ai-content-maker/.venv/Lib/site-packages/transformers/kernels/mra/cuda_launch.cu

155 lines
4.0 KiB
Plaintext
Raw Normal View History

2024-05-03 04:18:51 +03:00
#include <torch/extension.h>
#include <ATen/ATen.h>
#include "cuda_launch.h"
#include "cuda_kernel.h"
#include <vector>
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
std::vector<at::Tensor> index_max_kernel(
at::Tensor index_vals, // [batch_size, 32, num_block]
at::Tensor indices, // [batch_size, num_block],
int A_num_block,
int B_num_block
) {
int batch_size = indices.size(0);
int num_block = indices.size(1);
at::Tensor max_vals = at::zeros({batch_size, A_num_block * 32}, index_vals.options());
at::Tensor max_vals_scatter = at::zeros({batch_size, 32, num_block}, index_vals.options());
dim3 threads(256);
dim3 blocks(batch_size);
int shared_mem = A_num_block * 32 * sizeof(float);
index_max_cuda_kernel<<<blocks, threads, shared_mem>>>(
index_vals.data_ptr<float>(),
indices.data_ptr<int>(),
max_vals.data_ptr<float>(),
max_vals_scatter.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return {max_vals, max_vals_scatter};
}
at::Tensor mm_to_sparse_kernel(
at::Tensor dense_A, // [batch_size, A_num_block, dim, 32]
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
at::Tensor indices // [batch_size, num_block]
) {
int batch_size = dense_A.size(0);
int A_num_block = dense_A.size(1);
int B_num_block = dense_B.size(1);
int dim = dense_A.size(2);
int num_block = indices.size(1);
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
dim3 threads(64, 4);
dim3 blocks(num_block / 4, batch_size);
mm_to_sparse_cuda_kernel<<<blocks, threads>>>(
dense_A.data_ptr<float>(),
dense_B.data_ptr<float>(),
indices.data_ptr<int>(),
sparse_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
dim,
num_block
);
return sparse_C;
}
at::Tensor sparse_dense_mm_kernel(
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
at::Tensor indices, // [batch_size, num_block]
at::Tensor dense_B, // [batch_size, B_num_block, dim, 32]
int A_num_block
) {
int batch_size = sparse_A.size(0);
int num_block = sparse_A.size(1);
int B_num_block = dense_B.size(1);
int dim = dense_B.size(2);
at::Tensor dense_C = at::zeros({batch_size, A_num_block, dim, 32}, dense_B.options());
dim3 threads(128, 2);
dim3 blocks(num_block / 2, batch_size);
sparse_dense_mm_cuda_kernel<<<blocks, threads>>>(
sparse_A.data_ptr<float>(),
indices.data_ptr<int>(),
dense_B.data_ptr<float>(),
dense_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
dim,
num_block
);
return dense_C;
}
at::Tensor reduce_sum_kernel(
at::Tensor sparse_A, // [batch_size, num_block, 32, 32]
at::Tensor indices, // [batch_size, num_block]
int A_num_block,
int B_num_block
) {
int batch_size = sparse_A.size(0);
int num_block = sparse_A.size(1);
at::Tensor dense_C = at::zeros({batch_size, A_num_block, 32}, sparse_A.options());
dim3 threads(32, 4);
dim3 blocks(num_block / 4, batch_size);
reduce_sum_cuda_kernel<<<blocks, threads>>>(
sparse_A.data_ptr<float>(),
indices.data_ptr<int>(),
dense_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return dense_C;
}
at::Tensor scatter_kernel(
at::Tensor dense_A, // [batch_size, A_num_block, 32]
at::Tensor indices, // [batch_size, num_block]
int B_num_block
) {
int batch_size = dense_A.size(0);
int A_num_block = dense_A.size(1);
int num_block = indices.size(1);
at::Tensor sparse_C = at::zeros({batch_size, num_block, 32, 32}, dense_A.options());
dim3 threads(32, 4);
dim3 blocks(num_block / 4, batch_size);
scatter_cuda_kernel<<<blocks, threads>>>(
dense_A.data_ptr<float>(),
indices.data_ptr<int>(),
sparse_C.data_ptr<float>(),
batch_size,
A_num_block,
B_num_block,
num_block
);
return sparse_C;
}