop("crop_size")
|
||
|
|
||
|
image_processor = cls(**image_processor_dict)
|
||
|
|
||
|
# Update image_processor with kwargs if needed
|
||
|
to_remove = []
|
||
|
for key, value in kwargs.items():
|
||
|
if hasattr(image_processor, key):
|
||
|
setattr(image_processor, key, value)
|
||
|
to_remove.append(key)
|
||
|
for key in to_remove:
|
||
|
kwargs.pop(key, None)
|
||
|
|
||
|
logger.info(f"Image processor {image_processor}")
|
||
|
if return_unused_kwargs:
|
||
|
return image_processor, kwargs
|
||
|
else:
|
||
|
return image_processor
|
||
|
|
||
|
def to_dict(self) -> Dict[str, Any]:
|
||
|
"""
|
||
|
Serializes this instance to a Python dictionary.
|
||
|
|
||
|
Returns:
|
||
|
`Dict[str, Any]`: Dictionary of all the attributes that make up this image processor instance.
|
||
|
"""
|
||
|
output = copy.deepcopy(self.__dict__)
|
||
|
output["image_processor_type"] = self.__class__.__name__
|
||
|
|
||
|
return output
|
||
|
|
||
|
@classmethod
|
||
|
def from_json_file(cls, json_file: Union[str, os.PathLike]):
|
||
|
"""
|
||
|
Instantiates a image processor of type [`~image_processing_utils.ImageProcessingMixin`] from the path to a JSON
|
||
|
file of parameters.
|
||
|
|
||
|
Args:
|
||
|
json_file (`str` or `os.PathLike`):
|
||
|
Path to the JSON file containing the parameters.
|
||
|
|
||
|
Returns:
|
||
|
A image processor of type [`~image_processing_utils.ImageProcessingMixin`]: The image_processor object
|
||
|
instantiated from that JSON file.
|
||
|
"""
|
||
|
with open(json_file, "r", encoding="utf-8") as reader:
|
||
|
text = reader.read()
|
||
|
image_processor_dict = json.loads(text)
|
||
|
return cls(**image_processor_dict)
|
||
|
|
||
|
def to_json_string(self) -> str:
|
||
|
"""
|
||
|
Serializes this instance to a JSON string.
|
||
|
|
||
|
Returns:
|
||
|
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
|
||
|
"""
|
||
|
dictionary = self.to_dict()
|
||
|
|
||
|
for key, value in dictionary.items():
|
||
|
if isinstance(value, np.ndarray):
|
||
|
dictionary[key] = value.tolist()
|
||
|
|
||
|
# make sure private name "_processor_class" is correctly
|
||
|
# saved as "processor_class"
|
||
|
_processor_class = dictionary.pop("_processor_class", None)
|
||
|
if _processor_class is not None:
|
||
|
dictionary["processor_class"] = _processor_class
|
||
|
|
||
|
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
|
||
|
|
||
|
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
||
|
"""
|
||
|
Save this instance to a JSON file.
|
||
|
|
||
|
Args:
|
||
|
json_file_path (`str` or `os.PathLike`):
|
||
|
Path to the JSON file in which this image_processor instance's parameters will be saved.
|
||
|
"""
|
||
|
with open(json_file_path, "w", encoding="utf-8") as writer:
|
||
|
writer.write(self.to_json_string())
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.__class__.__name__} {self.to_json_string()}"
|
||
|
|
||
|
@classmethod
|
||
|
def register_for_auto_class(cls, auto_class="AutoImageProcessor"):
|
||
|
"""
|
||
|
Register this class with a given auto class. This should only be used for custom image processors as the ones
|
||
|
in the library are already mapped with `AutoImageProcessor `.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
This API is experimental and may have some slight breaking changes in the next releases.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Args:
|
||
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
|
||
|
The auto class to register this new image processor with.
|
||
|
"""
|
||
|
if not isinstance(auto_class, str):
|
||
|
auto_class = auto_class.__name__
|
||
|
|
||
|
import transformers.models.auto as auto_module
|
||
|
|
||
|
if not hasattr(auto_module, auto_class):
|
||
|
raise ValueError(f"{auto_class} is not a valid auto class.")
|
||
|
|
||
|
cls._auto_class = auto_class
|
||
|
|
||
|
def fetch_images(self, image_url_or_urls: Union[str, List[str]]):
|
||
|
"""
|
||
|
Convert a single or a list of urls into the corresponding `PIL.Image` objects.
|
||
|
|
||
|
If a single url is passed, the return value will be a single object. If a list is passed a list of objects is
|
||
|
returned.
|
||
|
"""
|
||
|
headers = {
|
||
|
"User-Agent": (
|
||
|
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0"
|
||
|
" Safari/537.36"
|
||
|
)
|
||
|
}
|
||
|
if isinstance(image_url_or_urls, list):
|
||
|
return [self.fetch_images(x) for x in image_url_or_urls]
|
||
|
elif isinstance(image_url_or_urls, str):
|
||
|
response = requests.get(image_url_or_urls, stream=True, headers=headers)
|
||
|
response.raise_for_status()
|
||
|
return Image.open(BytesIO(response.content))
|
||
|
else:
|
||
|
raise ValueError(f"only a single or a list of entries is supported but got type={type(image_url_or_urls)}")
|
||
|
|
||
|
|
||
|
class BaseImageProcessor(ImageProcessingMixin):
|
||
|
def __init__(self, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
def __call__(self, images, **kwargs) -> BatchFeature:
|
||
|
"""Preprocess an image or a batch of images."""
|
||
|
return self.preprocess(images, **kwargs)
|
||
|
|
||
|
def preprocess(self, images, **kwargs) -> BatchFeature:
|
||
|
raise NotImplementedError("Each image processor must implement its own preprocess method")
|
||
|
|
||
|
def rescale(
|
||
|
self,
|
||
|
image: np.ndarray,
|
||
|
scale: float,
|
||
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
**kwargs,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Rescale an image by a scale factor. image = image * scale.
|
||
|
|
||
|
Args:
|
||
|
image (`np.ndarray`):
|
||
|
Image to rescale.
|
||
|
scale (`float`):
|
||
|
The scaling factor to rescale pixel values by.
|
||
|
data_format (`str` or `ChannelDimension`, *optional*):
|
||
|
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||
|
image is used. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
||
|
from the input image. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray`: The rescaled image.
|
||
|
"""
|
||
|
return rescale(image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs)
|
||
|
|
||
|
def normalize(
|
||
|
self,
|
||
|
image: np.ndarray,
|
||
|
mean: Union[float, Iterable[float]],
|
||
|
std: Union[float, Iterable[float]],
|
||
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
**kwargs,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Normalize an image. image = (image - image_mean) / image_std.
|
||
|
|
||
|
Args:
|
||
|
image (`np.ndarray`):
|
||
|
Image to normalize.
|
||
|
mean (`float` or `Iterable[float]`):
|
||
|
Image mean to use for normalization.
|
||
|
std (`float` or `Iterable[float]`):
|
||
|
Image standard deviation to use for normalization.
|
||
|
data_format (`str` or `ChannelDimension`, *optional*):
|
||
|
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||
|
image is used. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
||
|
from the input image. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
|
||
|
Returns:
|
||
|
`np.ndarray`: The normalized image.
|
||
|
"""
|
||
|
return normalize(
|
||
|
image, mean=mean, std=std, data_format=data_format, input_data_format=input_data_format, **kwargs
|
||
|
)
|
||
|
|
||
|
def center_crop(
|
||
|
self,
|
||
|
image: np.ndarray,
|
||
|
size: Dict[str, int],
|
||
|
data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
||
|
**kwargs,
|
||
|
) -> np.ndarray:
|
||
|
"""
|
||
|
Center crop an image to `(size["height"], size["width"])`. If the input size is smaller than `crop_size` along
|
||
|
any edge, the image is padded with 0's and then center cropped.
|
||
|
|
||
|
Args:
|
||
|
image (`np.ndarray`):
|
||
|
Image to center crop.
|
||
|
size (`Dict[str, int]`):
|
||
|
Size of the output image.
|
||
|
data_format (`str` or `ChannelDimension`, *optional*):
|
||
|
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
||
|
image is used. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
input_data_format (`ChannelDimension` or `str`, *optional*):
|
||
|
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
||
|
from the input image. Can be one of:
|
||
|
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
||
|
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
||
|
"""
|
||
|
size = get_size_dict(size)
|
||
|
if "height" not in size or "width" not in size:
|
||
|
raise ValueError(f"The size dictionary must have keys 'height' and 'width'. Got {size.keys()}")
|
||
|
return center_crop(
|
||
|
image,
|
||
|
size=(size["height"], size["width"]),
|
||
|
data_format=data_format,
|
||
|
input_data_format=input_data_format,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
VALID_SIZE_DICT_KEYS = ({"height", "width"}, {"shortest_edge"}, {"shortest_edge", "longest_edge"}, {"longest_edge"})
|
||
|
|
||
|
|
||
|
def is_valid_size_dict(size_dict):
|
||
|
if not isinstance(size_dict, dict):
|
||
|
return False
|
||
|
|
||
|
size_dict_keys = set(size_dict.keys())
|
||
|
for allowed_keys in VALID_SIZE_DICT_KEYS:
|
||
|
if size_dict_keys == allowed_keys:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def convert_to_size_dict(
|
||
|
size, max_size: Optional[int] = None, default_to_square: bool = True, height_width_order: bool = True
|
||
|
):
|
||
|
# By default, if size is an int we assume it represents a tuple of (size, size).
|
||
|
if isinstance(size, int) and default_to_square:
|
||
|
if max_size is not None:
|
||
|
raise ValueError("Cannot specify both size as an int, with default_to_square=True and max_size")
|
||
|
return {"height": size, "width": size}
|
||
|
# In other configs, if size is an int and default_to_square is False, size represents the length of
|
||
|
# the shortest edge after resizing.
|
||
|
elif isinstance(size, int) and not default_to_square:
|
||
|
size_dict = {"shortest_edge": size}
|
||
|
if max_size is not None:
|
||
|
size_dict["longest_edge"] = max_size
|
||
|
return size_dict
|
||
|
# Otherwise, if size is a tuple it's either (height, width) or (width, height)
|
||
|
elif isinstance(size, (tuple, list)) and height_width_order:
|
||
|
return {"height": size[0], "width": size[1]}
|
||
|
elif isinstance(size, (tuple, list)) and not height_width_order:
|
||
|
return {"height": size[1], "width": size[0]}
|
||
|
elif size is None and max_size is not None:
|
||
|
if default_to_square:
|
||
|
raise ValueError("Cannot specify both default_to_square=True and max_size")
|
||
|
return {"longest_edge": max_size}
|
||
|
|
||
|
raise ValueError(f"Could not convert size input to size dict: {size}")
|
||
|
|
||
|
|
||
|
def get_size_dict(
|
||
|
size: Union[int, Iterable[int], Dict[str, int]] = None,
|
||
|
max_size: Optional[int] = None,
|
||
|
height_width_order: bool = True,
|
||
|
default_to_square: bool = True,
|
||
|
param_name="size",
|
||
|
) -> dict:
|
||
|
"""
|
||
|
Converts the old size parameter in the config into the new dict expected in the config. This is to ensure backwards
|
||
|
compatibility with the old image processor configs and removes ambiguity over whether the tuple is in (height,
|
||
|
width) or (width, height) format.
|
||
|
|
||
|
- If `size` is tuple, it is converted to `{"height": size[0], "width": size[1]}` or `{"height": size[1], "width":
|
||
|
size[0]}` if `height_width_order` is `False`.
|
||
|
- If `size` is an int, and `default_to_square` is `True`, it is converted to `{"height": size, "width": size}`.
|
||
|
- If `size` is an int and `default_to_square` is False, it is converted to `{"shortest_edge": size}`. If `max_size`
|
||
|
is set, it is added to the dict as `{"longest_edge": max_size}`.
|
||
|
|
||
|
Args:
|
||
|
size (`Union[int, Iterable[int], Dict[str, int]]`, *optional*):
|
||
|
The `size` parameter to be cast into a size dictionary.
|
||
|
max_size (`Optional[int]`, *optional*):
|
||
|
The `max_size` parameter to be cast into a size dictionary.
|
||
|
height_width_order (`bool`, *optional*, defaults to `True`):
|
||
|
If `size` is a tuple, whether it's in (height, width) or (width, height) order.
|
||
|
default_to_square (`bool`, *optional*, defaults to `True`):
|
||
|
If `size` is an int, whether to default to a square image or not.
|
||
|
"""
|
||
|
if not isinstance(size, dict):
|
||
|
size_dict = convert_to_size_dict(size, max_size, default_to_square, height_width_order)
|
||
|
logger.info(
|
||
|
f"{param_name} should be a dictionary on of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size}."
|
||
|
f" Converted to {size_dict}.",
|
||
|
)
|
||
|
else:
|
||
|
size_dict = size
|
||
|
|
||
|
if not is_valid_size_dict(size_dict):
|
||
|
raise ValueError(
|
||
|
f"{param_name} must have one of the following set of keys: {VALID_SIZE_DICT_KEYS}, got {size_dict.keys()}"
|
||
|
)
|
||
|
return size_dict
|
||
|
|
||
|
|
||
|
def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
|
||
|
"""
|
||
|
Selects the best resolution from a list of possible resolutions based on the original size.
|
||
|
|
||
|
This is done by calculating the effective and wasted resolution for each possible resolution.
|
||
|
|
||
|
The best fit resolution is the one that maximizes the effective resolution and minimizes the wasted resolution.
|
||
|
|
||
|
Args:
|
||
|
original_size (tuple):
|
||
|
The original size of the image in the format (height, width).
|
||
|
possible_resolutions (list):
|
||
|
A list of possible resolutions in the format [(height1, width1), (height2, width2), ...].
|
||
|
|
||
|
Returns:
|
||
|
tuple: The best fit resolution in the format (height, width).
|
||
|
"""
|
||
|
original_height, original_width = original_size
|
||
|
best_fit = None
|
||
|
max_effective_resolution = 0
|
||
|
min_wasted_resolution = float("inf")
|
||
|
|
||
|
for height, width in possible_resolutions:
|
||
|
scale = min(width / original_width, height / original_height)
|
||
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
||
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
||
|
wasted_resolution = (width * height) - effective_resolution
|
||
|
|
||
|
if effective_resolution > max_effective_resolution or (
|
||
|
effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
|
||
|
):
|
||
|
max_effective_resolution = effective_resolution
|
||
|
min_wasted_resolution = wasted_resolution
|
||
|
best_fit = (height, width)
|
||
|
|
||
|
return best_fit
|
||
|
|
||
|
|
||
|
ImageProcessingMixin.push_to_hub = copy_func(ImageProcessingMixin.push_to_hub)
|
||
|
if ImageProcessingMixin.push_to_hub.__doc__ is not None:
|
||
|
ImageProcessingMixin.push_to_hub.__doc__ = ImageProcessingMixin.push_to_hub.__doc__.format(
|
||
|
object="image processor", object_class="AutoImageProcessor", object_files="image processor file"
|
||
|
)
|