4850 lines
232 KiB
Python
4850 lines
232 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import collections
|
||
|
import copy
|
||
|
import functools
|
||
|
import gc
|
||
|
import importlib.metadata
|
||
|
import inspect
|
||
|
import itertools
|
||
|
import json
|
||
|
import os
|
||
|
import re
|
||
|
import shutil
|
||
|
import tempfile
|
||
|
import warnings
|
||
|
from contextlib import contextmanager
|
||
|
from dataclasses import dataclass
|
||
|
from functools import partial, wraps
|
||
|
from threading import Thread
|
||
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||
|
from zipfile import is_zipfile
|
||
|
|
||
|
import torch
|
||
|
from packaging import version
|
||
|
from torch import Tensor, nn
|
||
|
from torch.nn import CrossEntropyLoss, Identity
|
||
|
from torch.utils.checkpoint import checkpoint
|
||
|
|
||
|
from .activations import get_activation
|
||
|
from .configuration_utils import PretrainedConfig
|
||
|
from .dynamic_module_utils import custom_object_save
|
||
|
from .generation import GenerationConfig, GenerationMixin
|
||
|
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
|
||
|
from .pytorch_utils import ( # noqa: F401
|
||
|
Conv1D,
|
||
|
apply_chunking_to_forward,
|
||
|
find_pruneable_heads_and_indices,
|
||
|
id_tensor_storage,
|
||
|
is_torch_greater_or_equal_than_1_13,
|
||
|
prune_conv1d_layer,
|
||
|
prune_layer,
|
||
|
prune_linear_layer,
|
||
|
)
|
||
|
from .quantizers import AutoHfQuantizer, HfQuantizer
|
||
|
from .quantizers.quantizers_utils import get_module_from_name
|
||
|
from .safetensors_conversion import auto_conversion
|
||
|
from .utils import (
|
||
|
ADAPTER_SAFE_WEIGHTS_NAME,
|
||
|
ADAPTER_WEIGHTS_NAME,
|
||
|
CONFIG_NAME,
|
||
|
DUMMY_INPUTS,
|
||
|
FLAX_WEIGHTS_NAME,
|
||
|
SAFE_WEIGHTS_INDEX_NAME,
|
||
|
SAFE_WEIGHTS_NAME,
|
||
|
TF2_WEIGHTS_NAME,
|
||
|
TF_WEIGHTS_NAME,
|
||
|
WEIGHTS_INDEX_NAME,
|
||
|
WEIGHTS_NAME,
|
||
|
ContextManagers,
|
||
|
ModelOutput,
|
||
|
PushToHubMixin,
|
||
|
cached_file,
|
||
|
copy_func,
|
||
|
download_url,
|
||
|
extract_commit_hash,
|
||
|
has_file,
|
||
|
is_accelerate_available,
|
||
|
is_bitsandbytes_available,
|
||
|
is_flash_attn_2_available,
|
||
|
is_offline_mode,
|
||
|
is_optimum_available,
|
||
|
is_peft_available,
|
||
|
is_remote_url,
|
||
|
is_safetensors_available,
|
||
|
is_torch_sdpa_available,
|
||
|
is_torch_xla_available,
|
||
|
logging,
|
||
|
replace_return_docstrings,
|
||
|
strtobool,
|
||
|
)
|
||
|
from .utils.hub import convert_file_size_to_int, create_and_tag_model_card, get_checkpoint_shard_files
|
||
|
from .utils.import_utils import (
|
||
|
ENV_VARS_TRUE_VALUES,
|
||
|
is_sagemaker_mp_enabled,
|
||
|
is_torch_fx_proxy,
|
||
|
is_torchdynamo_compiling,
|
||
|
)
|
||
|
from .utils.quantization_config import BitsAndBytesConfig, QuantizationMethod
|
||
|
|
||
|
|
||
|
XLA_USE_BF16 = os.environ.get("XLA_USE_BF16", "0").upper()
|
||
|
XLA_DOWNCAST_BF16 = os.environ.get("XLA_DOWNCAST_BF16", "0").upper()
|
||
|
|
||
|
if is_accelerate_available():
|
||
|
from accelerate import dispatch_model, infer_auto_device_map, init_empty_weights
|
||
|
from accelerate.hooks import add_hook_to_module
|
||
|
from accelerate.utils import (
|
||
|
check_tied_parameters_on_same_device,
|
||
|
find_tied_parameters,
|
||
|
get_balanced_memory,
|
||
|
get_max_memory,
|
||
|
load_offloaded_weights,
|
||
|
offload_weight,
|
||
|
save_offload_index,
|
||
|
set_module_tensor_to_device,
|
||
|
)
|
||
|
|
||
|
if is_safetensors_available():
|
||
|
from safetensors import safe_open
|
||
|
from safetensors.torch import load_file as safe_load_file
|
||
|
from safetensors.torch import save_file as safe_save_file
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
_init_weights = True
|
||
|
|
||
|
|
||
|
def is_fsdp_enabled():
|
||
|
return (
|
||
|
torch.distributed.is_available()
|
||
|
and torch.distributed.is_initialized()
|
||
|
and strtobool(os.environ.get("ACCELERATE_USE_FSDP", "False")) == 1
|
||
|
and strtobool(os.environ.get("FSDP_CPU_RAM_EFFICIENT_LOADING", "False")) == 1
|
||
|
)
|
||
|
|
||
|
|
||
|
def is_local_dist_rank_0():
|
||
|
return (
|
||
|
torch.distributed.is_available()
|
||
|
and torch.distributed.is_initialized()
|
||
|
and int(os.environ.get("LOCAL_RANK", -1)) == 0
|
||
|
)
|
||
|
|
||
|
|
||
|
if is_sagemaker_mp_enabled():
|
||
|
import smdistributed.modelparallel.torch as smp
|
||
|
from smdistributed.modelparallel import __version__ as SMP_VERSION
|
||
|
|
||
|
IS_SAGEMAKER_MP_POST_1_10 = version.parse(SMP_VERSION) >= version.parse("1.10")
|
||
|
else:
|
||
|
IS_SAGEMAKER_MP_POST_1_10 = False
|
||
|
|
||
|
if is_peft_available():
|
||
|
from .utils import find_adapter_config_file
|
||
|
|
||
|
TORCH_INIT_FUNCTIONS = {
|
||
|
"uniform_": nn.init.uniform_,
|
||
|
"normal_": nn.init.normal_,
|
||
|
"trunc_normal_": nn.init.trunc_normal_,
|
||
|
"constant_": nn.init.constant_,
|
||
|
"xavier_uniform_": nn.init.xavier_uniform_,
|
||
|
"xavier_normal_": nn.init.xavier_normal_,
|
||
|
"kaiming_uniform_": nn.init.kaiming_uniform_,
|
||
|
"kaiming_normal_": nn.init.kaiming_normal_,
|
||
|
"uniform": nn.init.uniform,
|
||
|
"normal": nn.init.normal,
|
||
|
"xavier_uniform": nn.init.xavier_uniform,
|
||
|
"xavier_normal": nn.init.xavier_normal,
|
||
|
"kaiming_uniform": nn.init.kaiming_uniform,
|
||
|
"kaiming_normal": nn.init.kaiming_normal,
|
||
|
}
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def no_init_weights(_enable=True):
|
||
|
"""
|
||
|
Context manager to globally disable weight initialization to speed up loading large models.
|
||
|
|
||
|
TODO(Patrick): Delete safety argument `_enable=True` at next major version. .
|
||
|
"""
|
||
|
global _init_weights
|
||
|
old_init_weights = _init_weights
|
||
|
|
||
|
if _enable:
|
||
|
_init_weights = False
|
||
|
|
||
|
def _skip_init(*args, **kwargs):
|
||
|
pass
|
||
|
|
||
|
# # Save the original initialization functions
|
||
|
for name, init_func in TORCH_INIT_FUNCTIONS.items():
|
||
|
setattr(torch.nn.init, name, _skip_init)
|
||
|
try:
|
||
|
yield
|
||
|
finally:
|
||
|
_init_weights = old_init_weights
|
||
|
if _enable:
|
||
|
# # Restore the original initialization functions
|
||
|
for name, init_func in TORCH_INIT_FUNCTIONS.items():
|
||
|
setattr(torch.nn.init, name, init_func)
|
||
|
|
||
|
|
||
|
def get_parameter_device(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
|
||
|
try:
|
||
|
return next(parameter.parameters()).device
|
||
|
except StopIteration:
|
||
|
# For nn.DataParallel compatibility in PyTorch 1.5
|
||
|
|
||
|
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
|
||
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
||
|
return tuples
|
||
|
|
||
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
||
|
first_tuple = next(gen)
|
||
|
return first_tuple[1].device
|
||
|
|
||
|
|
||
|
def get_first_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
|
||
|
"""
|
||
|
Returns the first parameter dtype (can be non-floating) or asserts if none were found.
|
||
|
"""
|
||
|
try:
|
||
|
return next(parameter.parameters()).dtype
|
||
|
except StopIteration:
|
||
|
# For nn.DataParallel compatibility in PyTorch > 1.5
|
||
|
|
||
|
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
|
||
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
||
|
return tuples
|
||
|
|
||
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
||
|
first_tuple = next(gen)
|
||
|
return first_tuple[1].dtype
|
||
|
|
||
|
|
||
|
def get_parameter_dtype(parameter: Union[nn.Module, GenerationMixin, "ModuleUtilsMixin"]):
|
||
|
"""
|
||
|
Returns the first found floating dtype in parameters if there is one, otherwise returns the last dtype it found.
|
||
|
"""
|
||
|
last_dtype = None
|
||
|
for t in parameter.parameters():
|
||
|
last_dtype = t.dtype
|
||
|
if t.is_floating_point():
|
||
|
# Adding fix for https://github.com/pytorch/xla/issues/4152
|
||
|
# Fixes issue where the model code passes a value that is out of range for XLA_USE_BF16=1
|
||
|
# and XLA_DOWNCAST_BF16=1 so the conversion would cast it to -inf
|
||
|
# NOTE: `is_torch_xla_available()` is checked last as it induces a graph break in torch dynamo
|
||
|
if XLA_USE_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
|
||
|
return torch.bfloat16
|
||
|
if XLA_DOWNCAST_BF16 in ENV_VARS_TRUE_VALUES and is_torch_xla_available():
|
||
|
if t.dtype == torch.float:
|
||
|
return torch.bfloat16
|
||
|
if t.dtype == torch.double:
|
||
|
return torch.float32
|
||
|
return t.dtype
|
||
|
|
||
|
if last_dtype is not None:
|
||
|
# if no floating dtype was found return whatever the first dtype is
|
||
|
return last_dtype
|
||
|
|
||
|
# For nn.DataParallel compatibility in PyTorch > 1.5
|
||
|
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
|
||
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
||
|
return tuples
|
||
|
|
||
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
||
|
last_tuple = None
|
||
|
for tuple in gen:
|
||
|
last_tuple = tuple
|
||
|
if tuple[1].is_floating_point():
|
||
|
return tuple[1].dtype
|
||
|
|
||
|
if last_tuple is not None:
|
||
|
# fallback to the last dtype
|
||
|
return last_tuple[1].dtype
|
||
|
|
||
|
# fallback to buffer dtype
|
||
|
for t in parameter.buffers():
|
||
|
last_dtype = t.dtype
|
||
|
if t.is_floating_point():
|
||
|
return t.dtype
|
||
|
return last_dtype
|
||
|
|
||
|
|
||
|
def get_state_dict_float_dtype(state_dict):
|
||
|
"""
|
||
|
Returns the first found floating dtype in `state_dict` or asserts if none were found.
|
||
|
"""
|
||
|
for t in state_dict.values():
|
||
|
if t.is_floating_point():
|
||
|
return t.dtype
|
||
|
|
||
|
raise ValueError("couldn't find any floating point dtypes in state_dict")
|
||
|
|
||
|
|
||
|
def get_state_dict_dtype(state_dict):
|
||
|
"""
|
||
|
Returns the first found floating dtype in `state_dict` if there is one, otherwise returns the first dtype.
|
||
|
"""
|
||
|
for t in state_dict.values():
|
||
|
if t.is_floating_point():
|
||
|
return t.dtype
|
||
|
|
||
|
# if no floating dtype was found return whatever the first dtype is
|
||
|
else:
|
||
|
return next(state_dict.values()).dtype
|
||
|
|
||
|
|
||
|
def dtype_byte_size(dtype):
|
||
|
"""
|
||
|
Returns the size (in bytes) occupied by one parameter of type `dtype`.
|
||
|
|
||
|
Example:
|
||
|
|
||
|
```py
|
||
|
>>> dtype_byte_size(torch.float32)
|
||
|
4
|
||
|
```
|
||
|
"""
|
||
|
if dtype == torch.bool:
|
||
|
return 1 / 8
|
||
|
bit_search = re.search(r"[^\d](\d+)$", str(dtype))
|
||
|
if bit_search is None:
|
||
|
raise ValueError(f"`dtype` is not a valid dtype: {dtype}.")
|
||
|
bit_size = int(bit_search.groups()[0])
|
||
|
return bit_size // 8
|
||
|
|
||
|
|
||
|
def shard_checkpoint(
|
||
|
state_dict: Dict[str, torch.Tensor], max_shard_size: Union[int, str] = "10GB", weights_name: str = WEIGHTS_NAME
|
||
|
):
|
||
|
"""
|
||
|
Splits a model state dictionary in sub-checkpoints so that the final size of each sub-checkpoint does not exceed a
|
||
|
given size.
|
||
|
|
||
|
The sub-checkpoints are determined by iterating through the `state_dict` in the order of its keys, so there is no
|
||
|
optimization made to make each sub-checkpoint as close as possible to the maximum size passed. For example, if the
|
||
|
limit is 10GB and we have weights of sizes [6GB, 6GB, 2GB, 6GB, 2GB, 2GB] they will get sharded as [6GB], [6+2GB],
|
||
|
[6+2+2GB] and not [6+2+2GB], [6+2GB], [6GB].
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
If one of the model's weight is bigger than `max_shard_size`, it will end up in its own sub-checkpoint which will
|
||
|
have a size greater than `max_shard_size`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Args:
|
||
|
state_dict (`Dict[str, torch.Tensor]`): The state dictionary of a model to save.
|
||
|
max_shard_size (`int` or `str`, *optional*, defaults to `"10GB"`):
|
||
|
The maximum size of each sub-checkpoint. If expressed as a string, needs to be digits followed by a unit
|
||
|
(like `"5MB"`).
|
||
|
weights_name (`str`, *optional*, defaults to `"pytorch_model.bin"`):
|
||
|
The name of the model save file.
|
||
|
"""
|
||
|
max_shard_size = convert_file_size_to_int(max_shard_size)
|
||
|
|
||
|
sharded_state_dicts = [{}]
|
||
|
last_block_size = 0
|
||
|
total_size = 0
|
||
|
storage_id_to_block = {}
|
||
|
|
||
|
for key, weight in state_dict.items():
|
||
|
# when bnb serialization is used the weights in the state dict can be strings
|
||
|
# check: https://github.com/huggingface/transformers/pull/24416 for more details
|
||
|
if isinstance(weight, str):
|
||
|
continue
|
||
|
else:
|
||
|
storage_id = id_tensor_storage(weight)
|
||
|
|
||
|
# If a `weight` shares the same underlying storage as another tensor, we put `weight` in the same `block`
|
||
|
if storage_id in storage_id_to_block:
|
||
|
block_id = storage_id_to_block[storage_id]
|
||
|
sharded_state_dicts[block_id][key] = weight
|
||
|
continue
|
||
|
|
||
|
weight_size = weight.numel() * dtype_byte_size(weight.dtype)
|
||
|
|
||
|
# If this weight is going to tip up over the maximal size, we split, but only if we have put at least one
|
||
|
# weight in the current shard.
|
||
|
if last_block_size + weight_size > max_shard_size and len(sharded_state_dicts[-1]) > 0:
|
||
|
sharded_state_dicts.append({})
|
||
|
last_block_size = 0
|
||
|
|
||
|
sharded_state_dicts[-1][key] = weight
|
||
|
last_block_size += weight_size
|
||
|
total_size += weight_size
|
||
|
storage_id_to_block[storage_id] = len(sharded_state_dicts) - 1
|
||
|
|
||
|
# If we only have one shard, we return it
|
||
|
if len(sharded_state_dicts) == 1:
|
||
|
return {weights_name: sharded_state_dicts[0]}, None
|
||
|
|
||
|
# Otherwise, let's build the index
|
||
|
weight_map = {}
|
||
|
shards = {}
|
||
|
for idx, shard in enumerate(sharded_state_dicts):
|
||
|
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
|
||
|
shard_file = shard_file.replace(
|
||
|
".safetensors", f"-{idx + 1:05d}-of-{len(sharded_state_dicts):05d}.safetensors"
|
||
|
)
|
||
|
shards[shard_file] = shard
|
||
|
for key in shard.keys():
|
||
|
weight_map[key] = shard_file
|
||
|
|
||
|
# Add the metadata
|
||
|
metadata = {"total_size": total_size}
|
||
|
index = {"metadata": metadata, "weight_map": weight_map}
|
||
|
return shards, index
|
||
|
|
||
|
|
||
|
def load_sharded_checkpoint(model, folder, strict=True, prefer_safe=True):
|
||
|
"""
|
||
|
This is the same as
|
||
|
[`torch.nn.Module.load_state_dict`](https://pytorch.org/docs/stable/generated/torch.nn.Module.html?highlight=load_state_dict#torch.nn.Module.load_state_dict)
|
||
|
but for a sharded checkpoint.
|
||
|
|
||
|
This load is performed efficiently: each checkpoint shard is loaded one by one in RAM and deleted after being
|
||
|
loaded in the model.
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`): The model in which to load the checkpoint.
|
||
|
folder (`str` or `os.PathLike`): A path to a folder containing the sharded checkpoint.
|
||
|
strict (`bool`, *optional`, defaults to `True`):
|
||
|
Whether to strictly enforce that the keys in the model state dict match the keys in the sharded checkpoint.
|
||
|
prefer_safe (`bool`, *optional*, defaults to `False`)
|
||
|
If both safetensors and PyTorch save files are present in checkpoint and `prefer_safe` is True, the
|
||
|
safetensors files will be loaded. Otherwise, PyTorch files are always loaded when possible.
|
||
|
|
||
|
Returns:
|
||
|
`NamedTuple`: A named tuple with `missing_keys` and `unexpected_keys` fields
|
||
|
- `missing_keys` is a list of str containing the missing keys
|
||
|
- `unexpected_keys` is a list of str containing the unexpected keys
|
||
|
"""
|
||
|
# Load the index
|
||
|
index_file = os.path.join(folder, WEIGHTS_INDEX_NAME)
|
||
|
safe_index_file = os.path.join(folder, SAFE_WEIGHTS_INDEX_NAME)
|
||
|
|
||
|
index_present = os.path.isfile(index_file)
|
||
|
safe_index_present = os.path.isfile(safe_index_file)
|
||
|
|
||
|
if not index_present and not (safe_index_present and is_safetensors_available()):
|
||
|
filenames = (
|
||
|
(WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_INDEX_NAME) if is_safetensors_available() else (WEIGHTS_INDEX_NAME,)
|
||
|
)
|
||
|
raise ValueError(f"Can't find a checkpoint index ({' or '.join(filenames)}) in {folder}.")
|
||
|
|
||
|
load_safe = False
|
||
|
if safe_index_present:
|
||
|
if prefer_safe:
|
||
|
if is_safetensors_available():
|
||
|
load_safe = True # load safe due to preference
|
||
|
else:
|
||
|
logger.warning(
|
||
|
f"Cannot load sharded checkpoint at {folder} safely since safetensors is not installed!"
|
||
|
)
|
||
|
elif not index_present:
|
||
|
load_safe = True # load safe since we have no other choice
|
||
|
|
||
|
load_index = safe_index_file if load_safe else index_file
|
||
|
|
||
|
with open(load_index, "r", encoding="utf-8") as f:
|
||
|
index = json.load(f)
|
||
|
|
||
|
shard_files = list(set(index["weight_map"].values()))
|
||
|
|
||
|
# If strict=True, error before loading any of the state dicts.
|
||
|
loaded_keys = index["weight_map"].keys()
|
||
|
model_keys = model.state_dict().keys()
|
||
|
missing_keys = [key for key in model_keys if key not in loaded_keys]
|
||
|
unexpected_keys = [key for key in loaded_keys if key not in model_keys]
|
||
|
if strict and (len(missing_keys) > 0 or len(unexpected_keys) > 0):
|
||
|
error_message = f"Error(s) in loading state_dict for {model.__class__.__name__}"
|
||
|
if len(missing_keys) > 0:
|
||
|
str_missing_keys = ",".join([f'"{k}"' for k in missing_keys])
|
||
|
error_message += f"\nMissing key(s): {str_missing_keys}."
|
||
|
if len(unexpected_keys) > 0:
|
||
|
str_unexpected_keys = ",".join([f'"{k}"' for k in unexpected_keys])
|
||
|
error_message += f"\nMissing key(s): {str_unexpected_keys}."
|
||
|
raise RuntimeError(error_message)
|
||
|
|
||
|
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
||
|
loader = safe_load_file if load_safe else partial(torch.load, map_location="cpu", **weights_only_kwarg)
|
||
|
|
||
|
for shard_file in shard_files:
|
||
|
state_dict = loader(os.path.join(folder, shard_file))
|
||
|
model.load_state_dict(state_dict, strict=False)
|
||
|
|
||
|
# Make sure memory is freed before we load the next state dict.
|
||
|
del state_dict
|
||
|
gc.collect()
|
||
|
|
||
|
# Return the same thing as PyTorch load_state_dict function.
|
||
|
return torch.nn.modules.module._IncompatibleKeys(missing_keys, unexpected_keys)
|
||
|
|
||
|
|
||
|
def load_state_dict(checkpoint_file: Union[str, os.PathLike], is_quantized: bool = False):
|
||
|
"""
|
||
|
Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
|
||
|
"""
|
||
|
if checkpoint_file.endswith(".safetensors") and is_safetensors_available():
|
||
|
# Check format of the archive
|
||
|
with safe_open(checkpoint_file, framework="pt") as f:
|
||
|
metadata = f.metadata()
|
||
|
if metadata.get("format") not in ["pt", "tf", "flax", "mlx"]:
|
||
|
raise OSError(
|
||
|
f"The safetensors archive passed at {checkpoint_file} does not contain the valid metadata. Make sure "
|
||
|
"you save your model with the `save_pretrained` method."
|
||
|
)
|
||
|
return safe_load_file(checkpoint_file)
|
||
|
try:
|
||
|
if (
|
||
|
(is_deepspeed_zero3_enabled() and torch.distributed.is_initialized() and torch.distributed.get_rank() > 0)
|
||
|
or (is_fsdp_enabled() and not is_local_dist_rank_0())
|
||
|
) and not is_quantized:
|
||
|
map_location = "meta"
|
||
|
else:
|
||
|
map_location = "cpu"
|
||
|
extra_args = {}
|
||
|
# mmap can only be used with files serialized with zipfile-based format.
|
||
|
if (
|
||
|
isinstance(checkpoint_file, str)
|
||
|
and map_location != "meta"
|
||
|
and version.parse(torch.__version__) >= version.parse("2.1.0")
|
||
|
and is_zipfile(checkpoint_file)
|
||
|
):
|
||
|
extra_args = {"mmap": True}
|
||
|
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
||
|
return torch.load(
|
||
|
checkpoint_file,
|
||
|
map_location=map_location,
|
||
|
**weights_only_kwarg,
|
||
|
**extra_args,
|
||
|
)
|
||
|
except Exception as e:
|
||
|
try:
|
||
|
with open(checkpoint_file) as f:
|
||
|
if f.read(7) == "version":
|
||
|
raise OSError(
|
||
|
"You seem to have cloned a repository without having git-lfs installed. Please install "
|
||
|
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
|
||
|
"you cloned."
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
|
||
|
"model. Make sure you have saved the model properly."
|
||
|
) from e
|
||
|
except (UnicodeDecodeError, ValueError):
|
||
|
raise OSError(
|
||
|
f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
|
||
|
f"at '{checkpoint_file}'. "
|
||
|
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
|
||
|
)
|
||
|
|
||
|
|
||
|
def set_initialized_submodules(model, state_dict_keys):
|
||
|
"""
|
||
|
Sets the `_is_hf_initialized` flag in all submodules of a given model when all its weights are in the loaded state
|
||
|
dict.
|
||
|
"""
|
||
|
not_initialized_submodules = {}
|
||
|
for module_name, module in model.named_modules():
|
||
|
loaded_keys = {k.replace(f"{module_name}.", "") for k in state_dict_keys if k.startswith(f"{module_name}.")}
|
||
|
if loaded_keys.issuperset(module.state_dict()):
|
||
|
module._is_hf_initialized = True
|
||
|
else:
|
||
|
not_initialized_submodules[module_name] = module
|
||
|
return not_initialized_submodules
|
||
|
|
||
|
|
||
|
def _end_ptr(tensor: torch.Tensor) -> int:
|
||
|
# extract the end of the pointer if the tensor is a slice of a bigger tensor
|
||
|
if tensor.nelement():
|
||
|
stop = tensor.view(-1)[-1].data_ptr() + tensor.element_size()
|
||
|
else:
|
||
|
stop = tensor.data_ptr()
|
||
|
return stop
|
||
|
|
||
|
|
||
|
def _get_tied_weight_keys(module: nn.Module, prefix=""):
|
||
|
tied_weight_keys = []
|
||
|
if getattr(module, "_tied_weights_keys", None) is not None:
|
||
|
names = [f"{prefix}.{k}" if prefix else k for k in module._tied_weights_keys]
|
||
|
tied_weight_keys.extend(names)
|
||
|
if getattr(module, "_dynamic_tied_weights_keys", None) is not None:
|
||
|
names = [f"{prefix}.{k}" if prefix else k for k in module._dynamic_tied_weights_keys]
|
||
|
tied_weight_keys.extend(names)
|
||
|
for name, submodule in module.named_children():
|
||
|
local_prefix = f"{prefix}.{name}" if prefix else name
|
||
|
tied_weight_keys.extend(_get_tied_weight_keys(submodule, prefix=local_prefix))
|
||
|
return tied_weight_keys
|
||
|
|
||
|
|
||
|
def _find_disjoint(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], List[str]]:
|
||
|
filtered_tensors = []
|
||
|
for shared in tensors:
|
||
|
if len(shared) < 2:
|
||
|
filtered_tensors.append(shared)
|
||
|
continue
|
||
|
|
||
|
areas = []
|
||
|
for name in shared:
|
||
|
tensor = state_dict[name]
|
||
|
areas.append((tensor.data_ptr(), _end_ptr(tensor), name))
|
||
|
areas.sort()
|
||
|
|
||
|
_, last_stop, last_name = areas[0]
|
||
|
filtered_tensors.append({last_name})
|
||
|
for start, stop, name in areas[1:]:
|
||
|
if start >= last_stop:
|
||
|
filtered_tensors.append({name})
|
||
|
else:
|
||
|
filtered_tensors[-1].add(name)
|
||
|
last_stop = stop
|
||
|
disjoint_tensors = []
|
||
|
shared_tensors = []
|
||
|
for tensors in filtered_tensors:
|
||
|
if len(tensors) == 1:
|
||
|
disjoint_tensors.append(tensors.pop())
|
||
|
else:
|
||
|
shared_tensors.append(tensors)
|
||
|
return shared_tensors, disjoint_tensors
|
||
|
|
||
|
|
||
|
def _find_identical(tensors: List[Set[str]], state_dict: Dict[str, torch.Tensor]) -> Tuple[List[Set[str]], Set[str]]:
|
||
|
shared_tensors = []
|
||
|
identical = []
|
||
|
for shared in tensors:
|
||
|
if len(shared) < 2:
|
||
|
continue
|
||
|
|
||
|
areas = collections.defaultdict(set)
|
||
|
for name in shared:
|
||
|
tensor = state_dict[name]
|
||
|
area = (tensor.device, tensor.data_ptr(), _end_ptr(tensor))
|
||
|
areas[area].add(name)
|
||
|
if len(areas) == 1:
|
||
|
identical.append(shared)
|
||
|
else:
|
||
|
shared_tensors.append(shared)
|
||
|
return shared_tensors, identical
|
||
|
|
||
|
|
||
|
def _load_state_dict_into_model(model_to_load, state_dict, start_prefix):
|
||
|
# Convert old format to new format if needed from a PyTorch state_dict
|
||
|
old_keys = []
|
||
|
new_keys = []
|
||
|
for key in state_dict.keys():
|
||
|
new_key = None
|
||
|
if "gamma" in key:
|
||
|
new_key = key.replace("gamma", "weight")
|
||
|
if "beta" in key:
|
||
|
new_key = key.replace("beta", "bias")
|
||
|
if new_key:
|
||
|
old_keys.append(key)
|
||
|
new_keys.append(new_key)
|
||
|
for old_key, new_key in zip(old_keys, new_keys):
|
||
|
state_dict[new_key] = state_dict.pop(old_key)
|
||
|
|
||
|
# copy state_dict so _load_from_state_dict can modify it
|
||
|
metadata = getattr(state_dict, "_metadata", None)
|
||
|
state_dict = state_dict.copy()
|
||
|
if metadata is not None:
|
||
|
state_dict._metadata = metadata
|
||
|
|
||
|
error_msgs = []
|
||
|
|
||
|
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
||
|
# so we need to apply the function recursively.
|
||
|
def load(module: nn.Module, state_dict, prefix=""):
|
||
|
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
||
|
args = (state_dict, prefix, local_metadata, True, [], [], error_msgs)
|
||
|
# Parameters of module and children will start with prefix. We can exit early if there are none in this
|
||
|
# state_dict
|
||
|
if len([key for key in state_dict if key.startswith(prefix)]) > 0:
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
import deepspeed
|
||
|
|
||
|
# In sharded models, each shard has only part of the full state_dict, so only gather
|
||
|
# parameters that are in the current state_dict.
|
||
|
named_parameters = dict(module.named_parameters(prefix=prefix[:-1], recurse=False))
|
||
|
params_to_gather = [named_parameters[k] for k in state_dict.keys() if k in named_parameters]
|
||
|
if len(params_to_gather) > 0:
|
||
|
# because zero3 puts placeholders in model params, this context
|
||
|
# manager gathers (unpartitions) the params of the current layer, then loads from
|
||
|
# the state dict and then re-partitions them again
|
||
|
with deepspeed.zero.GatheredParameters(params_to_gather, modifier_rank=0):
|
||
|
if torch.distributed.get_rank() == 0:
|
||
|
module._load_from_state_dict(*args)
|
||
|
else:
|
||
|
module._load_from_state_dict(*args)
|
||
|
|
||
|
for name, child in module._modules.items():
|
||
|
if child is not None:
|
||
|
load(child, state_dict, prefix + name + ".")
|
||
|
|
||
|
load(model_to_load, state_dict, prefix=start_prefix)
|
||
|
# Delete `state_dict` so it could be collected by GC earlier. Note that `state_dict` is a copy of the argument, so
|
||
|
# it's safe to delete it.
|
||
|
del state_dict
|
||
|
|
||
|
return error_msgs
|
||
|
|
||
|
|
||
|
def find_submodule_and_param_name(model, long_key, start_prefix):
|
||
|
"""
|
||
|
A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed
|
||
|
from the start of the key
|
||
|
"""
|
||
|
|
||
|
if len(start_prefix) > 0 and long_key.startswith(start_prefix):
|
||
|
long_key = ".".join(long_key.split(".")[1:])
|
||
|
|
||
|
split_key = long_key.split(".")
|
||
|
submodule = model
|
||
|
while len(split_key) > 1:
|
||
|
if hasattr(submodule, split_key[0]):
|
||
|
submodule = getattr(submodule, split_key[0])
|
||
|
del split_key[0]
|
||
|
else:
|
||
|
submodule = None
|
||
|
break
|
||
|
if submodule == model:
|
||
|
submodule = None
|
||
|
return submodule, split_key[0]
|
||
|
|
||
|
|
||
|
def _move_model_to_meta(model, loaded_state_dict_keys, start_prefix):
|
||
|
"""
|
||
|
Moves `loaded_state_dict_keys` in model to meta device which frees up the memory taken by those params.
|
||
|
|
||
|
`start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
|
||
|
`bert.pooler.dense.weight`
|
||
|
|
||
|
"""
|
||
|
|
||
|
# dematerialize param storage for keys that are going to be replaced by state_dict, by
|
||
|
# putting those on the meta device
|
||
|
for k in loaded_state_dict_keys:
|
||
|
submodule, param_name = find_submodule_and_param_name(model, k, start_prefix)
|
||
|
if submodule is not None:
|
||
|
# selectively switch to the meta device only those params/buffers that will
|
||
|
# be next replaced from state_dict. This a complex way to do p.to_("meta")
|
||
|
# since we have no in-place to_ for tensors.
|
||
|
new_val = getattr(submodule, param_name)
|
||
|
if isinstance(new_val, torch.nn.Parameter):
|
||
|
# isinstance returns False for Params on meta device, so switch after the check
|
||
|
new_val = torch.nn.Parameter(new_val.to("meta"))
|
||
|
else:
|
||
|
new_val = new_val.to("meta")
|
||
|
setattr(submodule, param_name, new_val)
|
||
|
|
||
|
|
||
|
def _load_state_dict_into_meta_model(
|
||
|
model,
|
||
|
state_dict,
|
||
|
loaded_state_dict_keys, # left for now but could be removed, see below
|
||
|
start_prefix,
|
||
|
expected_keys,
|
||
|
device_map=None,
|
||
|
offload_folder=None,
|
||
|
offload_index=None,
|
||
|
state_dict_folder=None,
|
||
|
state_dict_index=None,
|
||
|
dtype=None,
|
||
|
hf_quantizer=None,
|
||
|
is_safetensors=False,
|
||
|
keep_in_fp32_modules=None,
|
||
|
unexpected_keys=None, # passing `unexpected` for cleanup from quantization items
|
||
|
):
|
||
|
"""
|
||
|
This is somewhat similar to `_load_state_dict_into_model`, but deals with a model that has some or all of its
|
||
|
params on a `meta` device. It replaces the model params with the data from the `state_dict`, while moving the
|
||
|
params back to the normal device, but only for `loaded_state_dict_keys`.
|
||
|
|
||
|
`start_prefix` is used for models which insert their name into model keys, e.g. `bert` in
|
||
|
`bert.pooler.dense.weight`
|
||
|
|
||
|
"""
|
||
|
|
||
|
# XXX: remaining features to implement to be fully compatible with _load_state_dict_into_model
|
||
|
# - deepspeed zero 3 support
|
||
|
# - need to copy metadata if any - see _load_state_dict_into_model
|
||
|
# - handling error_msgs - mimicking the error handling in module._load_from_state_dict()
|
||
|
# - Is there a situation where some keys aren't in `loaded_state_dict_keys` and in which case
|
||
|
# they won't get loaded.
|
||
|
|
||
|
error_msgs = []
|
||
|
|
||
|
old_keys = []
|
||
|
new_keys = []
|
||
|
is_quantized = hf_quantizer is not None
|
||
|
for key in state_dict.keys():
|
||
|
new_key = None
|
||
|
if "gamma" in key:
|
||
|
new_key = key.replace("gamma", "weight")
|
||
|
if "beta" in key:
|
||
|
new_key = key.replace("beta", "bias")
|
||
|
if new_key:
|
||
|
old_keys.append(key)
|
||
|
new_keys.append(new_key)
|
||
|
for old_key, new_key in zip(old_keys, new_keys):
|
||
|
state_dict[new_key] = state_dict.pop(old_key)
|
||
|
|
||
|
for param_name, param in state_dict.items():
|
||
|
# First part of the test is always true as load_state_dict_keys always contains state_dict keys.
|
||
|
if param_name not in loaded_state_dict_keys or param_name not in expected_keys:
|
||
|
continue
|
||
|
|
||
|
if param_name.startswith(start_prefix):
|
||
|
param_name = param_name[len(start_prefix) :]
|
||
|
|
||
|
module_name = param_name
|
||
|
set_module_kwargs = {}
|
||
|
|
||
|
# We convert floating dtypes to the `dtype` passed. We want to keep the buffers/params
|
||
|
# in int/uint/bool and not cast them.
|
||
|
if dtype is not None and torch.is_floating_point(param):
|
||
|
if (
|
||
|
keep_in_fp32_modules is not None
|
||
|
and any(
|
||
|
module_to_keep_in_fp32 in param_name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
|
||
|
)
|
||
|
and dtype == torch.float16
|
||
|
):
|
||
|
param = param.to(torch.float32)
|
||
|
|
||
|
# For backward compatibility with older versions of `accelerate`
|
||
|
# TODO: @sgugger replace this check with version check at the next `accelerate` release
|
||
|
if "dtype" in list(inspect.signature(set_module_tensor_to_device).parameters):
|
||
|
set_module_kwargs["dtype"] = torch.float32
|
||
|
else:
|
||
|
param = param.to(dtype)
|
||
|
|
||
|
# For compatibility with PyTorch load_state_dict which converts state dict dtype to existing dtype in model, and which
|
||
|
# uses `param.copy_(input_param)` that preserves the contiguity of the parameter in the model.
|
||
|
# Reference: https://github.com/pytorch/pytorch/blob/db79ceb110f6646523019a59bbd7b838f43d4a86/torch/nn/modules/module.py#L2040C29-L2040C29
|
||
|
old_param = model
|
||
|
splits = param_name.split(".")
|
||
|
for split in splits:
|
||
|
old_param = getattr(old_param, split)
|
||
|
if old_param is None:
|
||
|
break
|
||
|
|
||
|
if old_param is not None:
|
||
|
if dtype is None:
|
||
|
param = param.to(old_param.dtype)
|
||
|
|
||
|
if old_param.is_contiguous():
|
||
|
param = param.contiguous()
|
||
|
|
||
|
set_module_kwargs["value"] = param
|
||
|
|
||
|
if device_map is None:
|
||
|
param_device = "cpu"
|
||
|
else:
|
||
|
# find next higher level module that is defined in device_map:
|
||
|
# bert.lm_head.weight -> bert.lm_head -> bert -> ''
|
||
|
while len(module_name) > 0 and module_name not in device_map:
|
||
|
module_name = ".".join(module_name.split(".")[:-1])
|
||
|
if module_name == "" and "" not in device_map:
|
||
|
# TODO: group all errors and raise at the end.
|
||
|
raise ValueError(f"{param_name} doesn't have any device set.")
|
||
|
param_device = device_map[module_name]
|
||
|
|
||
|
if param_device == "disk":
|
||
|
if not is_safetensors:
|
||
|
offload_index = offload_weight(param, param_name, offload_folder, offload_index)
|
||
|
elif param_device == "cpu" and state_dict_index is not None:
|
||
|
state_dict_index = offload_weight(param, param_name, state_dict_folder, state_dict_index)
|
||
|
elif (
|
||
|
not is_quantized
|
||
|
or (not hf_quantizer.requires_parameters_quantization)
|
||
|
or (
|
||
|
not hf_quantizer.check_quantized_param(
|
||
|
model, param, param_name, state_dict, param_device=param_device, device_map=device_map
|
||
|
)
|
||
|
)
|
||
|
):
|
||
|
# For backward compatibility with older versions of `accelerate` and for non-quantized params
|
||
|
set_module_tensor_to_device(model, param_name, param_device, **set_module_kwargs)
|
||
|
else:
|
||
|
hf_quantizer.create_quantized_param(model, param, param_name, param_device, state_dict, unexpected_keys)
|
||
|
# For quantized modules with FSDP/DeepSpeed Stage 3, we need to quantize the parameter on the GPU
|
||
|
# and then cast it to CPU to avoid excessive memory usage on each GPU
|
||
|
# in comparison to the sharded model across GPUs.
|
||
|
if is_fsdp_enabled() or is_deepspeed_zero3_enabled():
|
||
|
module, tensor_name = get_module_from_name(model, param_name)
|
||
|
value = getattr(module, tensor_name)
|
||
|
value = type(value)(value.data.to("cpu"), **value.__dict__)
|
||
|
setattr(module, tensor_name, value)
|
||
|
# TODO: consider removing used param_parts from state_dict before return
|
||
|
|
||
|
return error_msgs, offload_index, state_dict_index
|
||
|
|
||
|
|
||
|
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
|
||
|
if variant is not None:
|
||
|
splits = weights_name.split(".")
|
||
|
splits = splits[:-1] + [variant] + splits[-1:]
|
||
|
weights_name = ".".join(splits)
|
||
|
|
||
|
return weights_name
|
||
|
|
||
|
|
||
|
class ModuleUtilsMixin:
|
||
|
"""
|
||
|
A few utilities for `torch.nn.Modules`, to be used as a mixin.
|
||
|
"""
|
||
|
|
||
|
@staticmethod
|
||
|
def _hook_rss_memory_pre_forward(module, *args, **kwargs):
|
||
|
try:
|
||
|
import psutil
|
||
|
except ImportError:
|
||
|
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
|
||
|
|
||
|
process = psutil.Process(os.getpid())
|
||
|
mem = process.memory_info()
|
||
|
module.mem_rss_pre_forward = mem.rss
|
||
|
return None
|
||
|
|
||
|
@staticmethod
|
||
|
def _hook_rss_memory_post_forward(module, *args, **kwargs):
|
||
|
try:
|
||
|
import psutil
|
||
|
except ImportError:
|
||
|
raise ImportError("You need to install psutil (pip install psutil) to use memory tracing.")
|
||
|
|
||
|
process = psutil.Process(os.getpid())
|
||
|
mem = process.memory_info()
|
||
|
module.mem_rss_post_forward = mem.rss
|
||
|
mem_rss_diff = module.mem_rss_post_forward - module.mem_rss_pre_forward
|
||
|
module.mem_rss_diff = mem_rss_diff + (module.mem_rss_diff if hasattr(module, "mem_rss_diff") else 0)
|
||
|
return None
|
||
|
|
||
|
def add_memory_hooks(self):
|
||
|
"""
|
||
|
Add a memory hook before and after each sub-module forward pass to record increase in memory consumption.
|
||
|
|
||
|
Increase in memory consumption is stored in a `mem_rss_diff` attribute for each module and can be reset to zero
|
||
|
with `model.reset_memory_hooks_state()`.
|
||
|
"""
|
||
|
for module in self.modules():
|
||
|
module.register_forward_pre_hook(self._hook_rss_memory_pre_forward)
|
||
|
module.register_forward_hook(self._hook_rss_memory_post_forward)
|
||
|
self.reset_memory_hooks_state()
|
||
|
|
||
|
def reset_memory_hooks_state(self):
|
||
|
"""
|
||
|
Reset the `mem_rss_diff` attribute of each module (see [`~modeling_utils.ModuleUtilsMixin.add_memory_hooks`]).
|
||
|
"""
|
||
|
for module in self.modules():
|
||
|
module.mem_rss_diff = 0
|
||
|
module.mem_rss_post_forward = 0
|
||
|
module.mem_rss_pre_forward = 0
|
||
|
|
||
|
@property
|
||
|
def device(self) -> torch.device:
|
||
|
"""
|
||
|
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
|
||
|
device).
|
||
|
"""
|
||
|
return get_parameter_device(self)
|
||
|
|
||
|
@property
|
||
|
def dtype(self) -> torch.dtype:
|
||
|
"""
|
||
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
||
|
"""
|
||
|
return get_parameter_dtype(self)
|
||
|
|
||
|
def invert_attention_mask(self, encoder_attention_mask: Tensor) -> Tensor:
|
||
|
"""
|
||
|
Invert an attention mask (e.g., switches 0. and 1.).
|
||
|
|
||
|
Args:
|
||
|
encoder_attention_mask (`torch.Tensor`): An attention mask.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor`: The inverted attention mask.
|
||
|
"""
|
||
|
if encoder_attention_mask.dim() == 3:
|
||
|
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
|
||
|
if encoder_attention_mask.dim() == 2:
|
||
|
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
|
||
|
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
|
||
|
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
|
||
|
# /transformer/transformer_layers.py#L270
|
||
|
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
|
||
|
# encoder_extended_attention_mask.transpose(-1, -2))
|
||
|
encoder_extended_attention_mask = encoder_extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
||
|
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * torch.finfo(self.dtype).min
|
||
|
|
||
|
return encoder_extended_attention_mask
|
||
|
|
||
|
@staticmethod
|
||
|
def create_extended_attention_mask_for_decoder(input_shape, attention_mask, device=None):
|
||
|
if device is not None:
|
||
|
warnings.warn(
|
||
|
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
|
||
|
)
|
||
|
else:
|
||
|
device = attention_mask.device
|
||
|
batch_size, seq_length = input_shape
|
||
|
seq_ids = torch.arange(seq_length, device=device)
|
||
|
causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
|
||
|
# in case past_key_values are used we need to add a prefix ones mask to the causal mask
|
||
|
# causal and attention masks must have same type with pytorch version < 1.3
|
||
|
causal_mask = causal_mask.to(attention_mask.dtype)
|
||
|
|
||
|
if causal_mask.shape[1] < attention_mask.shape[1]:
|
||
|
prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
|
||
|
causal_mask = torch.cat(
|
||
|
[
|
||
|
torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
|
||
|
causal_mask,
|
||
|
],
|
||
|
axis=-1,
|
||
|
)
|
||
|
|
||
|
extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
|
||
|
return extended_attention_mask
|
||
|
|
||
|
def get_extended_attention_mask(
|
||
|
self, attention_mask: Tensor, input_shape: Tuple[int], device: torch.device = None, dtype: torch.float = None
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
|
||
|
|
||
|
Arguments:
|
||
|
attention_mask (`torch.Tensor`):
|
||
|
Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
|
||
|
input_shape (`Tuple[int]`):
|
||
|
The shape of the input to the model.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
|
||
|
"""
|
||
|
if dtype is None:
|
||
|
dtype = self.dtype
|
||
|
|
||
|
if not (attention_mask.dim() == 2 and self.config.is_decoder):
|
||
|
# show warning only if it won't be shown in `create_extended_attention_mask_for_decoder`
|
||
|
if device is not None:
|
||
|
warnings.warn(
|
||
|
"The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning
|
||
|
)
|
||
|
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
||
|
# ourselves in which case we just need to make it broadcastable to all heads.
|
||
|
if attention_mask.dim() == 3:
|
||
|
extended_attention_mask = attention_mask[:, None, :, :]
|
||
|
elif attention_mask.dim() == 2:
|
||
|
# Provided a padding mask of dimensions [batch_size, seq_length]
|
||
|
# - if the model is a decoder, apply a causal mask in addition to the padding mask
|
||
|
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
||
|
if self.config.is_decoder:
|
||
|
extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder(
|
||
|
input_shape, attention_mask, device
|
||
|
)
|
||
|
else:
|
||
|
extended_attention_mask = attention_mask[:, None, None, :]
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
|
||
|
)
|
||
|
|
||
|
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||
|
# masked positions, this operation will create a tensor which is 0.0 for
|
||
|
# positions we want to attend and the dtype's smallest value for masked positions.
|
||
|
# Since we are adding it to the raw scores before the softmax, this is
|
||
|
# effectively the same as removing these entirely.
|
||
|
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
|
||
|
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min
|
||
|
return extended_attention_mask
|
||
|
|
||
|
def get_head_mask(
|
||
|
self, head_mask: Optional[Tensor], num_hidden_layers: int, is_attention_chunked: bool = False
|
||
|
) -> Tensor:
|
||
|
"""
|
||
|
Prepare the head mask if needed.
|
||
|
|
||
|
Args:
|
||
|
head_mask (`torch.Tensor` with shape `[num_heads]` or `[num_hidden_layers x num_heads]`, *optional*):
|
||
|
The mask indicating if we should keep the heads or not (1.0 for keep, 0.0 for discard).
|
||
|
num_hidden_layers (`int`):
|
||
|
The number of hidden layers in the model.
|
||
|
is_attention_chunked (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not the attentions scores are computed by chunks or not.
|
||
|
|
||
|
Returns:
|
||
|
`torch.Tensor` with shape `[num_hidden_layers x batch x num_heads x seq_length x seq_length]` or list with
|
||
|
`[None]` for each layer.
|
||
|
"""
|
||
|
if head_mask is not None:
|
||
|
head_mask = self._convert_head_mask_to_5d(head_mask, num_hidden_layers)
|
||
|
if is_attention_chunked is True:
|
||
|
head_mask = head_mask.unsqueeze(-1)
|
||
|
else:
|
||
|
head_mask = [None] * num_hidden_layers
|
||
|
|
||
|
return head_mask
|
||
|
|
||
|
def _convert_head_mask_to_5d(self, head_mask, num_hidden_layers):
|
||
|
"""-> [num_hidden_layers x batch x num_heads x seq_length x seq_length]"""
|
||
|
if head_mask.dim() == 1:
|
||
|
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
||
|
head_mask = head_mask.expand(num_hidden_layers, -1, -1, -1, -1)
|
||
|
elif head_mask.dim() == 2:
|
||
|
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
||
|
assert head_mask.dim() == 5, f"head_mask.dim != 5, instead {head_mask.dim()}"
|
||
|
head_mask = head_mask.to(dtype=self.dtype) # switch to float if need + fp16 compatibility
|
||
|
return head_mask
|
||
|
|
||
|
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
|
||
|
"""
|
||
|
Get number of (optionally, trainable or non-embeddings) parameters in the module.
|
||
|
|
||
|
Args:
|
||
|
only_trainable (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return only the number of trainable parameters
|
||
|
|
||
|
exclude_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return only the number of non-embeddings parameters
|
||
|
|
||
|
Returns:
|
||
|
`int`: The number of parameters.
|
||
|
"""
|
||
|
|
||
|
if exclude_embeddings:
|
||
|
embedding_param_names = [
|
||
|
f"{name}.weight" for name, module_type in self.named_modules() if isinstance(module_type, nn.Embedding)
|
||
|
]
|
||
|
total_parameters = [
|
||
|
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
|
||
|
]
|
||
|
else:
|
||
|
total_parameters = list(self.parameters())
|
||
|
|
||
|
total_numel = []
|
||
|
is_loaded_in_4bit = getattr(self, "is_loaded_in_4bit", False)
|
||
|
|
||
|
if is_loaded_in_4bit:
|
||
|
if is_bitsandbytes_available():
|
||
|
import bitsandbytes as bnb
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"bitsandbytes is not installed but it seems that the model has been loaded in 4bit precision, something went wrong"
|
||
|
" make sure to install bitsandbytes with `pip install bitsandbytes`. You also need a GPU. "
|
||
|
)
|
||
|
|
||
|
for param in total_parameters:
|
||
|
if param.requires_grad or not only_trainable:
|
||
|
# For 4bit models, we need to multiply the number of parameters by 2 as half of the parameters are
|
||
|
# used for the 4bit quantization (uint8 tensors are stored)
|
||
|
if is_loaded_in_4bit and isinstance(param, bnb.nn.Params4bit):
|
||
|
quant_storage = self.hf_quantizer.quantization_config.bnb_4bit_quant_storage
|
||
|
# For compatibility with older PT version - see: https://github.com/huggingface/peft/pull/1635
|
||
|
nb_params = (
|
||
|
quant_storage.itemsize if hasattr(quant_storage, "itemsize") else quant_storage.element_size()
|
||
|
)
|
||
|
total_numel.append(param.numel() * 2 * nb_params)
|
||
|
else:
|
||
|
total_numel.append(param.numel())
|
||
|
|
||
|
return sum(total_numel)
|
||
|
|
||
|
def estimate_tokens(self, input_dict: Dict[str, Union[torch.Tensor, Any]]) -> int:
|
||
|
"""
|
||
|
Helper function to estimate the total number of tokens from the model inputs.
|
||
|
|
||
|
Args:
|
||
|
inputs (`dict`): The model inputs.
|
||
|
|
||
|
Returns:
|
||
|
`int`: The total number of tokens.
|
||
|
"""
|
||
|
if not hasattr(self, "warnings_issued"):
|
||
|
self.warnings_issued = {}
|
||
|
if self.main_input_name in input_dict:
|
||
|
return input_dict[self.main_input_name].numel()
|
||
|
elif "estimate_tokens" not in self.warnings_issued:
|
||
|
logger.warning(
|
||
|
"Could not estimate the number of tokens of the input, floating-point operations will not be computed"
|
||
|
)
|
||
|
self.warnings_issued["estimate_tokens"] = True
|
||
|
return 0
|
||
|
|
||
|
def floating_point_ops(
|
||
|
self, input_dict: Dict[str, Union[torch.Tensor, Any]], exclude_embeddings: bool = True
|
||
|
) -> int:
|
||
|
"""
|
||
|
Get number of (optionally, non-embeddings) floating-point operations for the forward and backward passes of a
|
||
|
batch with this transformer model. Default approximation neglects the quadratic dependency on the number of
|
||
|
tokens (valid if `12 * d_model << sequence_length`) as laid out in [this
|
||
|
paper](https://arxiv.org/pdf/2001.08361.pdf) section 2.1. Should be overridden for transformers with parameter
|
||
|
re-use e.g. Albert or Universal Transformers, or if doing long-range modeling with very high sequence lengths.
|
||
|
|
||
|
Args:
|
||
|
batch_size (`int`):
|
||
|
The batch size for the forward pass.
|
||
|
|
||
|
sequence_length (`int`):
|
||
|
The number of tokens in each line of the batch.
|
||
|
|
||
|
exclude_embeddings (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to count embedding and softmax operations.
|
||
|
|
||
|
Returns:
|
||
|
`int`: The number of floating-point operations.
|
||
|
"""
|
||
|
|
||
|
return 6 * self.estimate_tokens(input_dict) * self.num_parameters(exclude_embeddings=exclude_embeddings)
|
||
|
|
||
|
|
||
|
class PreTrainedModel(nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin):
|
||
|
r"""
|
||
|
Base class for all models.
|
||
|
|
||
|
[`PreTrainedModel`] takes care of storing the configuration of the models and handles methods for loading,
|
||
|
downloading and saving models as well as a few methods common to all models to:
|
||
|
|
||
|
- resize the input embeddings,
|
||
|
- prune heads in the self-attention heads.
|
||
|
|
||
|
Class attributes (overridden by derived classes):
|
||
|
|
||
|
- **config_class** ([`PretrainedConfig`]) -- A subclass of [`PretrainedConfig`] to use as configuration class
|
||
|
for this model architecture.
|
||
|
- **load_tf_weights** (`Callable`) -- A python *method* for loading a TensorFlow checkpoint in a PyTorch model,
|
||
|
taking as arguments:
|
||
|
|
||
|
- **model** ([`PreTrainedModel`]) -- An instance of the model on which to load the TensorFlow checkpoint.
|
||
|
- **config** ([`PreTrainedConfig`]) -- An instance of the configuration associated to the model.
|
||
|
- **path** (`str`) -- A path to the TensorFlow checkpoint.
|
||
|
|
||
|
- **base_model_prefix** (`str`) -- A string indicating the attribute associated to the base model in derived
|
||
|
classes of the same architecture adding modules on top of the base model.
|
||
|
- **is_parallelizable** (`bool`) -- A flag indicating whether this model supports model parallelization.
|
||
|
- **main_input_name** (`str`) -- The name of the principal input to the model (often `input_ids` for NLP
|
||
|
models, `pixel_values` for vision models and `input_values` for speech models).
|
||
|
"""
|
||
|
|
||
|
config_class = None
|
||
|
base_model_prefix = ""
|
||
|
main_input_name = "input_ids"
|
||
|
model_tags = None
|
||
|
|
||
|
_auto_class = None
|
||
|
_no_split_modules = None
|
||
|
_skip_keys_device_placement = None
|
||
|
_keep_in_fp32_modules = None
|
||
|
|
||
|
# a list of `re` patterns of `state_dict` keys that should be removed from the list of missing
|
||
|
# keys we find (keys inside the model but not in the checkpoint) and avoid unnecessary warnings.
|
||
|
_keys_to_ignore_on_load_missing = None
|
||
|
# a list of `re` patterns of `state_dict` keys that should be removed from the list of
|
||
|
# unexpected keys we find (keys inside the checkpoint but not the model) and avoid unnecessary
|
||
|
# warnings.
|
||
|
_keys_to_ignore_on_load_unexpected = None
|
||
|
# a list of `state_dict` keys to ignore when saving the model (useful for keys that aren't
|
||
|
# trained, but which are either deterministic or tied variables)
|
||
|
_keys_to_ignore_on_save = None
|
||
|
# a list of `state_dict` keys that are potentially tied to another key in the state_dict.
|
||
|
_tied_weights_keys = None
|
||
|
|
||
|
is_parallelizable = False
|
||
|
supports_gradient_checkpointing = False
|
||
|
|
||
|
# Flash Attention 2 support
|
||
|
_supports_flash_attn_2 = False
|
||
|
|
||
|
# SDPA support
|
||
|
_supports_sdpa = False
|
||
|
|
||
|
# Has support for a `Cache` instance as `past_key_values`
|
||
|
_supports_cache_class = False
|
||
|
|
||
|
@property
|
||
|
def dummy_inputs(self) -> Dict[str, torch.Tensor]:
|
||
|
"""
|
||
|
`Dict[str, torch.Tensor]`: Dummy inputs to do a forward pass in the network.
|
||
|
"""
|
||
|
return {"input_ids": torch.tensor(DUMMY_INPUTS)}
|
||
|
|
||
|
@property
|
||
|
def framework(self) -> str:
|
||
|
"""
|
||
|
:str: Identifies that this is a PyTorch model.
|
||
|
"""
|
||
|
return "pt"
|
||
|
|
||
|
def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
|
||
|
super().__init__()
|
||
|
if not isinstance(config, PretrainedConfig):
|
||
|
raise ValueError(
|
||
|
f"Parameter config in `{self.__class__.__name__}(config)` should be an instance of class "
|
||
|
"`PretrainedConfig`. To create a model from a pretrained model use "
|
||
|
f"`model = {self.__class__.__name__}.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
||
|
)
|
||
|
# Save config and origin of the pretrained weights if given in model
|
||
|
config = self._autoset_attn_implementation(
|
||
|
config, torch_dtype=torch.get_default_dtype(), check_device_map=False
|
||
|
)
|
||
|
self.config = config
|
||
|
|
||
|
self.name_or_path = config.name_or_path
|
||
|
self.warnings_issued = {}
|
||
|
self.generation_config = GenerationConfig.from_model_config(config) if self.can_generate() else None
|
||
|
# Overwrite the class attribute to make it an instance attribute, so models like
|
||
|
# `InstructBlipForConditionalGeneration` can dynamically update it without modifying the class attribute
|
||
|
# when a different component (e.g. language_model) is used.
|
||
|
self._keep_in_fp32_modules = copy.copy(self.__class__._keep_in_fp32_modules)
|
||
|
|
||
|
def post_init(self):
|
||
|
"""
|
||
|
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
|
||
|
modules properly initialized (such as weight initialization).
|
||
|
"""
|
||
|
self.init_weights()
|
||
|
self._backward_compatibility_gradient_checkpointing()
|
||
|
|
||
|
def _backward_compatibility_gradient_checkpointing(self):
|
||
|
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
|
||
|
self.gradient_checkpointing_enable()
|
||
|
# Remove the attribute now that is has been consumed, so it's no saved in the config.
|
||
|
delattr(self.config, "gradient_checkpointing")
|
||
|
|
||
|
def add_model_tags(self, tags: Union[List[str], str]) -> None:
|
||
|
r"""
|
||
|
Add custom tags into the model that gets pushed to the Hugging Face Hub. Will
|
||
|
not overwrite existing tags in the model.
|
||
|
|
||
|
Args:
|
||
|
tags (`Union[List[str], str]`):
|
||
|
The desired tags to inject in the model
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
from transformers import AutoModel
|
||
|
|
||
|
model = AutoModel.from_pretrained("google-bert/bert-base-cased")
|
||
|
|
||
|
model.add_model_tags(["custom", "custom-bert"])
|
||
|
|
||
|
# Push the model to your namespace with the name "my-custom-bert".
|
||
|
model.push_to_hub("my-custom-bert")
|
||
|
```
|
||
|
"""
|
||
|
if isinstance(tags, str):
|
||
|
tags = [tags]
|
||
|
|
||
|
if self.model_tags is None:
|
||
|
self.model_tags = []
|
||
|
|
||
|
for tag in tags:
|
||
|
if tag not in self.model_tags:
|
||
|
self.model_tags.append(tag)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_config(cls, config, **kwargs):
|
||
|
"""
|
||
|
All context managers that the model should be initialized under go here.
|
||
|
|
||
|
Args:
|
||
|
torch_dtype (`torch.dtype`, *optional*):
|
||
|
Override the default `torch.dtype` and load the model under this dtype.
|
||
|
"""
|
||
|
torch_dtype = kwargs.pop("torch_dtype", None)
|
||
|
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
|
||
|
|
||
|
# override default dtype if needed
|
||
|
dtype_orig = None
|
||
|
if torch_dtype is not None:
|
||
|
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
|
||
|
|
||
|
config = copy.deepcopy(config) # We do not want to modify the config inplace in _from_config.
|
||
|
config._attn_implementation = kwargs.pop("attn_implementation", None)
|
||
|
config = cls._autoset_attn_implementation(
|
||
|
config,
|
||
|
use_flash_attention_2=use_flash_attention_2,
|
||
|
check_device_map=False,
|
||
|
torch_dtype=torch_dtype,
|
||
|
)
|
||
|
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
import deepspeed
|
||
|
|
||
|
logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
|
||
|
# this immediately partitions the model across all gpus, to avoid the overhead in time
|
||
|
# and memory copying it on CPU or each GPU first
|
||
|
with deepspeed.zero.Init(config_dict_or_path=deepspeed_config()):
|
||
|
model = cls(config, **kwargs)
|
||
|
else:
|
||
|
model = cls(config, **kwargs)
|
||
|
|
||
|
# restore default dtype if it was modified
|
||
|
if dtype_orig is not None:
|
||
|
torch.set_default_dtype(dtype_orig)
|
||
|
|
||
|
return model
|
||
|
|
||
|
@classmethod
|
||
|
def _autoset_attn_implementation(
|
||
|
cls,
|
||
|
config,
|
||
|
use_flash_attention_2: bool = False,
|
||
|
torch_dtype: Optional[torch.dtype] = None,
|
||
|
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
||
|
check_device_map: bool = True,
|
||
|
):
|
||
|
"""
|
||
|
Automatically checks and dispatches to a default attention implementation. In order of priority:
|
||
|
1. An implementation specified in `config._attn_implementation` (due for example to the argument attn_implementation="sdpa" in from_pretrained).
|
||
|
2. DEPRECATED: if use_flash_attention_2 is set to `True` and `flash_attn` is available, flash attention. (`LlamaFlashAttention` for example)
|
||
|
3. SDPA implementation, if available and supported by the model type. (`LlamaSdpaAttention` for example)
|
||
|
4. The default model's implementation otherwise (`LlamaAttention` for example) .
|
||
|
"""
|
||
|
# Here we use config._attn_implementation_internal to check whether the attention implementation was explicitely set by the user.
|
||
|
# The property `PretrainedConfig._attn_implementation` is never `None`, for backward compatibility (always fall back on "eager").
|
||
|
# The `hasattr` here is used as some Transformers tests for some reason do not call PretrainedConfig __init__ (e.g. test_no_super_init_config_and_model)
|
||
|
requested_attn_implementation = None
|
||
|
if hasattr(config, "_attn_implementation_internal") and config._attn_implementation_internal is not None:
|
||
|
if config._attn_implementation != "flash_attention_2" and use_flash_attention_2:
|
||
|
raise ValueError(
|
||
|
f'Both attn_implementation="{config._attn_implementation}" and `use_flash_attention_2=True` were used when loading the model, which are not compatible.'
|
||
|
' We recommend to just use `attn_implementation="flash_attention_2"` when loading the model.'
|
||
|
)
|
||
|
|
||
|
if config._attn_implementation not in ["eager", "sdpa", "flash_attention_2"]:
|
||
|
message = f'Specified `attn_implementation="{config._attn_implementation}"` is not supported. The only possible arguments are `attn_implementation="eager"` (manual attention implementation)'
|
||
|
if cls._supports_flash_attn_2:
|
||
|
message += ', `"attn_implementation=flash_attention_2"` (implementation using flash attention 2)'
|
||
|
if cls._supports_sdpa:
|
||
|
message += ', `"attn_implementation=sdpa"` (implementation using torch.nn.functional.scaled_dot_product_attention)'
|
||
|
raise ValueError(message + ".")
|
||
|
|
||
|
# If a config is passed with a preset attn_implementation, we skip the automatic dispatch and use the user-provided config, with hard checks that the requested attention implementation is available.
|
||
|
requested_attn_implementation = config._attn_implementation_internal
|
||
|
|
||
|
if use_flash_attention_2:
|
||
|
logger.warning_once(
|
||
|
'The model was loaded with use_flash_attention_2=True, which is deprecated and may be removed in a future release. Please use `attn_implementation="flash_attention_2"` instead.'
|
||
|
)
|
||
|
config._attn_implementation = "flash_attention_2"
|
||
|
|
||
|
if config._attn_implementation == "flash_attention_2":
|
||
|
cls._check_and_enable_flash_attn_2(
|
||
|
config,
|
||
|
torch_dtype=torch_dtype,
|
||
|
device_map=device_map,
|
||
|
hard_check_only=False,
|
||
|
check_device_map=check_device_map,
|
||
|
)
|
||
|
elif requested_attn_implementation in [None, "sdpa"] and not is_torch_xla_available():
|
||
|
# use_flash_attention_2 takes priority over SDPA, hence SDPA treated in this elif.
|
||
|
config = cls._check_and_enable_sdpa(
|
||
|
config,
|
||
|
hard_check_only=False if requested_attn_implementation is None else True,
|
||
|
)
|
||
|
else:
|
||
|
config._attn_implementation = "eager"
|
||
|
|
||
|
return config
|
||
|
|
||
|
@classmethod
|
||
|
def _set_default_torch_dtype(cls, dtype: torch.dtype) -> torch.dtype:
|
||
|
"""
|
||
|
Change the default dtype and return the previous one. This is needed when wanting to instantiate the model
|
||
|
under specific dtype.
|
||
|
|
||
|
Args:
|
||
|
dtype (`torch.dtype`):
|
||
|
a floating dtype to set to.
|
||
|
|
||
|
Returns:
|
||
|
`torch.dtype`: the original `dtype` that can be used to restore `torch.set_default_dtype(dtype)` if it was
|
||
|
modified. If it wasn't, returns `None`.
|
||
|
|
||
|
Note `set_default_dtype` currently only works with floating-point types and asserts if for example,
|
||
|
`torch.int64` is passed. So if a non-float `dtype` is passed this functions will throw an exception.
|
||
|
"""
|
||
|
if not dtype.is_floating_point:
|
||
|
raise ValueError(
|
||
|
f"Can't instantiate {cls.__name__} model under dtype={dtype} since it is not a floating point dtype"
|
||
|
)
|
||
|
|
||
|
logger.info(f"Instantiating {cls.__name__} model under default dtype {dtype}.")
|
||
|
dtype_orig = torch.get_default_dtype()
|
||
|
torch.set_default_dtype(dtype)
|
||
|
return dtype_orig
|
||
|
|
||
|
@property
|
||
|
def base_model(self) -> nn.Module:
|
||
|
"""
|
||
|
`torch.nn.Module`: The main body of the model.
|
||
|
"""
|
||
|
return getattr(self, self.base_model_prefix, self)
|
||
|
|
||
|
@classmethod
|
||
|
def can_generate(cls) -> bool:
|
||
|
"""
|
||
|
Returns whether this model can generate sequences with `.generate()`.
|
||
|
|
||
|
Returns:
|
||
|
`bool`: Whether this model can generate sequences with `.generate()`.
|
||
|
"""
|
||
|
# Detects whether `prepare_inputs_for_generation` has been overwritten, which is a requirement for generation.
|
||
|
# Alternativelly, the model can also have a custom `generate` function.
|
||
|
if "GenerationMixin" in str(cls.prepare_inputs_for_generation) and "GenerationMixin" in str(cls.generate):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
@classmethod
|
||
|
def _check_and_enable_flash_attn_2(
|
||
|
cls,
|
||
|
config,
|
||
|
torch_dtype: Optional[torch.dtype] = None,
|
||
|
device_map: Optional[Union[str, Dict[str, int]]] = None,
|
||
|
check_device_map: bool = True,
|
||
|
hard_check_only: bool = False,
|
||
|
) -> PretrainedConfig:
|
||
|
"""
|
||
|
Checks the availability of Flash Attention 2 and compatibility with the current model.
|
||
|
|
||
|
If all checks pass and `hard_check_only` is False, the method will set the config attribute `attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
|
||
|
"""
|
||
|
if not cls._supports_flash_attn_2:
|
||
|
raise ValueError(
|
||
|
f"{cls.__name__} does not support Flash Attention 2.0 yet. Please request to add support where"
|
||
|
f" the model is hosted, on its model hub page: https://huggingface.co/{config._name_or_path}/discussions/new"
|
||
|
" or in the Transformers GitHub repo: https://github.com/huggingface/transformers/issues/new"
|
||
|
)
|
||
|
|
||
|
if not is_flash_attn_2_available():
|
||
|
preface = "FlashAttention2 has been toggled on, but it cannot be used due to the following error:"
|
||
|
install_message = "Please refer to the documentation of https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2 to install Flash Attention 2."
|
||
|
|
||
|
if importlib.util.find_spec("flash_attn") is None:
|
||
|
raise ImportError(f"{preface} the package flash_attn seems to be not installed. {install_message}")
|
||
|
|
||
|
flash_attention_version = version.parse(importlib.metadata.version("flash_attn"))
|
||
|
if torch.version.cuda:
|
||
|
if flash_attention_version < version.parse("2.1.0"):
|
||
|
raise ImportError(
|
||
|
f"{preface} you need flash_attn package version to be greater or equal than 2.1.0. Detected version {flash_attention_version}. {install_message}"
|
||
|
)
|
||
|
else:
|
||
|
raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
|
||
|
elif torch.version.hip:
|
||
|
if flash_attention_version < version.parse("2.0.4"):
|
||
|
raise ImportError(
|
||
|
f"{preface} you need flash_attn package version to be greater or equal than 2.0.4. Make sure to have that version installed - detected version {flash_attention_version}. {install_message}"
|
||
|
)
|
||
|
else:
|
||
|
raise ImportError(f"{preface} Flash Attention 2 is not available. {install_message}")
|
||
|
|
||
|
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
|
||
|
|
||
|
if _is_bettertransformer:
|
||
|
raise ValueError(
|
||
|
"Flash Attention 2 and BetterTransformer API are not compatible. Please make sure to disable BetterTransformers by doing model.reverse_bettertransformer()"
|
||
|
)
|
||
|
|
||
|
if torch_dtype is None:
|
||
|
logger.warning_once(
|
||
|
"You are attempting to use Flash Attention 2.0 without specifying a torch dtype. This might lead to unexpected behaviour"
|
||
|
)
|
||
|
elif torch_dtype is not None and torch_dtype not in [torch.float16, torch.bfloat16]:
|
||
|
logger.warning_once(
|
||
|
"Flash Attention 2.0 only supports torch.float16 and torch.bfloat16 dtypes, but"
|
||
|
f" the current dype in {cls.__name__} is {torch_dtype}. You should run training or inference using Automatic Mixed-Precision via the `with torch.autocast(device_type='torch_device'):` decorator,"
|
||
|
' or load the model with the `torch_dtype` argument. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="flash_attention_2", torch_dtype=torch.float16)`'
|
||
|
)
|
||
|
|
||
|
# The check `torch.empty(0).device.type != "cuda"` is needed as the model may be initialized after `torch.set_default_device` has been called,
|
||
|
# or the model may be initialized under the context manager `with torch.device("cuda"):`.
|
||
|
if check_device_map and device_map is None and torch.empty(0).device.type != "cuda":
|
||
|
if torch.cuda.is_available():
|
||
|
logger.warning_once(
|
||
|
"You are attempting to use Flash Attention 2.0 with a model not initialized on GPU. Make sure to move the model to GPU"
|
||
|
" after initializing it on CPU with `model.to('cuda')`."
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"You are attempting to use Flash Attention 2.0 with a model not initialized on GPU and with no GPU available. "
|
||
|
"This is not supported yet. Please make sure to have access to a GPU and either initialise the model on a GPU by passing a device_map "
|
||
|
"or initialising the model on CPU and then moving it to GPU."
|
||
|
)
|
||
|
elif (
|
||
|
check_device_map
|
||
|
and device_map is not None
|
||
|
and isinstance(device_map, dict)
|
||
|
and ("cpu" in device_map.values() or "disk" in device_map.values())
|
||
|
):
|
||
|
raise ValueError(
|
||
|
"You are attempting to use Flash Attention 2.0 with a model dispatched on CPU or disk. This is not supported. Please make sure to "
|
||
|
"initialise the model on a GPU by passing a device_map that contains only GPU devices as keys."
|
||
|
)
|
||
|
if not hard_check_only:
|
||
|
config._attn_implementation = "flash_attention_2"
|
||
|
return config
|
||
|
|
||
|
@classmethod
|
||
|
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> PretrainedConfig:
|
||
|
"""
|
||
|
Checks the availability of SDPA for a given model.
|
||
|
|
||
|
If all checks pass and `hard_check_only` is False, the method will set the config attribute `_attn_implementation` to "flash_attention_2" so that the model can initialize the correct attention module.
|
||
|
"""
|
||
|
if hard_check_only:
|
||
|
if not cls._supports_sdpa:
|
||
|
raise ValueError(
|
||
|
f"{cls.__name__} does not support an attention implementation through torch.nn.functional.scaled_dot_product_attention yet."
|
||
|
" Please request the support for this architecture: https://github.com/huggingface/transformers/issues/28005. If you believe"
|
||
|
' this error is a bug, please open an issue in Transformers GitHub repository and load your model with the argument `attn_implementation="eager"` meanwhile. Example: `model = AutoModel.from_pretrained("openai/whisper-tiny", attn_implementation="eager")`'
|
||
|
)
|
||
|
if not is_torch_sdpa_available():
|
||
|
raise ImportError(
|
||
|
"PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1."
|
||
|
)
|
||
|
|
||
|
if not is_torch_sdpa_available() or not cls._supports_sdpa:
|
||
|
return config
|
||
|
|
||
|
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
|
||
|
if _is_bettertransformer:
|
||
|
return config
|
||
|
|
||
|
if not hard_check_only:
|
||
|
config._attn_implementation = "sdpa"
|
||
|
return config
|
||
|
|
||
|
def enable_input_require_grads(self):
|
||
|
"""
|
||
|
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping
|
||
|
the model weights fixed.
|
||
|
"""
|
||
|
|
||
|
def make_inputs_require_grads(module, input, output):
|
||
|
output.requires_grad_(True)
|
||
|
|
||
|
self._require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
|
||
|
|
||
|
def disable_input_require_grads(self):
|
||
|
"""
|
||
|
Removes the `_require_grads_hook`.
|
||
|
"""
|
||
|
self._require_grads_hook.remove()
|
||
|
|
||
|
def get_input_embeddings(self) -> nn.Module:
|
||
|
"""
|
||
|
Returns the model's input embeddings.
|
||
|
|
||
|
Returns:
|
||
|
`nn.Module`: A torch module mapping vocabulary to hidden states.
|
||
|
"""
|
||
|
base_model = getattr(self, self.base_model_prefix, self)
|
||
|
if base_model is not self:
|
||
|
return base_model.get_input_embeddings()
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def set_input_embeddings(self, value: nn.Module):
|
||
|
"""
|
||
|
Set model's input embeddings.
|
||
|
|
||
|
Args:
|
||
|
value (`nn.Module`): A module mapping vocabulary to hidden states.
|
||
|
"""
|
||
|
base_model = getattr(self, self.base_model_prefix, self)
|
||
|
if base_model is not self:
|
||
|
base_model.set_input_embeddings(value)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def get_output_embeddings(self) -> nn.Module:
|
||
|
"""
|
||
|
Returns the model's output embeddings.
|
||
|
|
||
|
Returns:
|
||
|
`nn.Module`: A torch module mapping hidden states to vocabulary.
|
||
|
"""
|
||
|
return None # Overwrite for models with output embeddings
|
||
|
|
||
|
def _init_weights(self, module):
|
||
|
"""
|
||
|
Initialize the weights. This method should be overridden by derived class and is
|
||
|
the only initialization method that will be called when loading a checkpoint
|
||
|
using `from_pretrained`. Any attempt to initialize outside of this function
|
||
|
will be useless as the torch.nn.init function are all replaced with skip.
|
||
|
"""
|
||
|
pass
|
||
|
|
||
|
def _initialize_weights(self, module):
|
||
|
"""
|
||
|
Initialize the weights if they are not already initialized.
|
||
|
"""
|
||
|
if getattr(module, "_is_hf_initialized", False):
|
||
|
return
|
||
|
self._init_weights(module)
|
||
|
module._is_hf_initialized = True
|
||
|
|
||
|
def tie_weights(self):
|
||
|
"""
|
||
|
Tie the weights between the input embeddings and the output embeddings.
|
||
|
|
||
|
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
|
||
|
weights instead.
|
||
|
"""
|
||
|
if getattr(self.config, "tie_word_embeddings", True):
|
||
|
output_embeddings = self.get_output_embeddings()
|
||
|
if output_embeddings is not None:
|
||
|
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
|
||
|
|
||
|
if getattr(self.config, "is_encoder_decoder", False) and getattr(self.config, "tie_encoder_decoder", False):
|
||
|
if hasattr(self, self.base_model_prefix):
|
||
|
self = getattr(self, self.base_model_prefix)
|
||
|
tied_weights = self._tie_encoder_decoder_weights(
|
||
|
self.encoder, self.decoder, self.base_model_prefix, "encoder"
|
||
|
)
|
||
|
# Setting a dynamic variable instead of `_tied_weights_keys` because it's a class
|
||
|
# attributed not an instance member, therefore modifying it will modify the entire class
|
||
|
# Leading to issues on subsequent calls by different tests or subsequent calls.
|
||
|
self._dynamic_tied_weights_keys = tied_weights
|
||
|
|
||
|
for module in self.modules():
|
||
|
if hasattr(module, "_tie_weights"):
|
||
|
module._tie_weights()
|
||
|
|
||
|
@staticmethod
|
||
|
def _tie_encoder_decoder_weights(
|
||
|
encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, base_encoder_name: str
|
||
|
):
|
||
|
uninitialized_encoder_weights: List[str] = []
|
||
|
tied_weights: List[str] = []
|
||
|
if decoder.__class__ != encoder.__class__:
|
||
|
logger.info(
|
||
|
f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder"
|
||
|
" weights are correctly initialized."
|
||
|
)
|
||
|
|
||
|
def tie_encoder_to_decoder_recursively(
|
||
|
decoder_pointer: nn.Module,
|
||
|
encoder_pointer: nn.Module,
|
||
|
module_name: str,
|
||
|
base_encoder_name: str,
|
||
|
uninitialized_encoder_weights: List[str],
|
||
|
depth=0,
|
||
|
total_decoder_name="",
|
||
|
total_encoder_name="",
|
||
|
):
|
||
|
assert isinstance(decoder_pointer, nn.Module) and isinstance(
|
||
|
encoder_pointer, nn.Module
|
||
|
), f"{decoder_pointer} and {encoder_pointer} have to be of type nn.Module"
|
||
|
if hasattr(decoder_pointer, "weight"):
|
||
|
assert hasattr(encoder_pointer, "weight")
|
||
|
encoder_pointer.weight = decoder_pointer.weight
|
||
|
tied_weights.append(f"{base_encoder_name}{total_encoder_name}.weight")
|
||
|
if hasattr(decoder_pointer, "bias"):
|
||
|
assert hasattr(encoder_pointer, "bias")
|
||
|
tied_weights.append(f"{base_encoder_name}{total_encoder_name}.bias")
|
||
|
encoder_pointer.bias = decoder_pointer.bias
|
||
|
return
|
||
|
|
||
|
encoder_modules = encoder_pointer._modules
|
||
|
decoder_modules = decoder_pointer._modules
|
||
|
if len(decoder_modules) > 0:
|
||
|
assert (
|
||
|
len(encoder_modules) > 0
|
||
|
), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
|
||
|
|
||
|
all_encoder_weights = {module_name + "/" + sub_name for sub_name in encoder_modules.keys()}
|
||
|
encoder_layer_pos = 0
|
||
|
for name, module in decoder_modules.items():
|
||
|
if name.isdigit():
|
||
|
encoder_name = str(int(name) + encoder_layer_pos)
|
||
|
decoder_name = name
|
||
|
if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
|
||
|
encoder_modules
|
||
|
) != len(decoder_modules):
|
||
|
# this can happen if the name corresponds to the position in a list module list of layers
|
||
|
# in this case the decoder has added a cross-attention that the encoder does not have
|
||
|
# thus skip this step and subtract one layer pos from encoder
|
||
|
encoder_layer_pos -= 1
|
||
|
continue
|
||
|
elif name not in encoder_modules:
|
||
|
continue
|
||
|
elif depth > 500:
|
||
|
raise ValueError(
|
||
|
"Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is"
|
||
|
" a circular dependency between two or more `nn.Modules` of your model."
|
||
|
)
|
||
|
else:
|
||
|
decoder_name = encoder_name = name
|
||
|
tie_encoder_to_decoder_recursively(
|
||
|
decoder_modules[decoder_name],
|
||
|
encoder_modules[encoder_name],
|
||
|
module_name + "/" + name,
|
||
|
base_encoder_name,
|
||
|
uninitialized_encoder_weights,
|
||
|
depth=depth + 1,
|
||
|
total_encoder_name=f"{total_encoder_name}.{encoder_name}",
|
||
|
total_decoder_name=f"{total_decoder_name}.{decoder_name}",
|
||
|
)
|
||
|
all_encoder_weights.remove(module_name + "/" + encoder_name)
|
||
|
|
||
|
uninitialized_encoder_weights += list(all_encoder_weights)
|
||
|
|
||
|
# tie weights recursively
|
||
|
tie_encoder_to_decoder_recursively(
|
||
|
decoder, encoder, base_model_prefix, base_encoder_name, uninitialized_encoder_weights
|
||
|
)
|
||
|
|
||
|
if len(uninitialized_encoder_weights) > 0:
|
||
|
logger.warning(
|
||
|
f"The following encoder weights were not tied to the decoder {uninitialized_encoder_weights}"
|
||
|
)
|
||
|
return tied_weights
|
||
|
|
||
|
def _tie_or_clone_weights(self, output_embeddings, input_embeddings):
|
||
|
"""Tie or clone module weights depending of whether we are using TorchScript or not"""
|
||
|
if self.config.torchscript:
|
||
|
output_embeddings.weight = nn.Parameter(input_embeddings.weight.clone())
|
||
|
else:
|
||
|
output_embeddings.weight = input_embeddings.weight
|
||
|
|
||
|
if getattr(output_embeddings, "bias", None) is not None:
|
||
|
output_embeddings.bias.data = nn.functional.pad(
|
||
|
output_embeddings.bias.data,
|
||
|
(
|
||
|
0,
|
||
|
output_embeddings.weight.shape[0] - output_embeddings.bias.shape[0],
|
||
|
),
|
||
|
"constant",
|
||
|
0,
|
||
|
)
|
||
|
if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
|
||
|
output_embeddings.out_features = input_embeddings.num_embeddings
|
||
|
|
||
|
def _get_no_split_modules(self, device_map: str):
|
||
|
"""
|
||
|
Get the modules of the model that should not be spit when using device_map. We iterate through the modules to
|
||
|
get the underlying `_no_split_modules`.
|
||
|
|
||
|
Args:
|
||
|
device_map (`str`):
|
||
|
The device map value. Options are ["auto", "balanced", "balanced_low_0", "sequential"]
|
||
|
|
||
|
Returns:
|
||
|
`List[str]`: List of modules that should not be split
|
||
|
"""
|
||
|
_no_split_modules = set()
|
||
|
modules_to_check = [self]
|
||
|
while len(modules_to_check) > 0:
|
||
|
module = modules_to_check.pop(-1)
|
||
|
# if the module does not appear in _no_split_modules, we also check the children
|
||
|
if module.__class__.__name__ not in _no_split_modules:
|
||
|
if isinstance(module, PreTrainedModel):
|
||
|
if module._no_split_modules is None:
|
||
|
raise ValueError(
|
||
|
f"{module.__class__.__name__} does not support `device_map='{device_map}'`. To implement support, the model "
|
||
|
"class needs to implement the `_no_split_modules` attribute."
|
||
|
)
|
||
|
else:
|
||
|
_no_split_modules = _no_split_modules | set(module._no_split_modules)
|
||
|
modules_to_check += list(module.children())
|
||
|
return list(_no_split_modules)
|
||
|
|
||
|
def resize_token_embeddings(
|
||
|
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
||
|
) -> nn.Embedding:
|
||
|
"""
|
||
|
Resizes input token embeddings matrix of the model if `new_num_tokens != config.vocab_size`.
|
||
|
|
||
|
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
||
|
|
||
|
Arguments:
|
||
|
new_num_tokens (`int`, *optional*):
|
||
|
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
||
|
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
||
|
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
||
|
pad_to_multiple_of (`int`, *optional*):
|
||
|
If set will pad the embedding matrix to a multiple of the provided value.If `new_num_tokens` is set to
|
||
|
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
||
|
|
||
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
||
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
||
|
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
||
|
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
||
|
|
||
|
Return:
|
||
|
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
||
|
"""
|
||
|
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
||
|
if new_num_tokens is None and pad_to_multiple_of is None:
|
||
|
return model_embeds
|
||
|
|
||
|
# Update base model and current model config
|
||
|
self.config.vocab_size = model_embeds.weight.shape[0]
|
||
|
self.vocab_size = model_embeds.weight.shape[0]
|
||
|
|
||
|
# Tie weights again if needed
|
||
|
self.tie_weights()
|
||
|
|
||
|
return model_embeds
|
||
|
|
||
|
def _resize_token_embeddings(self, new_num_tokens, pad_to_multiple_of=None):
|
||
|
old_embeddings = self.get_input_embeddings()
|
||
|
new_embeddings = self._get_resized_embeddings(old_embeddings, new_num_tokens, pad_to_multiple_of)
|
||
|
if hasattr(old_embeddings, "_hf_hook"):
|
||
|
hook = old_embeddings._hf_hook
|
||
|
add_hook_to_module(new_embeddings, hook)
|
||
|
old_embeddings_requires_grad = old_embeddings.weight.requires_grad
|
||
|
new_embeddings.requires_grad_(old_embeddings_requires_grad)
|
||
|
self.set_input_embeddings(new_embeddings)
|
||
|
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
|
||
|
|
||
|
# Update new_num_tokens with the actual size of new_embeddings
|
||
|
if pad_to_multiple_of is not None:
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(new_embeddings.weight, modifier_rank=None):
|
||
|
new_num_tokens = new_embeddings.weight.shape[0]
|
||
|
else:
|
||
|
new_num_tokens = new_embeddings.weight.shape[0]
|
||
|
|
||
|
# if word embeddings are not tied, make sure that lm head is resized as well
|
||
|
if self.get_output_embeddings() is not None and not self.config.tie_word_embeddings:
|
||
|
old_lm_head = self.get_output_embeddings()
|
||
|
if isinstance(old_lm_head, torch.nn.Embedding):
|
||
|
new_lm_head = self._get_resized_embeddings(old_lm_head, new_num_tokens)
|
||
|
else:
|
||
|
new_lm_head = self._get_resized_lm_head(old_lm_head, new_num_tokens)
|
||
|
if hasattr(old_lm_head, "_hf_hook"):
|
||
|
hook = old_lm_head._hf_hook
|
||
|
add_hook_to_module(new_lm_head, hook)
|
||
|
old_lm_head_requires_grad = old_lm_head.weight.requires_grad
|
||
|
new_lm_head.requires_grad_(old_lm_head_requires_grad)
|
||
|
self.set_output_embeddings(new_lm_head)
|
||
|
|
||
|
return self.get_input_embeddings()
|
||
|
|
||
|
def _get_resized_embeddings(
|
||
|
self,
|
||
|
old_embeddings: nn.Embedding,
|
||
|
new_num_tokens: Optional[int] = None,
|
||
|
pad_to_multiple_of: Optional[int] = None,
|
||
|
) -> nn.Embedding:
|
||
|
"""
|
||
|
Build a resized Embedding Module from a provided token Embedding Module. Increasing the size will add newly
|
||
|
initialized vectors at the end. Reducing the size will remove vectors from the end
|
||
|
|
||
|
Args:
|
||
|
old_embeddings (`torch.nn.Embedding`):
|
||
|
Old embeddings to be resized.
|
||
|
new_num_tokens (`int`, *optional*):
|
||
|
New number of tokens in the embedding matrix.
|
||
|
|
||
|
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
|
||
|
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
|
||
|
`torch.nn.Embedding` module of the model without doing anything.
|
||
|
pad_to_multiple_of (`int`, *optional*):
|
||
|
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
||
|
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
||
|
|
||
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
||
|
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
||
|
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
||
|
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
||
|
|
||
|
|
||
|
Return:
|
||
|
`torch.nn.Embedding`: Pointer to the resized Embedding Module or the old Embedding Module if
|
||
|
`new_num_tokens` is `None`
|
||
|
"""
|
||
|
|
||
|
if pad_to_multiple_of is not None:
|
||
|
if not isinstance(pad_to_multiple_of, int):
|
||
|
raise ValueError(
|
||
|
f"Asking to pad the embedding matrix to a multiple of `{pad_to_multiple_of}`, which is not and integer. Please make sure to pass an integer"
|
||
|
)
|
||
|
if new_num_tokens is None:
|
||
|
new_num_tokens = old_embeddings.weight.shape[0]
|
||
|
new_num_tokens = ((new_num_tokens + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
|
||
|
else:
|
||
|
logger.info(
|
||
|
"You are resizing the embedding layer without providing a `pad_to_multiple_of` parameter. This means that the new embedding"
|
||
|
f" dimension will be {new_num_tokens}. This might induce some performance reduction as *Tensor Cores* will not be available."
|
||
|
" For more details about this, or help on choosing the correct value for resizing, refer to this guide:"
|
||
|
" https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc"
|
||
|
)
|
||
|
|
||
|
if new_num_tokens is None:
|
||
|
return old_embeddings
|
||
|
|
||
|
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(old_embeddings.weight, modifier_rank=None):
|
||
|
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
||
|
else:
|
||
|
old_num_tokens, old_embedding_dim = old_embeddings.weight.size()
|
||
|
|
||
|
if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
|
||
|
return old_embeddings
|
||
|
|
||
|
if not isinstance(old_embeddings, nn.Embedding):
|
||
|
raise TypeError(
|
||
|
f"Old embeddings are of type {type(old_embeddings)}, which is not an instance of {nn.Embedding}. You"
|
||
|
" should either use a different resize function or make sure that `old_embeddings` are an instance of"
|
||
|
f" {nn.Embedding}."
|
||
|
)
|
||
|
|
||
|
# Build new embeddings
|
||
|
|
||
|
# When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
|
||
|
# because the shape of the new embedding layer is used across various modeling files
|
||
|
# as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
|
||
|
# to errors when training.
|
||
|
new_embeddings = nn.Embedding(
|
||
|
new_num_tokens,
|
||
|
old_embedding_dim,
|
||
|
device=old_embeddings.weight.device,
|
||
|
dtype=old_embeddings.weight.dtype,
|
||
|
)
|
||
|
|
||
|
# initialize all new embeddings (in particular added tokens)
|
||
|
self._init_weights(new_embeddings)
|
||
|
|
||
|
# Copy token embeddings from the previous weights
|
||
|
|
||
|
# numbers of tokens to copy
|
||
|
n = min(old_num_tokens, new_num_tokens)
|
||
|
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
params = [old_embeddings.weight, new_embeddings.weight]
|
||
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
||
|
new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
|
||
|
else:
|
||
|
new_embeddings.weight.data[:n, :] = old_embeddings.weight.data[:n, :]
|
||
|
|
||
|
return new_embeddings
|
||
|
|
||
|
def _get_resized_lm_head(
|
||
|
self, old_lm_head: nn.Linear, new_num_tokens: Optional[int] = None, transposed: Optional[bool] = False
|
||
|
) -> nn.Linear:
|
||
|
"""
|
||
|
Build a resized Linear Module from a provided old Linear Module. Increasing the size will add newly initialized
|
||
|
vectors at the end. Reducing the size will remove vectors from the end
|
||
|
|
||
|
Args:
|
||
|
old_lm_head (`torch.nn.Linear`):
|
||
|
Old lm head liner layer to be resized.
|
||
|
new_num_tokens (`int`, *optional*):
|
||
|
New number of tokens in the linear matrix.
|
||
|
|
||
|
Increasing the size will add newly initialized vectors at the end. Reducing the size will remove
|
||
|
vectors from the end. If not provided or `None`, just returns a pointer to the input tokens
|
||
|
`torch.nn.Linear` module of the model without doing anything. transposed (`bool`, *optional*, defaults
|
||
|
to `False`): Whether `old_lm_head` is transposed or not. If True `old_lm_head.size()` is `lm_head_dim,
|
||
|
vocab_size` else `vocab_size, lm_head_dim`.
|
||
|
|
||
|
Return:
|
||
|
`torch.nn.Linear`: Pointer to the resized Linear Module or the old Linear Module if `new_num_tokens` is
|
||
|
`None`
|
||
|
"""
|
||
|
if new_num_tokens is None:
|
||
|
return old_lm_head
|
||
|
|
||
|
is_quantized = hasattr(self, "hf_quantizer") and self.hf_quantizer is not None
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
with deepspeed.zero.GatheredParameters(old_lm_head.weight, modifier_rank=None):
|
||
|
old_num_tokens, old_lm_head_dim = (
|
||
|
old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
|
||
|
)
|
||
|
else:
|
||
|
old_num_tokens, old_lm_head_dim = (
|
||
|
old_lm_head.weight.size() if not transposed else old_lm_head.weight.t().size()
|
||
|
)
|
||
|
|
||
|
if old_num_tokens == new_num_tokens and not is_deepspeed_zero3_enabled():
|
||
|
return old_lm_head
|
||
|
|
||
|
if not isinstance(old_lm_head, nn.Linear):
|
||
|
raise TypeError(
|
||
|
f"Old language model head is of type {type(old_lm_head)}, which is not an instance of {nn.Linear}. You"
|
||
|
" should either use a different resize function or make sure that `old_lm_head` are an instance of"
|
||
|
f" {nn.Linear}."
|
||
|
)
|
||
|
|
||
|
# Build new lm head
|
||
|
new_lm_head_shape = (old_lm_head_dim, new_num_tokens) if not transposed else (new_num_tokens, old_lm_head_dim)
|
||
|
has_new_lm_head_bias = old_lm_head.bias is not None
|
||
|
|
||
|
# When using DeepSpeed ZeRO-3, we shouldn't create new embeddings with DeepSpeed init
|
||
|
# because the shape of the new embedding layer is used across various modeling files
|
||
|
# as well as to update config vocab size. Shape will be 0 when using DeepSpeed init leading
|
||
|
# to errors when training.
|
||
|
new_lm_head = nn.Linear(
|
||
|
*new_lm_head_shape,
|
||
|
bias=has_new_lm_head_bias,
|
||
|
device=old_lm_head.weight.device,
|
||
|
dtype=old_lm_head.weight.dtype,
|
||
|
)
|
||
|
|
||
|
# initialize new lm head (in particular added tokens)
|
||
|
self._init_weights(new_lm_head)
|
||
|
|
||
|
num_tokens_to_copy = min(old_num_tokens, new_num_tokens)
|
||
|
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
params = [old_lm_head.weight, old_lm_head.bias, new_lm_head.weight, new_lm_head.bias]
|
||
|
with deepspeed.zero.GatheredParameters(params, modifier_rank=0):
|
||
|
self._copy_lm_head_original_to_resized(
|
||
|
new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
|
||
|
)
|
||
|
else:
|
||
|
self._copy_lm_head_original_to_resized(
|
||
|
new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
|
||
|
)
|
||
|
|
||
|
return new_lm_head
|
||
|
|
||
|
def _copy_lm_head_original_to_resized(
|
||
|
self, new_lm_head, old_lm_head, num_tokens_to_copy, transposed, has_new_lm_head_bias
|
||
|
):
|
||
|
# Copy old lm head weights to new lm head
|
||
|
if not transposed:
|
||
|
new_lm_head.weight.data[:num_tokens_to_copy, :] = old_lm_head.weight.data[:num_tokens_to_copy, :]
|
||
|
else:
|
||
|
new_lm_head.weight.data[:, :num_tokens_to_copy] = old_lm_head.weight.data[:, :num_tokens_to_copy]
|
||
|
|
||
|
# Copy bias weights to new lm head
|
||
|
if has_new_lm_head_bias:
|
||
|
new_lm_head.bias.data[:num_tokens_to_copy] = old_lm_head.bias.data[:num_tokens_to_copy]
|
||
|
|
||
|
def resize_position_embeddings(self, new_num_position_embeddings: int):
|
||
|
raise NotImplementedError(
|
||
|
f"`resize_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
|
||
|
f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
|
||
|
)
|
||
|
|
||
|
def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
||
|
raise NotImplementedError(
|
||
|
f"`get_position_embeddings` is not implemented for {self.__class__}`. To implement it, you should "
|
||
|
f"overwrite this method in the class {self.__class__} in `modeling_{self.__class__.__module__}.py`"
|
||
|
)
|
||
|
|
||
|
def init_weights(self):
|
||
|
"""
|
||
|
If needed prunes and maybe initializes weights. If using a custom `PreTrainedModel`, you need to implement any
|
||
|
initialization logic in `_init_weights`.
|
||
|
"""
|
||
|
# Prune heads if needed
|
||
|
if self.config.pruned_heads:
|
||
|
self.prune_heads(self.config.pruned_heads)
|
||
|
|
||
|
if _init_weights:
|
||
|
# Initialize weights
|
||
|
self.apply(self._initialize_weights)
|
||
|
|
||
|
# Tie weights should be skipped when not initializing all weights
|
||
|
# since from_pretrained(...) calls tie weights anyways
|
||
|
self.tie_weights()
|
||
|
|
||
|
def prune_heads(self, heads_to_prune: Dict[int, List[int]]):
|
||
|
"""
|
||
|
Prunes heads of the base model.
|
||
|
|
||
|
Arguments:
|
||
|
heads_to_prune (`Dict[int, List[int]]`):
|
||
|
Dictionary with keys being selected layer indices (`int`) and associated values being the list of heads
|
||
|
to prune in said layer (list of `int`). For instance {1: [0, 2], 2: [2, 3]} will prune heads 0 and 2 on
|
||
|
layer 1 and heads 2 and 3 on layer 2.
|
||
|
"""
|
||
|
# save new sets of pruned heads as union of previously stored pruned heads and newly pruned heads
|
||
|
for layer, heads in heads_to_prune.items():
|
||
|
union_heads = set(self.config.pruned_heads.get(layer, [])) | set(heads)
|
||
|
self.config.pruned_heads[layer] = list(union_heads) # Unfortunately we have to store it as list for JSON
|
||
|
|
||
|
self.base_model._prune_heads(heads_to_prune)
|
||
|
|
||
|
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
||
|
"""
|
||
|
Activates gradient checkpointing for the current model.
|
||
|
|
||
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
|
||
|
activations".
|
||
|
|
||
|
We pass the `__call__` method of the modules instead of `forward` because `__call__` attaches all the hooks of
|
||
|
the module. https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||
|
|
||
|
Args:
|
||
|
gradient_checkpointing_kwargs (dict, *optional*):
|
||
|
Additional keyword arguments passed along to the `torch.utils.checkpoint.checkpoint` function.
|
||
|
"""
|
||
|
if not self.supports_gradient_checkpointing:
|
||
|
raise ValueError(f"{self.__class__.__name__} does not support gradient checkpointing.")
|
||
|
|
||
|
if gradient_checkpointing_kwargs is None:
|
||
|
gradient_checkpointing_kwargs = {"use_reentrant": True}
|
||
|
|
||
|
gradient_checkpointing_func = functools.partial(checkpoint, **gradient_checkpointing_kwargs)
|
||
|
|
||
|
# For old GC format (transformers < 4.35.0) for models that live on the Hub
|
||
|
# we will fall back to the overwritten `_set_gradient_checkpointing` method
|
||
|
_is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
|
||
|
|
||
|
if not _is_using_old_format:
|
||
|
self._set_gradient_checkpointing(enable=True, gradient_checkpointing_func=gradient_checkpointing_func)
|
||
|
else:
|
||
|
self.apply(partial(self._set_gradient_checkpointing, value=True))
|
||
|
logger.warning(
|
||
|
"You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
|
||
|
"Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
|
||
|
)
|
||
|
|
||
|
if getattr(self, "_hf_peft_config_loaded", False):
|
||
|
# When using PEFT + gradient checkpointing + Trainer we need to make sure the input has requires_grad=True
|
||
|
# we do it also on PEFT: https://github.com/huggingface/peft/blob/85013987aa82aa1af3da1236b6902556ce3e483e/src/peft/peft_model.py#L334
|
||
|
# When training with PEFT, only LoRA layers will have requires grad set to True, but the output of frozen layers need to propagate
|
||
|
# the gradients to make sure the gradient flows.
|
||
|
self.enable_input_require_grads()
|
||
|
|
||
|
def _set_gradient_checkpointing(self, enable: bool = True, gradient_checkpointing_func: Callable = checkpoint):
|
||
|
is_gradient_checkpointing_set = False
|
||
|
|
||
|
# Apply it on the top-level module in case the top-level modules supports it
|
||
|
# for example, LongT5Stack inherits from `PreTrainedModel`.
|
||
|
if hasattr(self, "gradient_checkpointing"):
|
||
|
self._gradient_checkpointing_func = gradient_checkpointing_func
|
||
|
self.gradient_checkpointing = enable
|
||
|
is_gradient_checkpointing_set = True
|
||
|
|
||
|
for module in self.modules():
|
||
|
if hasattr(module, "gradient_checkpointing"):
|
||
|
module._gradient_checkpointing_func = gradient_checkpointing_func
|
||
|
module.gradient_checkpointing = enable
|
||
|
is_gradient_checkpointing_set = True
|
||
|
|
||
|
if not is_gradient_checkpointing_set:
|
||
|
raise ValueError(
|
||
|
f"{self.__class__.__name__} is not compatible with gradient checkpointing. Make sure all the architecture support it by setting a boolean attribute"
|
||
|
" `gradient_checkpointing` to modules of the model that uses checkpointing."
|
||
|
)
|
||
|
|
||
|
def gradient_checkpointing_disable(self):
|
||
|
"""
|
||
|
Deactivates gradient checkpointing for the current model.
|
||
|
|
||
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
|
||
|
activations".
|
||
|
"""
|
||
|
if self.supports_gradient_checkpointing:
|
||
|
# For old GC format (transformers < 4.35.0) for models that live on the Hub
|
||
|
# we will fall back to the overwritten `_set_gradient_checkpointing` methid
|
||
|
_is_using_old_format = "value" in inspect.signature(self._set_gradient_checkpointing).parameters
|
||
|
if not _is_using_old_format:
|
||
|
self._set_gradient_checkpointing(enable=False)
|
||
|
else:
|
||
|
logger.warning(
|
||
|
"You are using an old version of the checkpointing format that is deprecated (We will also silently ignore `gradient_checkpointing_kwargs` in case you passed it)."
|
||
|
"Please update to the new format on your modeling file. To use the new format, you need to completely remove the definition of the method `_set_gradient_checkpointing` in your model."
|
||
|
)
|
||
|
self.apply(partial(self._set_gradient_checkpointing, value=False))
|
||
|
|
||
|
if getattr(self, "_hf_peft_config_loaded", False):
|
||
|
self.disable_input_require_grads()
|
||
|
|
||
|
@property
|
||
|
def is_gradient_checkpointing(self) -> bool:
|
||
|
"""
|
||
|
Whether gradient checkpointing is activated for this model or not.
|
||
|
|
||
|
Note that in other frameworks this feature can be referred to as "activation checkpointing" or "checkpoint
|
||
|
activations".
|
||
|
"""
|
||
|
return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules())
|
||
|
|
||
|
def save_pretrained(
|
||
|
self,
|
||
|
save_directory: Union[str, os.PathLike],
|
||
|
is_main_process: bool = True,
|
||
|
state_dict: Optional[dict] = None,
|
||
|
save_function: Callable = torch.save,
|
||
|
push_to_hub: bool = False,
|
||
|
max_shard_size: Union[int, str] = "5GB",
|
||
|
safe_serialization: bool = True,
|
||
|
variant: Optional[str] = None,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
save_peft_format: bool = True,
|
||
|
**kwargs,
|
||
|
):
|
||
|
"""
|
||
|
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
||
|
[`~PreTrainedModel.from_pretrained`] class method.
|
||
|
|
||
|
Arguments:
|
||
|
save_directory (`str` or `os.PathLike`):
|
||
|
Directory to which to save. Will be created if it doesn't exist.
|
||
|
is_main_process (`bool`, *optional*, defaults to `True`):
|
||
|
Whether the process calling this is the main process or not. Useful when in distributed training like
|
||
|
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
||
|
the main process to avoid race conditions.
|
||
|
state_dict (nested dictionary of `torch.Tensor`):
|
||
|
The state dictionary of the model to save. Will default to `self.state_dict()`, but can be used to only
|
||
|
save parts of the model or if special precautions need to be taken when recovering the state dictionary
|
||
|
of a model (like when using model parallelism).
|
||
|
save_function (`Callable`):
|
||
|
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
||
|
need to replace `torch.save` by another method.
|
||
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
|
||
|
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
||
|
namespace).
|
||
|
max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`):
|
||
|
The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
|
||
|
lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`).
|
||
|
We default it to 5GB in order for models to be able to run easily on free-tier google colab instances
|
||
|
without CPU OOM issues.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
If a single weight of the model is bigger than `max_shard_size`, it will be in its own checkpoint shard
|
||
|
which will be bigger than `max_shard_size`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
safe_serialization (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
||
|
variant (`str`, *optional*):
|
||
|
If specified, weights are saved in the format pytorch_model.<variant>.bin.
|
||
|
token (`str` or `bool`, *optional*):
|
||
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||
|
save_peft_format (`bool`, *optional*, defaults to `True`):
|
||
|
For backward compatibility with PEFT library, in case adapter weights are attached to the model, all
|
||
|
keys of the state dict of adapters needs to be pre-pended with `base_model.model`. Advanced users can
|
||
|
disable this behaviours by setting `save_peft_format` to `False`.
|
||
|
kwargs (`Dict[str, Any]`, *optional*):
|
||
|
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
||
|
"""
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
ignore_metadata_errors = kwargs.pop("ignore_metadata_errors", False)
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
if token is not None:
|
||
|
kwargs["token"] = token
|
||
|
|
||
|
_hf_peft_config_loaded = getattr(self, "_hf_peft_config_loaded", False)
|
||
|
|
||
|
hf_quantizer = getattr(self, "hf_quantizer", None)
|
||
|
quantization_serializable = (
|
||
|
hf_quantizer is not None and isinstance(hf_quantizer, HfQuantizer) and hf_quantizer.is_serializable
|
||
|
)
|
||
|
|
||
|
if hf_quantizer is not None and not _hf_peft_config_loaded and not quantization_serializable:
|
||
|
raise ValueError(
|
||
|
f"The model is quantized with {hf_quantizer.quantization_config.quant_method} and is not serializable - check out the warnings from"
|
||
|
" the logger on the traceback to understand the reason why the quantized model is not serializable."
|
||
|
)
|
||
|
|
||
|
if "save_config" in kwargs:
|
||
|
warnings.warn(
|
||
|
"`save_config` is deprecated and will be removed in v5 of Transformers. Use `is_main_process` instead."
|
||
|
)
|
||
|
is_main_process = kwargs.pop("save_config")
|
||
|
if safe_serialization and not is_safetensors_available():
|
||
|
raise ImportError("`safe_serialization` requires the `safetensors library: `pip install safetensors`.")
|
||
|
|
||
|
if os.path.isfile(save_directory):
|
||
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
||
|
return
|
||
|
|
||
|
os.makedirs(save_directory, exist_ok=True)
|
||
|
|
||
|
if push_to_hub:
|
||
|
commit_message = kwargs.pop("commit_message", None)
|
||
|
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
||
|
repo_id = self._create_repo(repo_id, **kwargs)
|
||
|
files_timestamps = self._get_files_timestamps(save_directory)
|
||
|
|
||
|
# Only save the model itself if we are using distributed training
|
||
|
model_to_save = unwrap_model(self)
|
||
|
|
||
|
# save the string version of dtype to the config, e.g. convert torch.float32 => "float32"
|
||
|
# we currently don't use this setting automatically, but may start to use with v5
|
||
|
dtype = get_parameter_dtype(model_to_save)
|
||
|
model_to_save.config.torch_dtype = str(dtype).split(".")[1]
|
||
|
|
||
|
# Attach architecture to the config
|
||
|
model_to_save.config.architectures = [model_to_save.__class__.__name__]
|
||
|
|
||
|
# If we have a custom model, we copy the file defining it in the folder and set the attributes so it can be
|
||
|
# loaded from the Hub.
|
||
|
if self._auto_class is not None:
|
||
|
custom_object_save(self, save_directory, config=self.config)
|
||
|
|
||
|
# Save the config
|
||
|
if is_main_process:
|
||
|
if not _hf_peft_config_loaded:
|
||
|
model_to_save.config.save_pretrained(save_directory)
|
||
|
if self.can_generate():
|
||
|
# generation config built from the model config + the model config holds generation kwargs -> generate
|
||
|
# may revert to legacy behavior if the two don't match
|
||
|
if (
|
||
|
model_to_save.generation_config._from_model_config
|
||
|
and model_to_save.config._has_non_default_generation_parameters()
|
||
|
):
|
||
|
new_generation_config = GenerationConfig.from_model_config(model_to_save.config)
|
||
|
if new_generation_config != model_to_save.generation_config:
|
||
|
logger.warning(
|
||
|
"Your generation config was originally created from the model config, but the model "
|
||
|
"config has changed since then. Unless you pass the `generation_config` argument to this "
|
||
|
"model's `generate` calls, they will revert to the legacy behavior where the base "
|
||
|
"`generate` parameterization is loaded from the model config instead. "
|
||
|
"To avoid this behavior and this warning, we recommend you to overwrite the generation "
|
||
|
"config model attribute before calling the model's `save_pretrained`, preferably also "
|
||
|
"removing any generation kwargs from the model config. This warning will be raised to an "
|
||
|
"exception in v4.41."
|
||
|
)
|
||
|
model_to_save.generation_config.save_pretrained(save_directory)
|
||
|
|
||
|
if _hf_peft_config_loaded:
|
||
|
logger.info(
|
||
|
"Detected adapters on the model, saving the model in the PEFT format, only adapter weights will be saved."
|
||
|
)
|
||
|
state_dict = model_to_save.get_adapter_state_dict()
|
||
|
|
||
|
if save_peft_format:
|
||
|
logger.info(
|
||
|
"To match the expected format of the PEFT library, all keys of the state dict of adapters will be pre-pended with `base_model.model`."
|
||
|
)
|
||
|
peft_state_dict = {}
|
||
|
for key, value in state_dict.items():
|
||
|
peft_state_dict[f"base_model.model.{key}"] = value
|
||
|
state_dict = peft_state_dict
|
||
|
|
||
|
active_adapter = self.active_adapters()
|
||
|
|
||
|
if len(active_adapter) > 1:
|
||
|
raise ValueError(
|
||
|
"Multiple active adapters detected, saving multiple active adapters is not supported yet. You can save adapters separately one by one "
|
||
|
"by iteratively calling `model.set_adapter(adapter_name)` then `model.save_pretrained(...)`"
|
||
|
)
|
||
|
active_adapter = active_adapter[0]
|
||
|
|
||
|
current_peft_config = self.peft_config[active_adapter]
|
||
|
current_peft_config.save_pretrained(save_directory)
|
||
|
|
||
|
# Save the model
|
||
|
if state_dict is None:
|
||
|
state_dict = model_to_save.state_dict()
|
||
|
|
||
|
# Translate state_dict from smp to hf if saving with smp >= 1.10
|
||
|
if IS_SAGEMAKER_MP_POST_1_10:
|
||
|
for smp_to_hf, _ in smp.state.module_manager.translate_functions:
|
||
|
state_dict = smp_to_hf(state_dict)
|
||
|
|
||
|
# Handle the case where some state_dict keys shouldn't be saved
|
||
|
if self._keys_to_ignore_on_save is not None:
|
||
|
for ignore_key in self._keys_to_ignore_on_save:
|
||
|
if ignore_key in state_dict.keys():
|
||
|
del state_dict[ignore_key]
|
||
|
if safe_serialization:
|
||
|
# Safetensors does not allow tensor aliasing.
|
||
|
# We're going to remove aliases before saving
|
||
|
ptrs = collections.defaultdict(list)
|
||
|
for name, tensor in state_dict.items():
|
||
|
# Sometimes in the state_dict we have non-tensor objects.
|
||
|
# e.g. in bitsandbytes we have some `str` objects in the state_dict
|
||
|
if isinstance(tensor, torch.Tensor):
|
||
|
ptrs[id_tensor_storage(tensor)].append(name)
|
||
|
else:
|
||
|
# In the non-tensor case, fall back to the pointer of the object itself
|
||
|
ptrs[id(tensor)].append(name)
|
||
|
|
||
|
# These are all the pointers of shared tensors.
|
||
|
shared_ptrs = {ptr: names for ptr, names in ptrs.items() if len(names) > 1}
|
||
|
error_names = []
|
||
|
to_delete_names = set()
|
||
|
# Recursively descend to find tied weight keys
|
||
|
_tied_weights_keys = _get_tied_weight_keys(self)
|
||
|
for names in shared_ptrs.values():
|
||
|
# Removing the keys which are declared as known duplicates on
|
||
|
# load. This allows to make sure the name which is kept is consistent.
|
||
|
if _tied_weights_keys is not None:
|
||
|
found = 0
|
||
|
for name in sorted(names):
|
||
|
matches_pattern = any(re.search(pat, name) for pat in _tied_weights_keys)
|
||
|
if matches_pattern and name in state_dict:
|
||
|
found += 1
|
||
|
if found < len(names):
|
||
|
to_delete_names.add(name)
|
||
|
# We are entering a place where the weights and the transformers configuration do NOT match.
|
||
|
shared_names, disjoint_names = _find_disjoint(shared_ptrs.values(), state_dict)
|
||
|
# Those are actually tensor sharing but disjoint from each other, we can safely clone them
|
||
|
# Reloaded won't have the same property, but it shouldn't matter in any meaningful way.
|
||
|
for name in disjoint_names:
|
||
|
state_dict[name] = state_dict[name].clone()
|
||
|
|
||
|
# When not all duplicates have been cleaned, still remove those keys, but put a clear warning.
|
||
|
# If the link between tensors was done at runtime then `from_pretrained` will not get
|
||
|
# the key back leading to random tensor. A proper warning will be shown
|
||
|
# during reload (if applicable), but since the file is not necessarily compatible with
|
||
|
# the config, better show a proper warning.
|
||
|
shared_names, identical_names = _find_identical(shared_names, state_dict)
|
||
|
# delete tensors that have identical storage
|
||
|
for inames in identical_names:
|
||
|
known = inames.intersection(to_delete_names)
|
||
|
for name in known:
|
||
|
del state_dict[name]
|
||
|
unknown = inames.difference(to_delete_names)
|
||
|
if len(unknown) > 1:
|
||
|
error_names.append(unknown)
|
||
|
|
||
|
if shared_names:
|
||
|
error_names.append(set(shared_names))
|
||
|
|
||
|
if len(error_names) > 0:
|
||
|
raise RuntimeError(
|
||
|
f"The weights trying to be saved contained shared tensors {error_names} that are mismatching the transformers base configuration. Try saving using `safe_serialization=False` or remove this tensor sharing.",
|
||
|
)
|
||
|
|
||
|
# Shard the model if it is too big.
|
||
|
if not _hf_peft_config_loaded:
|
||
|
weights_name = SAFE_WEIGHTS_NAME if safe_serialization else WEIGHTS_NAME
|
||
|
weights_name = _add_variant(weights_name, variant)
|
||
|
else:
|
||
|
weights_name = ADAPTER_SAFE_WEIGHTS_NAME if safe_serialization else ADAPTER_WEIGHTS_NAME
|
||
|
|
||
|
shards, index = shard_checkpoint(state_dict, max_shard_size=max_shard_size, weights_name=weights_name)
|
||
|
|
||
|
# Clean the folder from a previous save
|
||
|
for filename in os.listdir(save_directory):
|
||
|
full_filename = os.path.join(save_directory, filename)
|
||
|
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
|
||
|
# in distributed settings to avoid race conditions.
|
||
|
weights_no_suffix = weights_name.replace(".bin", "").replace(".safetensors", "")
|
||
|
|
||
|
# make sure that file to be deleted matches format of sharded file, e.g. pytorch_model-00001-of-00005
|
||
|
filename_no_suffix = filename.replace(".bin", "").replace(".safetensors", "")
|
||
|
reg = re.compile(r"(.*?)-\d{5}-of-\d{5}")
|
||
|
|
||
|
if (
|
||
|
filename.startswith(weights_no_suffix)
|
||
|
and os.path.isfile(full_filename)
|
||
|
and filename not in shards.keys()
|
||
|
and is_main_process
|
||
|
and reg.fullmatch(filename_no_suffix) is not None
|
||
|
):
|
||
|
os.remove(full_filename)
|
||
|
|
||
|
# Save the model
|
||
|
for shard_file, shard in shards.items():
|
||
|
if safe_serialization:
|
||
|
# At some point we will need to deal better with save_function (used for TPU and other distributed
|
||
|
# joyfulness), but for now this enough.
|
||
|
safe_save_file(shard, os.path.join(save_directory, shard_file), metadata={"format": "pt"})
|
||
|
else:
|
||
|
save_function(shard, os.path.join(save_directory, shard_file))
|
||
|
|
||
|
if index is None:
|
||
|
path_to_weights = os.path.join(save_directory, weights_name)
|
||
|
logger.info(f"Model weights saved in {path_to_weights}")
|
||
|
else:
|
||
|
save_index_file = SAFE_WEIGHTS_INDEX_NAME if safe_serialization else WEIGHTS_INDEX_NAME
|
||
|
save_index_file = os.path.join(save_directory, _add_variant(save_index_file, variant))
|
||
|
# Save the index as well
|
||
|
with open(save_index_file, "w", encoding="utf-8") as f:
|
||
|
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
||
|
f.write(content)
|
||
|
logger.info(
|
||
|
f"The model is bigger than the maximum size per checkpoint ({max_shard_size}) and is going to be "
|
||
|
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
|
||
|
f"index located at {save_index_file}."
|
||
|
)
|
||
|
|
||
|
if push_to_hub:
|
||
|
# Eventually create an empty model card
|
||
|
model_card = create_and_tag_model_card(
|
||
|
repo_id, self.model_tags, token=token, ignore_metadata_errors=ignore_metadata_errors
|
||
|
)
|
||
|
|
||
|
# Update model card if needed:
|
||
|
model_card.save(os.path.join(save_directory, "README.md"))
|
||
|
|
||
|
self._upload_modified_files(
|
||
|
save_directory,
|
||
|
repo_id,
|
||
|
files_timestamps,
|
||
|
commit_message=commit_message,
|
||
|
token=token,
|
||
|
)
|
||
|
|
||
|
@wraps(PushToHubMixin.push_to_hub)
|
||
|
def push_to_hub(self, *args, **kwargs):
|
||
|
tags = self.model_tags if self.model_tags is not None else []
|
||
|
|
||
|
tags_kwargs = kwargs.get("tags", [])
|
||
|
if isinstance(tags_kwargs, str):
|
||
|
tags_kwargs = [tags_kwargs]
|
||
|
|
||
|
for tag in tags_kwargs:
|
||
|
if tag not in tags:
|
||
|
tags.append(tag)
|
||
|
|
||
|
if tags:
|
||
|
kwargs["tags"] = tags
|
||
|
return super().push_to_hub(*args, **kwargs)
|
||
|
|
||
|
def get_memory_footprint(self, return_buffers=True):
|
||
|
r"""
|
||
|
Get the memory footprint of a model. This will return the memory footprint of the current model in bytes.
|
||
|
Useful to benchmark the memory footprint of the current model and design some tests. Solution inspired from the
|
||
|
PyTorch discussions: https://discuss.pytorch.org/t/gpu-memory-that-model-uses/56822/2
|
||
|
|
||
|
Arguments:
|
||
|
return_buffers (`bool`, *optional*, defaults to `True`):
|
||
|
Whether to return the size of the buffer tensors in the computation of the memory footprint. Buffers
|
||
|
are tensors that do not require gradients and not registered as parameters. E.g. mean and std in batch
|
||
|
norm layers. Please see: https://discuss.pytorch.org/t/what-pytorch-means-by-buffers/120266/2
|
||
|
"""
|
||
|
mem = sum([param.nelement() * param.element_size() for param in self.parameters()])
|
||
|
if return_buffers:
|
||
|
mem_bufs = sum([buf.nelement() * buf.element_size() for buf in self.buffers()])
|
||
|
mem = mem + mem_bufs
|
||
|
return mem
|
||
|
|
||
|
@wraps(torch.nn.Module.cuda)
|
||
|
def cuda(self, *args, **kwargs):
|
||
|
# Checks if the model has been loaded in 8-bit
|
||
|
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
|
||
|
raise ValueError(
|
||
|
"Calling `cuda()` is not supported for `4-bit` or `8-bit` quantized models. Please use the model as it is, since the"
|
||
|
" model has already been set to the correct devices and casted to the correct `dtype`."
|
||
|
)
|
||
|
else:
|
||
|
return super().cuda(*args, **kwargs)
|
||
|
|
||
|
@wraps(torch.nn.Module.to)
|
||
|
def to(self, *args, **kwargs):
|
||
|
# Checks if the model has been loaded in 8-bit
|
||
|
if getattr(self, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES:
|
||
|
raise ValueError(
|
||
|
"`.to` is not supported for `4-bit` or `8-bit` bitsandbytes models. Please use the model as it is, since the"
|
||
|
" model has already been set to the correct devices and casted to the correct `dtype`."
|
||
|
)
|
||
|
elif getattr(self, "quantization_method", None) == QuantizationMethod.GPTQ:
|
||
|
# For GPTQ models, we prevent users from casting the model to another dytpe to restrict unwanted behaviours.
|
||
|
# the correct API should be to load the model with the desired dtype directly through `from_pretrained`.
|
||
|
dtype_present_in_args = False
|
||
|
|
||
|
if "dtype" not in kwargs:
|
||
|
for arg in args:
|
||
|
if isinstance(arg, torch.dtype):
|
||
|
dtype_present_in_args = True
|
||
|
break
|
||
|
else:
|
||
|
dtype_present_in_args = True
|
||
|
|
||
|
if dtype_present_in_args:
|
||
|
raise ValueError(
|
||
|
"You cannot cast a GPTQ model in a new `dtype`. Make sure to load the model using `from_pretrained` using the desired"
|
||
|
" `dtype` by passing the correct `torch_dtype` argument."
|
||
|
)
|
||
|
return super().to(*args, **kwargs)
|
||
|
|
||
|
def half(self, *args):
|
||
|
# Checks if the model is quantized
|
||
|
if getattr(self, "is_quantized", False):
|
||
|
raise ValueError(
|
||
|
"`.half()` is not supported for quantized model. Please use the model as it is, since the"
|
||
|
" model has already been casted to the correct `dtype`."
|
||
|
)
|
||
|
else:
|
||
|
return super().half(*args)
|
||
|
|
||
|
def float(self, *args):
|
||
|
# Checks if the model is quantized
|
||
|
if getattr(self, "is_quantized", False):
|
||
|
raise ValueError(
|
||
|
"`.float()` is not supported for quantized model. Please use the model as it is, since the"
|
||
|
" model has already been casted to the correct `dtype`."
|
||
|
)
|
||
|
else:
|
||
|
return super().float(*args)
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(
|
||
|
cls,
|
||
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
||
|
*model_args,
|
||
|
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
||
|
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
||
|
ignore_mismatched_sizes: bool = False,
|
||
|
force_download: bool = False,
|
||
|
local_files_only: bool = False,
|
||
|
token: Optional[Union[str, bool]] = None,
|
||
|
revision: str = "main",
|
||
|
use_safetensors: bool = None,
|
||
|
**kwargs,
|
||
|
):
|
||
|
r"""
|
||
|
Instantiate a pretrained pytorch model from a pre-trained model configuration.
|
||
|
|
||
|
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
||
|
the model, you should first set it back in training mode with `model.train()`.
|
||
|
|
||
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
||
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
||
|
task.
|
||
|
|
||
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
||
|
weights are discarded.
|
||
|
|
||
|
Parameters:
|
||
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
||
|
Can be either:
|
||
|
|
||
|
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
||
|
- A path to a *directory* containing model weights saved using
|
||
|
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
|
||
|
- A path or url to a *tensorflow index checkpoint file* (e.g, `./tf_model/model.ckpt.index`). In
|
||
|
this case, `from_tf` should be set to `True` and a configuration object should be provided as
|
||
|
`config` argument. This loading path is slower than converting the TensorFlow checkpoint in a
|
||
|
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||
|
- A path or url to a model folder containing a *flax checkpoint file* in *.msgpack* format (e.g,
|
||
|
`./flax_model/` containing `flax_model.msgpack`). In this case, `from_flax` should be set to
|
||
|
`True`.
|
||
|
- `None` if you are both providing the configuration and state dictionary (resp. with keyword
|
||
|
arguments `config` and `state_dict`).
|
||
|
model_args (sequence of positional arguments, *optional*):
|
||
|
All remaining positional arguments will be passed to the underlying model's `__init__` method.
|
||
|
config (`Union[PretrainedConfig, str, os.PathLike]`, *optional*):
|
||
|
Can be either:
|
||
|
|
||
|
- an instance of a class derived from [`PretrainedConfig`],
|
||
|
- a string or path valid as input to [`~PretrainedConfig.from_pretrained`].
|
||
|
|
||
|
Configuration for the model to use instead of an automatically loaded configuration. Configuration can
|
||
|
be automatically loaded when:
|
||
|
|
||
|
- The model is a model provided by the library (loaded with the *model id* string of a pretrained
|
||
|
model).
|
||
|
- The model was saved using [`~PreTrainedModel.save_pretrained`] and is reloaded by supplying the
|
||
|
save directory.
|
||
|
- The model is loaded by supplying a local directory as `pretrained_model_name_or_path` and a
|
||
|
configuration JSON file named *config.json* is found in the directory.
|
||
|
state_dict (`Dict[str, torch.Tensor]`, *optional*):
|
||
|
A state dictionary to use instead of a state dictionary loaded from saved weights file.
|
||
|
|
||
|
This option can be used if you want to create a model from a pretrained configuration but load your own
|
||
|
weights. In this case though, you should check if using [`~PreTrainedModel.save_pretrained`] and
|
||
|
[`~PreTrainedModel.from_pretrained`] is not a simpler option.
|
||
|
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
||
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||
|
standard cache should not be used.
|
||
|
from_tf (`bool`, *optional*, defaults to `False`):
|
||
|
Load the model weights from a TensorFlow checkpoint save file (see docstring of
|
||
|
`pretrained_model_name_or_path` argument).
|
||
|
from_flax (`bool`, *optional*, defaults to `False`):
|
||
|
Load the model weights from a Flax checkpoint save file (see docstring of
|
||
|
`pretrained_model_name_or_path` argument).
|
||
|
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
|
||
|
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
|
||
|
checkpoint with 3 labels).
|
||
|
force_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
||
|
cached versions if they exist.
|
||
|
resume_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
||
|
file exists.
|
||
|
proxies (`Dict[str, str]`, *optional*):
|
||
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||
|
output_loading_info(`bool`, *optional*, defaults to `False`):
|
||
|
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
||
|
local_files_only(`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to only look at local files (i.e., do not try to download the model).
|
||
|
token (`str` or `bool`, *optional*):
|
||
|
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
||
|
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
||
|
revision (`str`, *optional*, defaults to `"main"`):
|
||
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||
|
identifier allowed by git.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>".
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
mirror (`str`, *optional*):
|
||
|
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
||
|
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
||
|
Please refer to the mirror site for more information.
|
||
|
_fast_init(`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not to disable fast initialization.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
One should only disable *_fast_init* to ensure backwards compatibility with `transformers.__version__ <
|
||
|
4.6.0` for seeded model initialization. This argument will be removed at the next major version. See
|
||
|
[pull request 11471](https://github.com/huggingface/transformers/pull/11471) for more information.
|
||
|
|
||
|
</Tip>
|
||
|
attn_implementation (`str`, *optional*):
|
||
|
The attention implementation to use in the model (if relevant). Can be any of `"eager"` (manual implementation of the attention), `"sdpa"` (using [`F.scaled_dot_product_attention`](https://pytorch.org/docs/master/generated/torch.nn.functional.scaled_dot_product_attention.html)), or `"flash_attention_2"` (using [Dao-AILab/flash-attention](https://github.com/Dao-AILab/flash-attention)). By default, if available, SDPA will be used for torch>=2.1.1. The default is otherwise the manual `"eager"` implementation.
|
||
|
|
||
|
> Parameters for big model inference
|
||
|
|
||
|
low_cpu_mem_usage(`bool`, *optional*):
|
||
|
Tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
||
|
This is an experimental feature and a subject to change at any moment.
|
||
|
torch_dtype (`str` or `torch.dtype`, *optional*):
|
||
|
Override the default `torch.dtype` and load the model under a specific `dtype`. The different options
|
||
|
are:
|
||
|
|
||
|
1. `torch.float16` or `torch.bfloat16` or `torch.float`: load in a specified
|
||
|
`dtype`, ignoring the model's `config.torch_dtype` if one exists. If not specified
|
||
|
- the model will get loaded in `torch.float` (fp32).
|
||
|
|
||
|
2. `"auto"` - A `torch_dtype` entry in the `config.json` file of the model will be
|
||
|
attempted to be used. If this entry isn't found then next check the `dtype` of the first weight in
|
||
|
the checkpoint that's of a floating point type and use that as `dtype`. This will load the model
|
||
|
using the `dtype` it was saved in at the end of the training. It can't be used as an indicator of how
|
||
|
the model was trained. Since it could be trained in one of half precision dtypes, but saved in fp32.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
For some models the `dtype` they were trained in is unknown - you may try to check the model's paper or
|
||
|
reach out to the authors and ask them to add this information to the model's card and to insert the
|
||
|
`torch_dtype` entry in `config.json` on the hub.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
device_map (`str` or `Dict[str, Union[int, str, torch.device]]` or `int` or `torch.device`, *optional*):
|
||
|
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
||
|
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
||
|
same device. If we only pass the device (*e.g.*, `"cpu"`, `"cuda:1"`, `"mps"`, or a GPU ordinal rank
|
||
|
like `1`) on which the model will be allocated, the device map will map the entire model to this
|
||
|
device. Passing `device_map = 0` means put the whole model on GPU 0.
|
||
|
|
||
|
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
||
|
more information about each option see [designing a device
|
||
|
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
||
|
max_memory (`Dict`, *optional*):
|
||
|
A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
|
||
|
GPU and the available CPU RAM if unset.
|
||
|
offload_folder (`str` or `os.PathLike`, *optional*):
|
||
|
If the `device_map` contains any value `"disk"`, the folder where we will offload weights.
|
||
|
offload_state_dict (`bool`, *optional*):
|
||
|
If `True`, will temporarily offload the CPU state dict to the hard drive to avoid getting out of CPU
|
||
|
RAM if the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to
|
||
|
`True` when there is some disk offload.
|
||
|
offload_buffers (`bool`, *optional*):
|
||
|
Whether or not to offload the buffers with the model parameters.
|
||
|
quantization_config (`Union[QuantizationConfigMixin,Dict]`, *optional*):
|
||
|
A dictionary of configuration parameters or a QuantizationConfigMixin object for quantization (e.g
|
||
|
bitsandbytes, gptq). There may be other quantization-related kwargs, including `load_in_4bit` and
|
||
|
`load_in_8bit`, which are parsed by QuantizationConfigParser. Supported only for bitsandbytes
|
||
|
quantizations and not preferred. consider inserting all such arguments into quantization_config
|
||
|
instead.
|
||
|
subfolder (`str`, *optional*, defaults to `""`):
|
||
|
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
|
||
|
specify the folder name here.
|
||
|
variant (`str`, *optional*):
|
||
|
If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
|
||
|
ignored when using `from_tf` or `from_flax`.
|
||
|
use_safetensors (`bool`, *optional*, defaults to `None`):
|
||
|
Whether or not to use `safetensors` checkpoints. Defaults to `None`. If not specified and `safetensors`
|
||
|
is not installed, it will be set to `False`.
|
||
|
|
||
|
kwargs (remaining dictionary of keyword arguments, *optional*):
|
||
|
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
||
|
`output_attentions=True`). Behaves differently depending on whether a `config` is provided or
|
||
|
automatically loaded:
|
||
|
|
||
|
- If a configuration is provided with `config`, `**kwargs` will be directly passed to the
|
||
|
underlying model's `__init__` method (we assume all relevant updates to the configuration have
|
||
|
already been done)
|
||
|
- If a configuration is not provided, `kwargs` will be first passed to the configuration class
|
||
|
initialization function ([`~PretrainedConfig.from_pretrained`]). Each key of `kwargs` that
|
||
|
corresponds to a configuration attribute will be used to override said attribute with the
|
||
|
supplied `kwargs` value. Remaining keys that do not correspond to any configuration attribute
|
||
|
will be passed to the underlying model's `__init__` function.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
|
||
|
use this method in a firewalled environment.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import BertConfig, BertModel
|
||
|
|
||
|
>>> # Download model and configuration from huggingface.co and cache.
|
||
|
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased")
|
||
|
>>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
|
||
|
>>> model = BertModel.from_pretrained("./test/saved_model/")
|
||
|
>>> # Update configuration during loading.
|
||
|
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
|
||
|
>>> assert model.config.output_attentions == True
|
||
|
>>> # Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
|
||
|
>>> config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
|
||
|
>>> model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
|
||
|
>>> # Loading from a Flax checkpoint file instead of a PyTorch model (slower)
|
||
|
>>> model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)
|
||
|
```
|
||
|
|
||
|
* `low_cpu_mem_usage` algorithm:
|
||
|
|
||
|
This is an experimental function that loads the model using ~1x model size CPU memory
|
||
|
|
||
|
Here is how it works:
|
||
|
|
||
|
1. save which state_dict keys we have
|
||
|
2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
|
||
|
3. after the model has been instantiated switch to the meta device all params/buffers that
|
||
|
are going to be replaced from the loaded state_dict
|
||
|
4. load state_dict 2nd time
|
||
|
5. replace the params/buffers from the state_dict
|
||
|
|
||
|
Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors
|
||
|
|
||
|
"""
|
||
|
state_dict = kwargs.pop("state_dict", None)
|
||
|
from_tf = kwargs.pop("from_tf", False)
|
||
|
from_flax = kwargs.pop("from_flax", False)
|
||
|
resume_download = kwargs.pop("resume_download", False)
|
||
|
proxies = kwargs.pop("proxies", None)
|
||
|
output_loading_info = kwargs.pop("output_loading_info", False)
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||
|
_ = kwargs.pop("mirror", None)
|
||
|
from_pipeline = kwargs.pop("_from_pipeline", None)
|
||
|
from_auto_class = kwargs.pop("_from_auto", False)
|
||
|
_fast_init = kwargs.pop("_fast_init", True)
|
||
|
torch_dtype = kwargs.pop("torch_dtype", None)
|
||
|
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", None)
|
||
|
device_map = kwargs.pop("device_map", None)
|
||
|
max_memory = kwargs.pop("max_memory", None)
|
||
|
offload_folder = kwargs.pop("offload_folder", None)
|
||
|
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
||
|
offload_buffers = kwargs.pop("offload_buffers", False)
|
||
|
load_in_8bit = kwargs.pop("load_in_8bit", False)
|
||
|
load_in_4bit = kwargs.pop("load_in_4bit", False)
|
||
|
quantization_config = kwargs.pop("quantization_config", None)
|
||
|
subfolder = kwargs.pop("subfolder", "")
|
||
|
commit_hash = kwargs.pop("_commit_hash", None)
|
||
|
variant = kwargs.pop("variant", None)
|
||
|
adapter_kwargs = kwargs.pop("adapter_kwargs", {})
|
||
|
adapter_name = kwargs.pop("adapter_name", "default")
|
||
|
use_flash_attention_2 = kwargs.pop("use_flash_attention_2", False)
|
||
|
|
||
|
if is_fsdp_enabled():
|
||
|
low_cpu_mem_usage = True
|
||
|
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if token is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
token = use_auth_token
|
||
|
|
||
|
if token is not None and adapter_kwargs is not None and "token" not in adapter_kwargs:
|
||
|
adapter_kwargs["token"] = token
|
||
|
|
||
|
if use_safetensors is None and not is_safetensors_available():
|
||
|
use_safetensors = False
|
||
|
if trust_remote_code is True:
|
||
|
logger.warning(
|
||
|
"The argument `trust_remote_code` is to be used with Auto classes. It has no effect here and is"
|
||
|
" ignored."
|
||
|
)
|
||
|
|
||
|
if commit_hash is None:
|
||
|
if not isinstance(config, PretrainedConfig):
|
||
|
# We make a call to the config file first (which may be absent) to get the commit hash as soon as possible
|
||
|
resolved_config_file = cached_file(
|
||
|
pretrained_model_name_or_path,
|
||
|
CONFIG_NAME,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
_raise_exceptions_for_gated_repo=False,
|
||
|
_raise_exceptions_for_missing_entries=False,
|
||
|
_raise_exceptions_for_connection_errors=False,
|
||
|
)
|
||
|
commit_hash = extract_commit_hash(resolved_config_file, commit_hash)
|
||
|
else:
|
||
|
commit_hash = getattr(config, "_commit_hash", None)
|
||
|
|
||
|
if is_peft_available():
|
||
|
_adapter_model_path = adapter_kwargs.pop("_adapter_model_path", None)
|
||
|
|
||
|
if _adapter_model_path is None:
|
||
|
_adapter_model_path = find_adapter_config_file(
|
||
|
pretrained_model_name_or_path,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
_commit_hash=commit_hash,
|
||
|
**adapter_kwargs,
|
||
|
)
|
||
|
if _adapter_model_path is not None and os.path.isfile(_adapter_model_path):
|
||
|
with open(_adapter_model_path, "r", encoding="utf-8") as f:
|
||
|
_adapter_model_path = pretrained_model_name_or_path
|
||
|
pretrained_model_name_or_path = json.load(f)["base_model_name_or_path"]
|
||
|
else:
|
||
|
_adapter_model_path = None
|
||
|
|
||
|
# change device_map into a map if we passed an int, a str or a torch.device
|
||
|
if isinstance(device_map, torch.device):
|
||
|
device_map = {"": device_map}
|
||
|
elif isinstance(device_map, str) and device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
||
|
try:
|
||
|
device_map = {"": torch.device(device_map)}
|
||
|
except RuntimeError:
|
||
|
raise ValueError(
|
||
|
"When passing device_map as a string, the value needs to be a device name (e.g. cpu, cuda:0) or "
|
||
|
f"'auto', 'balanced', 'balanced_low_0', 'sequential' but found {device_map}."
|
||
|
)
|
||
|
elif isinstance(device_map, int):
|
||
|
if device_map < 0:
|
||
|
raise ValueError(
|
||
|
"You can't pass device_map as a negative int. If you want to put the model on the cpu, pass device_map = 'cpu' "
|
||
|
)
|
||
|
else:
|
||
|
device_map = {"": device_map}
|
||
|
|
||
|
if device_map is not None:
|
||
|
if low_cpu_mem_usage is None:
|
||
|
low_cpu_mem_usage = True
|
||
|
elif not low_cpu_mem_usage:
|
||
|
raise ValueError("Passing along a `device_map` requires `low_cpu_mem_usage=True`")
|
||
|
|
||
|
if low_cpu_mem_usage:
|
||
|
if is_deepspeed_zero3_enabled():
|
||
|
raise ValueError(
|
||
|
"DeepSpeed Zero-3 is not compatible with `low_cpu_mem_usage=True` or with passing a `device_map`."
|
||
|
)
|
||
|
elif not is_accelerate_available():
|
||
|
raise ImportError(
|
||
|
"Using `low_cpu_mem_usage=True` or a `device_map` requires Accelerate: `pip install accelerate`"
|
||
|
)
|
||
|
|
||
|
# handling bnb config from kwargs, remove after `load_in_{4/8}bit` deprecation.
|
||
|
if load_in_4bit or load_in_8bit:
|
||
|
if quantization_config is not None:
|
||
|
raise ValueError(
|
||
|
"You can't pass `load_in_4bit`or `load_in_8bit` as a kwarg when passing "
|
||
|
"`quantization_config` argument at the same time."
|
||
|
)
|
||
|
|
||
|
# preparing BitsAndBytesConfig from kwargs
|
||
|
config_dict = {k: v for k, v in kwargs.items() if k in inspect.signature(BitsAndBytesConfig).parameters}
|
||
|
config_dict = {**config_dict, "load_in_4bit": load_in_4bit, "load_in_8bit": load_in_8bit}
|
||
|
quantization_config, kwargs = BitsAndBytesConfig.from_dict(
|
||
|
config_dict=config_dict, return_unused_kwargs=True, **kwargs
|
||
|
)
|
||
|
logger.warning(
|
||
|
"The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. "
|
||
|
"Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead."
|
||
|
)
|
||
|
|
||
|
from_pt = not (from_tf | from_flax)
|
||
|
|
||
|
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
|
||
|
if from_pipeline is not None:
|
||
|
user_agent["using_pipeline"] = from_pipeline
|
||
|
|
||
|
if is_offline_mode() and not local_files_only:
|
||
|
logger.info("Offline mode: forcing local_files_only=True")
|
||
|
local_files_only = True
|
||
|
|
||
|
# Load config if we don't provide a configuration
|
||
|
if not isinstance(config, PretrainedConfig):
|
||
|
config_path = config if config is not None else pretrained_model_name_or_path
|
||
|
config, model_kwargs = cls.config_class.from_pretrained(
|
||
|
config_path,
|
||
|
cache_dir=cache_dir,
|
||
|
return_unused_kwargs=True,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
_from_auto=from_auto_class,
|
||
|
_from_pipeline=from_pipeline,
|
||
|
**kwargs,
|
||
|
)
|
||
|
else:
|
||
|
# In case one passes a config to `from_pretrained` + "attn_implementation"
|
||
|
# override the `_attn_implementation` attribute to `attn_implementation` of the kwargs
|
||
|
# Please see: https://github.com/huggingface/transformers/issues/28038
|
||
|
|
||
|
# Overwrite `config._attn_implementation` by the one from the kwargs --> in auto-factory
|
||
|
# we pop attn_implementation from the kwargs but this handles the case where users
|
||
|
# passes manually the config to `from_pretrained`.
|
||
|
config = copy.deepcopy(config)
|
||
|
|
||
|
kwarg_attn_imp = kwargs.pop("attn_implementation", None)
|
||
|
if kwarg_attn_imp is not None and config._attn_implementation != kwarg_attn_imp:
|
||
|
config._attn_implementation = kwarg_attn_imp
|
||
|
model_kwargs = kwargs
|
||
|
|
||
|
pre_quantized = getattr(config, "quantization_config", None) is not None
|
||
|
if pre_quantized or quantization_config is not None:
|
||
|
if pre_quantized:
|
||
|
config.quantization_config = AutoHfQuantizer.merge_quantization_configs(
|
||
|
config.quantization_config, quantization_config
|
||
|
)
|
||
|
else:
|
||
|
config.quantization_config = quantization_config
|
||
|
hf_quantizer = AutoHfQuantizer.from_config(config.quantization_config, pre_quantized=pre_quantized)
|
||
|
else:
|
||
|
hf_quantizer = None
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
hf_quantizer.validate_environment(
|
||
|
torch_dtype=torch_dtype, from_tf=from_tf, from_flax=from_flax, device_map=device_map
|
||
|
)
|
||
|
torch_dtype = hf_quantizer.update_torch_dtype(torch_dtype)
|
||
|
device_map = hf_quantizer.update_device_map(device_map)
|
||
|
|
||
|
# Force-set to `True` for more mem efficiency
|
||
|
if low_cpu_mem_usage is None:
|
||
|
low_cpu_mem_usage = True
|
||
|
logger.warning("`low_cpu_mem_usage` was None, now set to True since model is quantized.")
|
||
|
is_quantized = hf_quantizer is not None
|
||
|
|
||
|
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
||
|
# index of the files.
|
||
|
is_sharded = False
|
||
|
sharded_metadata = None
|
||
|
# Load model
|
||
|
loading_info = None
|
||
|
|
||
|
# Keep in fp32 modules
|
||
|
keep_in_fp32_modules = None
|
||
|
use_keep_in_fp32_modules = False
|
||
|
|
||
|
if pretrained_model_name_or_path is not None:
|
||
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
||
|
is_local = os.path.isdir(pretrained_model_name_or_path)
|
||
|
if is_local:
|
||
|
if from_tf and os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
|
||
|
):
|
||
|
# Load from a TF 1.0 checkpoint in priority if from_tf
|
||
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
|
||
|
elif from_tf and os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
|
||
|
):
|
||
|
# Load from a TF 2.0 checkpoint in priority if from_tf
|
||
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)
|
||
|
elif from_flax and os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
|
||
|
):
|
||
|
# Load from a Flax checkpoint in priority if from_flax
|
||
|
archive_file = os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)
|
||
|
elif use_safetensors is not False and os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant))
|
||
|
):
|
||
|
# Load from a safetensors checkpoint
|
||
|
archive_file = os.path.join(
|
||
|
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_NAME, variant)
|
||
|
)
|
||
|
elif use_safetensors is not False and os.path.isfile(
|
||
|
os.path.join(
|
||
|
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
|
||
|
)
|
||
|
):
|
||
|
# Load from a sharded safetensors checkpoint
|
||
|
archive_file = os.path.join(
|
||
|
pretrained_model_name_or_path, subfolder, _add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)
|
||
|
)
|
||
|
is_sharded = True
|
||
|
elif os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant))
|
||
|
):
|
||
|
# Load from a PyTorch checkpoint
|
||
|
archive_file = os.path.join(
|
||
|
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_NAME, variant)
|
||
|
)
|
||
|
elif os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant))
|
||
|
):
|
||
|
# Load from a sharded PyTorch checkpoint
|
||
|
archive_file = os.path.join(
|
||
|
pretrained_model_name_or_path, subfolder, _add_variant(WEIGHTS_INDEX_NAME, variant)
|
||
|
)
|
||
|
is_sharded = True
|
||
|
# At this stage we don't have a weight file so we will raise an error.
|
||
|
elif os.path.isfile(
|
||
|
os.path.join(pretrained_model_name_or_path, subfolder, TF_WEIGHTS_NAME + ".index")
|
||
|
) or os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, TF2_WEIGHTS_NAME)):
|
||
|
raise EnvironmentError(
|
||
|
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
|
||
|
f" {pretrained_model_name_or_path} but there is a file for TensorFlow weights. Use"
|
||
|
" `from_tf=True` to load this model from those weights."
|
||
|
)
|
||
|
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, subfolder, FLAX_WEIGHTS_NAME)):
|
||
|
raise EnvironmentError(
|
||
|
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)} found in directory"
|
||
|
f" {pretrained_model_name_or_path} but there is a file for Flax weights. Use `from_flax=True`"
|
||
|
" to load this model from those weights."
|
||
|
)
|
||
|
elif use_safetensors:
|
||
|
raise EnvironmentError(
|
||
|
f"Error no file named {_add_variant(SAFE_WEIGHTS_NAME, variant)} found in directory"
|
||
|
f" {pretrained_model_name_or_path}."
|
||
|
)
|
||
|
else:
|
||
|
raise EnvironmentError(
|
||
|
f"Error no file named {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME},"
|
||
|
f" {TF_WEIGHTS_NAME + '.index'} or {FLAX_WEIGHTS_NAME} found in directory"
|
||
|
f" {pretrained_model_name_or_path}."
|
||
|
)
|
||
|
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path)):
|
||
|
archive_file = pretrained_model_name_or_path
|
||
|
is_local = True
|
||
|
elif os.path.isfile(os.path.join(subfolder, pretrained_model_name_or_path + ".index")):
|
||
|
if not from_tf:
|
||
|
raise ValueError(
|
||
|
f"We found a TensorFlow checkpoint at {pretrained_model_name_or_path + '.index'}, please set "
|
||
|
"from_tf to True to load from this checkpoint."
|
||
|
)
|
||
|
archive_file = os.path.join(subfolder, pretrained_model_name_or_path + ".index")
|
||
|
is_local = True
|
||
|
elif is_remote_url(pretrained_model_name_or_path):
|
||
|
filename = pretrained_model_name_or_path
|
||
|
resolved_archive_file = download_url(pretrained_model_name_or_path)
|
||
|
else:
|
||
|
# set correct filename
|
||
|
if from_tf:
|
||
|
filename = TF2_WEIGHTS_NAME
|
||
|
elif from_flax:
|
||
|
filename = FLAX_WEIGHTS_NAME
|
||
|
elif use_safetensors is not False:
|
||
|
filename = _add_variant(SAFE_WEIGHTS_NAME, variant)
|
||
|
else:
|
||
|
filename = _add_variant(WEIGHTS_NAME, variant)
|
||
|
|
||
|
try:
|
||
|
# Load from URL or cache if already cached
|
||
|
cached_file_kwargs = {
|
||
|
"cache_dir": cache_dir,
|
||
|
"force_download": force_download,
|
||
|
"proxies": proxies,
|
||
|
"resume_download": resume_download,
|
||
|
"local_files_only": local_files_only,
|
||
|
"token": token,
|
||
|
"user_agent": user_agent,
|
||
|
"revision": revision,
|
||
|
"subfolder": subfolder,
|
||
|
"_raise_exceptions_for_gated_repo": False,
|
||
|
"_raise_exceptions_for_missing_entries": False,
|
||
|
"_commit_hash": commit_hash,
|
||
|
}
|
||
|
resolved_archive_file = cached_file(pretrained_model_name_or_path, filename, **cached_file_kwargs)
|
||
|
|
||
|
# Since we set _raise_exceptions_for_missing_entries=False, we don't get an exception but a None
|
||
|
# result when internet is up, the repo and revision exist, but the file does not.
|
||
|
if resolved_archive_file is None and filename == _add_variant(SAFE_WEIGHTS_NAME, variant):
|
||
|
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
||
|
resolved_archive_file = cached_file(
|
||
|
pretrained_model_name_or_path,
|
||
|
_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant),
|
||
|
**cached_file_kwargs,
|
||
|
)
|
||
|
if resolved_archive_file is not None:
|
||
|
is_sharded = True
|
||
|
elif use_safetensors:
|
||
|
if revision == "main":
|
||
|
resolved_archive_file, revision, is_sharded = auto_conversion(
|
||
|
pretrained_model_name_or_path, **cached_file_kwargs
|
||
|
)
|
||
|
cached_file_kwargs["revision"] = revision
|
||
|
if resolved_archive_file is None:
|
||
|
raise EnvironmentError(
|
||
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
||
|
f" {_add_variant(SAFE_WEIGHTS_NAME, variant)} or {_add_variant(SAFE_WEIGHTS_INDEX_NAME, variant)} "
|
||
|
"and thus cannot be loaded with `safetensors`. Please make sure that the model has "
|
||
|
"been saved with `safe_serialization=True` or do not set `use_safetensors=True`."
|
||
|
)
|
||
|
else:
|
||
|
# This repo has no safetensors file of any kind, we switch to PyTorch.
|
||
|
filename = _add_variant(WEIGHTS_NAME, variant)
|
||
|
resolved_archive_file = cached_file(
|
||
|
pretrained_model_name_or_path, filename, **cached_file_kwargs
|
||
|
)
|
||
|
if resolved_archive_file is None and filename == _add_variant(WEIGHTS_NAME, variant):
|
||
|
# Maybe the checkpoint is sharded, we try to grab the index name in this case.
|
||
|
resolved_archive_file = cached_file(
|
||
|
pretrained_model_name_or_path,
|
||
|
_add_variant(WEIGHTS_INDEX_NAME, variant),
|
||
|
**cached_file_kwargs,
|
||
|
)
|
||
|
if resolved_archive_file is not None:
|
||
|
is_sharded = True
|
||
|
|
||
|
if resolved_archive_file is not None:
|
||
|
if filename in [WEIGHTS_NAME, WEIGHTS_INDEX_NAME]:
|
||
|
# If the PyTorch file was found, check if there is a safetensors file on the repository
|
||
|
# If there is no safetensors file on the repositories, start an auto conversion
|
||
|
safe_weights_name = SAFE_WEIGHTS_INDEX_NAME if is_sharded else SAFE_WEIGHTS_NAME
|
||
|
has_file_kwargs = {
|
||
|
"revision": revision,
|
||
|
"proxies": proxies,
|
||
|
"token": token,
|
||
|
}
|
||
|
cached_file_kwargs = {
|
||
|
"cache_dir": cache_dir,
|
||
|
"force_download": force_download,
|
||
|
"resume_download": resume_download,
|
||
|
"local_files_only": local_files_only,
|
||
|
"user_agent": user_agent,
|
||
|
"subfolder": subfolder,
|
||
|
"_raise_exceptions_for_gated_repo": False,
|
||
|
"_raise_exceptions_for_missing_entries": False,
|
||
|
"_commit_hash": commit_hash,
|
||
|
**has_file_kwargs,
|
||
|
}
|
||
|
if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
|
||
|
Thread(
|
||
|
target=auto_conversion,
|
||
|
args=(pretrained_model_name_or_path,),
|
||
|
kwargs={"ignore_errors_during_conversion": True, **cached_file_kwargs},
|
||
|
name="Thread-autoconversion",
|
||
|
).start()
|
||
|
else:
|
||
|
# Otherwise, no PyTorch file was found, maybe there is a TF or Flax model file.
|
||
|
# We try those to give a helpful error message.
|
||
|
has_file_kwargs = {
|
||
|
"revision": revision,
|
||
|
"proxies": proxies,
|
||
|
"token": token,
|
||
|
}
|
||
|
if has_file(pretrained_model_name_or_path, TF2_WEIGHTS_NAME, **has_file_kwargs):
|
||
|
raise EnvironmentError(
|
||
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
||
|
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for TensorFlow weights."
|
||
|
" Use `from_tf=True` to load this model from those weights."
|
||
|
)
|
||
|
elif has_file(pretrained_model_name_or_path, FLAX_WEIGHTS_NAME, **has_file_kwargs):
|
||
|
raise EnvironmentError(
|
||
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
||
|
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file for Flax weights. Use"
|
||
|
" `from_flax=True` to load this model from those weights."
|
||
|
)
|
||
|
elif variant is not None and has_file(
|
||
|
pretrained_model_name_or_path, WEIGHTS_NAME, **has_file_kwargs
|
||
|
):
|
||
|
raise EnvironmentError(
|
||
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
||
|
f" {_add_variant(WEIGHTS_NAME, variant)} but there is a file without the variant"
|
||
|
f" {variant}. Use `variant=None` to load this model from those weights."
|
||
|
)
|
||
|
else:
|
||
|
raise EnvironmentError(
|
||
|
f"{pretrained_model_name_or_path} does not appear to have a file named"
|
||
|
f" {_add_variant(WEIGHTS_NAME, variant)}, {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or"
|
||
|
f" {FLAX_WEIGHTS_NAME}."
|
||
|
)
|
||
|
except EnvironmentError:
|
||
|
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
||
|
# to the original exception.
|
||
|
raise
|
||
|
except Exception as e:
|
||
|
# For any other exception, we throw a generic error.
|
||
|
raise EnvironmentError(
|
||
|
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it"
|
||
|
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
||
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
|
||
|
f" directory containing a file named {_add_variant(WEIGHTS_NAME, variant)},"
|
||
|
f" {TF2_WEIGHTS_NAME}, {TF_WEIGHTS_NAME} or {FLAX_WEIGHTS_NAME}."
|
||
|
) from e
|
||
|
|
||
|
if is_local:
|
||
|
logger.info(f"loading weights file {archive_file}")
|
||
|
resolved_archive_file = archive_file
|
||
|
else:
|
||
|
logger.info(f"loading weights file {filename} from cache at {resolved_archive_file}")
|
||
|
else:
|
||
|
resolved_archive_file = None
|
||
|
|
||
|
# We'll need to download and cache each checkpoint shard if the checkpoint is sharded.
|
||
|
if is_sharded:
|
||
|
# rsolved_archive_file becomes a list of files that point to the different checkpoint shards in this case.
|
||
|
resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
|
||
|
pretrained_model_name_or_path,
|
||
|
resolved_archive_file,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
proxies=proxies,
|
||
|
resume_download=resume_download,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
user_agent=user_agent,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
_commit_hash=commit_hash,
|
||
|
)
|
||
|
|
||
|
if (
|
||
|
is_safetensors_available()
|
||
|
and isinstance(resolved_archive_file, str)
|
||
|
and resolved_archive_file.endswith(".safetensors")
|
||
|
):
|
||
|
with safe_open(resolved_archive_file, framework="pt") as f:
|
||
|
metadata = f.metadata()
|
||
|
|
||
|
if metadata.get("format") == "pt":
|
||
|
pass
|
||
|
elif metadata.get("format") == "tf":
|
||
|
from_tf = True
|
||
|
logger.info("A TensorFlow safetensors file is being loaded in a PyTorch model.")
|
||
|
elif metadata.get("format") == "flax":
|
||
|
from_flax = True
|
||
|
logger.info("A Flax safetensors file is being loaded in a PyTorch model.")
|
||
|
elif metadata.get("format") == "mlx":
|
||
|
# This is a mlx file, we assume weights are compatible with pt
|
||
|
pass
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Incompatible safetensors file. File metadata is not ['pt', 'tf', 'flax', 'mlx'] but {metadata.get('format')}"
|
||
|
)
|
||
|
|
||
|
from_pt = not (from_tf | from_flax)
|
||
|
|
||
|
# load pt weights early so that we know which dtype to init the model under
|
||
|
if from_pt:
|
||
|
if not is_sharded and state_dict is None:
|
||
|
# Time to load the checkpoint
|
||
|
state_dict = load_state_dict(resolved_archive_file)
|
||
|
|
||
|
# set dtype to instantiate the model under:
|
||
|
# 1. If torch_dtype is not None, we use that dtype
|
||
|
# 2. If torch_dtype is "auto", we auto-detect dtype from the loaded state_dict, by checking its first
|
||
|
# weights entry that is of a floating type - we assume all floating dtype weights are of the same dtype
|
||
|
# we also may have config.torch_dtype available, but we won't rely on it till v5
|
||
|
dtype_orig = None
|
||
|
|
||
|
if torch_dtype is not None:
|
||
|
if isinstance(torch_dtype, str):
|
||
|
if torch_dtype == "auto":
|
||
|
if hasattr(config, "torch_dtype") and config.torch_dtype is not None:
|
||
|
torch_dtype = config.torch_dtype
|
||
|
logger.info(f"Will use torch_dtype={torch_dtype} as defined in model's config object")
|
||
|
else:
|
||
|
if is_sharded and "dtype" in sharded_metadata:
|
||
|
torch_dtype = sharded_metadata["dtype"]
|
||
|
elif not is_sharded:
|
||
|
torch_dtype = get_state_dict_dtype(state_dict)
|
||
|
else:
|
||
|
one_state_dict = load_state_dict(resolved_archive_file[0])
|
||
|
torch_dtype = get_state_dict_dtype(one_state_dict)
|
||
|
del one_state_dict # free CPU memory
|
||
|
logger.info(
|
||
|
"Since the `torch_dtype` attribute can't be found in model's config object, "
|
||
|
"will use torch_dtype={torch_dtype} as derived from model's weights"
|
||
|
)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f'`torch_dtype` can be either `torch.dtype` or `"auto"`, but received {torch_dtype}'
|
||
|
)
|
||
|
dtype_orig = cls._set_default_torch_dtype(torch_dtype)
|
||
|
|
||
|
# Check if `_keep_in_fp32_modules` is not None
|
||
|
use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
|
||
|
(torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
|
||
|
)
|
||
|
|
||
|
if is_sharded:
|
||
|
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
||
|
else:
|
||
|
loaded_state_dict_keys = list(state_dict.keys())
|
||
|
if low_cpu_mem_usage or (use_keep_in_fp32_modules and is_accelerate_available()):
|
||
|
# In case some weights need to be kept in float32 and accelerate is not installed,
|
||
|
# we later on want to take the path where state_dict is not None, that is the one
|
||
|
# that do not require accelerate.
|
||
|
state_dict = None
|
||
|
|
||
|
config.name_or_path = pretrained_model_name_or_path
|
||
|
|
||
|
# Instantiate model.
|
||
|
init_contexts = [no_init_weights(_enable=_fast_init)]
|
||
|
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
logger.info("Detected DeepSpeed ZeRO-3: activating zero.init() for this model")
|
||
|
init_contexts = [deepspeed.zero.Init(config_dict_or_path=deepspeed_config())] + init_contexts
|
||
|
elif low_cpu_mem_usage:
|
||
|
init_contexts.append(init_empty_weights())
|
||
|
|
||
|
config = copy.deepcopy(config) # We do not want to modify the config inplace in from_pretrained.
|
||
|
config = cls._autoset_attn_implementation(
|
||
|
config, use_flash_attention_2=use_flash_attention_2, torch_dtype=torch_dtype, device_map=device_map
|
||
|
)
|
||
|
|
||
|
with ContextManagers(init_contexts):
|
||
|
# Let's make sure we don't run the init function of buffer modules
|
||
|
model = cls(config, *model_args, **model_kwargs)
|
||
|
|
||
|
# make sure we use the model's config since the __init__ call might have copied it
|
||
|
config = model.config
|
||
|
|
||
|
# Check first if we are `from_pt`
|
||
|
if use_keep_in_fp32_modules:
|
||
|
if is_accelerate_available() and not is_deepspeed_zero3_enabled():
|
||
|
low_cpu_mem_usage = True
|
||
|
keep_in_fp32_modules = model._keep_in_fp32_modules
|
||
|
else:
|
||
|
keep_in_fp32_modules = []
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
hf_quantizer.preprocess_model(
|
||
|
model=model, device_map=device_map, keep_in_fp32_modules=keep_in_fp32_modules
|
||
|
)
|
||
|
|
||
|
# We store the original dtype for quantized models as we cannot easily retrieve it
|
||
|
# once the weights have been quantized
|
||
|
# Note that once you have loaded a quantized model, you can't change its dtype so this will
|
||
|
# remain a single source of truth
|
||
|
config._pre_quantization_dtype = torch_dtype
|
||
|
|
||
|
if isinstance(device_map, str):
|
||
|
special_dtypes = {}
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
special_dtypes.update(hf_quantizer.get_special_dtypes_update(model, torch_dtype))
|
||
|
|
||
|
special_dtypes.update(
|
||
|
{
|
||
|
name: torch.float32
|
||
|
for name, _ in model.named_parameters()
|
||
|
if any(m in name for m in keep_in_fp32_modules)
|
||
|
}
|
||
|
)
|
||
|
|
||
|
target_dtype = torch_dtype
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
target_dtype = hf_quantizer.adjust_target_dtype(target_dtype)
|
||
|
|
||
|
no_split_modules = model._get_no_split_modules(device_map)
|
||
|
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
|
||
|
raise ValueError(
|
||
|
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
|
||
|
"'sequential'."
|
||
|
)
|
||
|
|
||
|
device_map_kwargs = {"no_split_module_classes": no_split_modules}
|
||
|
if "special_dtypes" in inspect.signature(infer_auto_device_map).parameters:
|
||
|
device_map_kwargs["special_dtypes"] = special_dtypes
|
||
|
elif len(special_dtypes) > 0:
|
||
|
logger.warning(
|
||
|
"This model has some weights that should be kept in higher precision, you need to upgrade "
|
||
|
"`accelerate` to properly deal with them (`pip install --upgrade accelerate`)."
|
||
|
)
|
||
|
if device_map != "sequential":
|
||
|
max_memory = get_balanced_memory(
|
||
|
model,
|
||
|
dtype=target_dtype,
|
||
|
low_zero=(device_map == "balanced_low_0"),
|
||
|
max_memory=max_memory,
|
||
|
**device_map_kwargs,
|
||
|
)
|
||
|
else:
|
||
|
max_memory = get_max_memory(max_memory)
|
||
|
if hf_quantizer is not None:
|
||
|
max_memory = hf_quantizer.adjust_max_memory(max_memory)
|
||
|
device_map_kwargs["max_memory"] = max_memory
|
||
|
|
||
|
# Make sure tied weights are tied before creating the device map.
|
||
|
model.tie_weights()
|
||
|
device_map = infer_auto_device_map(model, dtype=target_dtype, **device_map_kwargs)
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
hf_quantizer.validate_environment(device_map=device_map)
|
||
|
|
||
|
elif device_map is not None:
|
||
|
model.tie_weights()
|
||
|
tied_params = find_tied_parameters(model)
|
||
|
# check if we don't have tied param in different devices
|
||
|
check_tied_parameters_on_same_device(tied_params, device_map)
|
||
|
|
||
|
if from_tf:
|
||
|
if resolved_archive_file.endswith(".index"):
|
||
|
# Load from a TensorFlow 1.X checkpoint - provided by original authors
|
||
|
model = cls.load_tf_weights(model, config, resolved_archive_file[:-6]) # Remove the '.index'
|
||
|
else:
|
||
|
# Load from our TensorFlow 2.0 checkpoints
|
||
|
try:
|
||
|
from .modeling_tf_pytorch_utils import load_tf2_checkpoint_in_pytorch_model
|
||
|
|
||
|
model, loading_info = load_tf2_checkpoint_in_pytorch_model(
|
||
|
model, resolved_archive_file, allow_missing_keys=True, output_loading_info=True
|
||
|
)
|
||
|
except ImportError:
|
||
|
logger.error(
|
||
|
"Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed."
|
||
|
" Please see https://pytorch.org/ and https://www.tensorflow.org/install/ for installation"
|
||
|
" instructions."
|
||
|
)
|
||
|
raise
|
||
|
elif from_flax:
|
||
|
try:
|
||
|
from .modeling_flax_pytorch_utils import load_flax_checkpoint_in_pytorch_model
|
||
|
|
||
|
model = load_flax_checkpoint_in_pytorch_model(model, resolved_archive_file)
|
||
|
except ImportError:
|
||
|
logger.error(
|
||
|
"Loading a Flax model in PyTorch, requires both PyTorch and Flax to be installed. Please see"
|
||
|
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for"
|
||
|
" installation instructions."
|
||
|
)
|
||
|
raise
|
||
|
elif from_pt:
|
||
|
# restore default dtype
|
||
|
if dtype_orig is not None:
|
||
|
torch.set_default_dtype(dtype_orig)
|
||
|
(
|
||
|
model,
|
||
|
missing_keys,
|
||
|
unexpected_keys,
|
||
|
mismatched_keys,
|
||
|
offload_index,
|
||
|
error_msgs,
|
||
|
) = cls._load_pretrained_model(
|
||
|
model,
|
||
|
state_dict,
|
||
|
loaded_state_dict_keys, # XXX: rename?
|
||
|
resolved_archive_file,
|
||
|
pretrained_model_name_or_path,
|
||
|
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
||
|
sharded_metadata=sharded_metadata,
|
||
|
_fast_init=_fast_init,
|
||
|
low_cpu_mem_usage=low_cpu_mem_usage,
|
||
|
device_map=device_map,
|
||
|
offload_folder=offload_folder,
|
||
|
offload_state_dict=offload_state_dict,
|
||
|
dtype=torch_dtype,
|
||
|
hf_quantizer=hf_quantizer,
|
||
|
keep_in_fp32_modules=keep_in_fp32_modules,
|
||
|
)
|
||
|
|
||
|
# make sure token embedding weights are still tied if needed
|
||
|
model.tie_weights()
|
||
|
|
||
|
# Set model in evaluation mode to deactivate DropOut modules by default
|
||
|
model.eval()
|
||
|
|
||
|
# If it is a model with generation capabilities, attempt to load the generation config
|
||
|
if model.can_generate() and pretrained_model_name_or_path is not None:
|
||
|
try:
|
||
|
model.generation_config = GenerationConfig.from_pretrained(
|
||
|
pretrained_model_name_or_path,
|
||
|
cache_dir=cache_dir,
|
||
|
force_download=force_download,
|
||
|
resume_download=resume_download,
|
||
|
proxies=proxies,
|
||
|
local_files_only=local_files_only,
|
||
|
token=token,
|
||
|
revision=revision,
|
||
|
subfolder=subfolder,
|
||
|
_from_auto=from_auto_class,
|
||
|
_from_pipeline=from_pipeline,
|
||
|
**kwargs,
|
||
|
)
|
||
|
except OSError:
|
||
|
logger.info(
|
||
|
"Generation config file not found, using a generation config created from the model config."
|
||
|
)
|
||
|
pass
|
||
|
|
||
|
# Dispatch model with hooks on all devices if necessary
|
||
|
if device_map is not None:
|
||
|
device_map_kwargs = {
|
||
|
"device_map": device_map,
|
||
|
"offload_dir": offload_folder,
|
||
|
"offload_index": offload_index,
|
||
|
"offload_buffers": offload_buffers,
|
||
|
}
|
||
|
if "skip_keys" in inspect.signature(dispatch_model).parameters:
|
||
|
device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
|
||
|
if not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
|
||
|
dispatch_model(model, **device_map_kwargs)
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
hf_quantizer.postprocess_model(model)
|
||
|
model.hf_quantizer = hf_quantizer
|
||
|
|
||
|
if _adapter_model_path is not None:
|
||
|
model.load_adapter(
|
||
|
_adapter_model_path,
|
||
|
adapter_name=adapter_name,
|
||
|
token=token,
|
||
|
adapter_kwargs=adapter_kwargs,
|
||
|
)
|
||
|
|
||
|
if output_loading_info:
|
||
|
if loading_info is None:
|
||
|
loading_info = {
|
||
|
"missing_keys": missing_keys,
|
||
|
"unexpected_keys": unexpected_keys,
|
||
|
"mismatched_keys": mismatched_keys,
|
||
|
"error_msgs": error_msgs,
|
||
|
}
|
||
|
return model, loading_info
|
||
|
|
||
|
return model
|
||
|
|
||
|
@classmethod
|
||
|
def _load_pretrained_model(
|
||
|
cls,
|
||
|
model,
|
||
|
state_dict,
|
||
|
loaded_keys,
|
||
|
resolved_archive_file,
|
||
|
pretrained_model_name_or_path,
|
||
|
ignore_mismatched_sizes=False,
|
||
|
sharded_metadata=None,
|
||
|
_fast_init=True,
|
||
|
low_cpu_mem_usage=False,
|
||
|
device_map=None,
|
||
|
offload_folder=None,
|
||
|
offload_state_dict=None,
|
||
|
dtype=None,
|
||
|
hf_quantizer=None,
|
||
|
keep_in_fp32_modules=None,
|
||
|
):
|
||
|
is_safetensors = False
|
||
|
is_quantized = hf_quantizer is not None
|
||
|
|
||
|
if device_map is not None and "disk" in device_map.values():
|
||
|
archive_file = (
|
||
|
resolved_archive_file[0] if isinstance(resolved_archive_file, (list, tuple)) else resolved_archive_file
|
||
|
)
|
||
|
is_safetensors = archive_file.endswith(".safetensors")
|
||
|
if offload_folder is None and not is_safetensors:
|
||
|
raise ValueError(
|
||
|
"The current `device_map` had weights offloaded to the disk. Please provide an `offload_folder`"
|
||
|
" for them. Alternatively, make sure you have `safetensors` installed if the model you are using"
|
||
|
" offers the weights in this format."
|
||
|
)
|
||
|
if offload_folder is not None:
|
||
|
os.makedirs(offload_folder, exist_ok=True)
|
||
|
if offload_state_dict is None:
|
||
|
offload_state_dict = True
|
||
|
|
||
|
is_sharded_safetensors = is_safetensors and sharded_metadata is not None
|
||
|
|
||
|
# tie the model weights before retrieving the state_dict
|
||
|
model.tie_weights()
|
||
|
|
||
|
# Retrieve missing & unexpected_keys
|
||
|
model_state_dict = model.state_dict()
|
||
|
expected_keys = list(model_state_dict.keys())
|
||
|
prefix = model.base_model_prefix
|
||
|
|
||
|
def _fix_key(key):
|
||
|
if "beta" in key:
|
||
|
return key.replace("beta", "bias")
|
||
|
if "gamma" in key:
|
||
|
return key.replace("gamma", "weight")
|
||
|
return key
|
||
|
|
||
|
original_loaded_keys = loaded_keys
|
||
|
loaded_keys = [_fix_key(key) for key in loaded_keys]
|
||
|
|
||
|
if len(prefix) > 0:
|
||
|
has_prefix_module = any(s.startswith(prefix) for s in loaded_keys)
|
||
|
expects_prefix_module = any(s.startswith(prefix) for s in expected_keys)
|
||
|
else:
|
||
|
has_prefix_module = False
|
||
|
expects_prefix_module = False
|
||
|
|
||
|
# key re-naming operations are never done on the keys
|
||
|
# that are loaded, but always on the keys of the newly initialized model
|
||
|
remove_prefix_from_model = not has_prefix_module and expects_prefix_module
|
||
|
add_prefix_to_model = has_prefix_module and not expects_prefix_module
|
||
|
|
||
|
if remove_prefix_from_model:
|
||
|
_prefix = f"{prefix}."
|
||
|
expected_keys_not_prefixed = [s for s in expected_keys if not s.startswith(_prefix)]
|
||
|
expected_keys = [s[len(_prefix) :] if s.startswith(_prefix) else s for s in expected_keys]
|
||
|
elif add_prefix_to_model:
|
||
|
expected_keys = [".".join([prefix, s]) for s in expected_keys]
|
||
|
|
||
|
missing_keys = sorted(set(expected_keys) - set(loaded_keys))
|
||
|
unexpected_keys = set(loaded_keys) - set(expected_keys)
|
||
|
# Remove nonpersistent buffers from unexpected keys: they are not in the state dict but will be in the model
|
||
|
# buffers
|
||
|
model_buffers = {n for n, _ in model.named_buffers()}
|
||
|
if remove_prefix_from_model:
|
||
|
model_buffers = {key[len(_prefix) :] if key.startswith(_prefix) else key for key in model_buffers}
|
||
|
elif add_prefix_to_model:
|
||
|
model_buffers = {".".join([prefix, key]) for key in model_buffers}
|
||
|
unexpected_keys = sorted(unexpected_keys - model_buffers)
|
||
|
|
||
|
model.tie_weights()
|
||
|
if device_map is None and not is_fsdp_enabled() and not is_deepspeed_zero3_enabled():
|
||
|
ptrs = collections.defaultdict(list)
|
||
|
for name, tensor in model.state_dict().items():
|
||
|
id_tensor = id_tensor_storage(tensor)
|
||
|
ptrs[id_tensor].append(name)
|
||
|
|
||
|
# These are all the pointers of shared tensors.
|
||
|
tied_params = [names for _, names in ptrs.items() if len(names) > 1]
|
||
|
else:
|
||
|
# id function doesn't work for meta tensor so we need this function
|
||
|
tied_params = find_tied_parameters(model)
|
||
|
|
||
|
for group in tied_params:
|
||
|
if remove_prefix_from_model:
|
||
|
group = [key[len(_prefix) :] if key.startswith(_prefix) else key for key in group]
|
||
|
elif add_prefix_to_model:
|
||
|
group = [".".join([prefix, key]) for key in group]
|
||
|
missing_in_group = [k for k in missing_keys if k in group]
|
||
|
if len(missing_in_group) > 0 and len(missing_in_group) < len(group):
|
||
|
missing_keys = [k for k in missing_keys if k not in missing_in_group]
|
||
|
|
||
|
# Some models may have keys that are not in the state by design, removing them before needlessly warning
|
||
|
# the user.
|
||
|
if cls._keys_to_ignore_on_load_missing is not None:
|
||
|
for pat in cls._keys_to_ignore_on_load_missing:
|
||
|
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
|
||
|
|
||
|
if cls._keys_to_ignore_on_load_unexpected is not None:
|
||
|
for pat in cls._keys_to_ignore_on_load_unexpected:
|
||
|
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
||
|
|
||
|
if hf_quantizer is not None:
|
||
|
missing_keys = hf_quantizer.update_missing_keys(model, missing_keys, prefix)
|
||
|
|
||
|
# retrieve weights on meta device and put them back on CPU.
|
||
|
# This is not ideal in terms of memory, but if we don't do that not, we can't initialize them in the next step
|
||
|
if low_cpu_mem_usage:
|
||
|
for key in missing_keys:
|
||
|
if key in list(model_state_dict.keys()):
|
||
|
key = key
|
||
|
elif f"{prefix}.{key}" in list(model_state_dict.keys()):
|
||
|
key = f"{prefix}.{key}"
|
||
|
elif key.startswith(prefix) and ".".join(key.split(".")[1:]) in list(model_state_dict.keys()):
|
||
|
key = ".".join(key.split(".")[1:])
|
||
|
param = model_state_dict[key]
|
||
|
|
||
|
# upcast in fp32 if any
|
||
|
target_dtype = dtype
|
||
|
if (
|
||
|
keep_in_fp32_modules is not None
|
||
|
and dtype == torch.float16
|
||
|
and any(
|
||
|
module_to_keep_in_fp32 in key.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules
|
||
|
)
|
||
|
):
|
||
|
target_dtype = torch.float32
|
||
|
|
||
|
if param.device == torch.device("meta"):
|
||
|
value = torch.empty(*param.size(), dtype=target_dtype)
|
||
|
if (
|
||
|
not is_quantized
|
||
|
or getattr(hf_quantizer, "requires_parameters_quantization", False)
|
||
|
or not hf_quantizer.check_quantized_param(
|
||
|
model, param_value=value, param_name=key, state_dict={}
|
||
|
)
|
||
|
):
|
||
|
set_module_tensor_to_device(model, key, "cpu", value)
|
||
|
else:
|
||
|
hf_quantizer.create_quantized_param(model, value, key, "cpu", state_dict, unexpected_keys)
|
||
|
|
||
|
# retrieve uninitialized modules and initialize before maybe overriding that with the pretrained weights.
|
||
|
if _fast_init:
|
||
|
if not ignore_mismatched_sizes:
|
||
|
if remove_prefix_from_model:
|
||
|
_loaded_keys = [f"{prefix}.{k}" for k in loaded_keys]
|
||
|
elif add_prefix_to_model:
|
||
|
_loaded_keys = [k[len(prefix) + 1 :] for k in loaded_keys]
|
||
|
else:
|
||
|
_loaded_keys = loaded_keys
|
||
|
not_initialized_submodules = set_initialized_submodules(model, _loaded_keys)
|
||
|
# If we're about to tie the output embeds to the input embeds we don't need to init them
|
||
|
if hasattr(model.config, "tie_word_embeddings") and model.config.tie_word_embeddings:
|
||
|
output_embeddings = model.get_output_embeddings()
|
||
|
if output_embeddings is not None:
|
||
|
# Still need to initialize if there is a bias term since biases are not tied.
|
||
|
if not hasattr(output_embeddings, "bias") or output_embeddings.bias is None:
|
||
|
output_embeddings._is_hf_initialized = True
|
||
|
else:
|
||
|
not_initialized_submodules = dict(model.named_modules())
|
||
|
# This will only initialize submodules that are not marked as initialized by the line above.
|
||
|
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||
|
import deepspeed
|
||
|
|
||
|
not_initialized_parameters = list(
|
||
|
set(
|
||
|
itertools.chain.from_iterable(
|
||
|
submodule.parameters(recurse=False) for submodule in not_initialized_submodules.values()
|
||
|
)
|
||
|
)
|
||
|
)
|
||
|
with deepspeed.zero.GatheredParameters(not_initialized_parameters, modifier_rank=0):
|
||
|
model.apply(model._initialize_weights)
|
||
|
else:
|
||
|
model.apply(model._initialize_weights)
|
||
|
|
||
|
# Set some modules to fp32 if any
|
||
|
if keep_in_fp32_modules is not None:
|
||
|
for name, param in model.named_parameters():
|
||
|
if any(module_to_keep_in_fp32 in name.split(".") for module_to_keep_in_fp32 in keep_in_fp32_modules):
|
||
|
# param = param.to(torch.float32) does not work here as only in the local scope.
|
||
|
param.data = param.data.to(torch.float32)
|
||
|
|
||
|
# Make sure we are able to load base models as well as derived models (with heads)
|
||
|
start_prefix = ""
|
||
|
model_to_load = model
|
||
|
if len(cls.base_model_prefix) > 0 and not hasattr(model, cls.base_model_prefix) and has_prefix_module:
|
||
|
start_prefix = cls.base_model_prefix + "."
|
||
|
if len(cls.base_model_prefix) > 0 and hasattr(model, cls.base_model_prefix) and not has_prefix_module:
|
||
|
model_to_load = getattr(model, cls.base_model_prefix)
|
||
|
base_model_expected_keys = list(model_to_load.state_dict().keys())
|
||
|
if any(key in expected_keys_not_prefixed and key not in base_model_expected_keys for key in loaded_keys):
|
||
|
raise ValueError(
|
||
|
"The state dictionary of the model you are trying to load is corrupted. Are you sure it was "
|
||
|
"properly saved?"
|
||
|
)
|
||
|
if device_map is not None:
|
||
|
device_map = {k.replace(f"{cls.base_model_prefix}.", ""): v for k, v in device_map.items()}
|
||
|
|
||
|
def _find_mismatched_keys(
|
||
|
state_dict,
|
||
|
model_state_dict,
|
||
|
loaded_keys,
|
||
|
add_prefix_to_model,
|
||
|
remove_prefix_from_model,
|
||
|
ignore_mismatched_sizes,
|
||
|
):
|
||
|
mismatched_keys = []
|
||
|
if ignore_mismatched_sizes:
|
||
|
for checkpoint_key in loaded_keys:
|
||
|
# If the checkpoint is sharded, we may not have the key here.
|
||
|
if checkpoint_key not in state_dict:
|
||
|
continue
|
||
|
model_key = checkpoint_key
|
||
|
if remove_prefix_from_model:
|
||
|
# The model key starts with `prefix` but `checkpoint_key` doesn't so we add it.
|
||
|
model_key = f"{prefix}.{checkpoint_key}"
|
||
|
elif add_prefix_to_model:
|
||
|
# The model key doesn't start with `prefix` but `checkpoint_key` does so we remove it.
|
||
|
model_key = ".".join(checkpoint_key.split(".")[1:])
|
||
|
|
||
|
if (
|
||
|
model_key in model_state_dict
|
||
|
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
||
|
):
|
||
|
if (
|
||
|
state_dict[checkpoint_key].shape[-1] == 1
|
||
|
and state_dict[checkpoint_key].numel() * 2 == model_state_dict[model_key].numel()
|
||
|
):
|
||
|
# This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
|
||
|
# Without matching with module type or paramter type it seems like a practical way to detect valid 4bit weights.
|
||
|
pass
|
||
|
else:
|
||
|
mismatched_keys.append(
|
||
|
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
||
|
)
|
||
|
del state_dict[checkpoint_key]
|
||
|
return mismatched_keys
|
||
|
|
||
|
if resolved_archive_file is not None:
|
||
|
folder = os.path.sep.join(resolved_archive_file[0].split(os.path.sep)[:-1])
|
||
|
else:
|
||
|
folder = None
|
||
|
if device_map is not None and is_safetensors:
|
||
|
param_device_map = expand_device_map(device_map, original_loaded_keys, start_prefix)
|
||
|
str_dtype = str(dtype).replace("torch.", "") if dtype is not None else "float32"
|
||
|
if sharded_metadata is None:
|
||
|
archive_file = (
|
||
|
resolved_archive_file[0]
|
||
|
if isinstance(resolved_archive_file, (list, tuple))
|
||
|
else resolved_archive_file
|
||
|
)
|
||
|
weight_map = {p: archive_file for p in original_loaded_keys}
|
||
|
else:
|
||
|
weight_map = {p: os.path.join(folder, f) for p, f in sharded_metadata["weight_map"].items()}
|
||
|
offload_index = {
|
||
|
p[len(start_prefix) :]: {"safetensors_file": f, "weight_name": p, "dtype": str_dtype}
|
||
|
for p, f in weight_map.items()
|
||
|
if p.startswith(start_prefix) and param_device_map[p[len(start_prefix) :]] == "disk"
|
||
|
}
|
||
|
|
||
|
if state_dict is not None:
|
||
|
# Whole checkpoint
|
||
|
mismatched_keys = _find_mismatched_keys(
|
||
|
state_dict,
|
||
|
model_state_dict,
|
||
|
original_loaded_keys,
|
||
|
add_prefix_to_model,
|
||
|
remove_prefix_from_model,
|
||
|
ignore_mismatched_sizes,
|
||
|
)
|
||
|
error_msgs = _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||
|
offload_index = None
|
||
|
else:
|
||
|
# Sharded checkpoint or whole but low_cpu_mem_usage==True
|
||
|
|
||
|
# This should always be a list but, just to be sure.
|
||
|
if not isinstance(resolved_archive_file, list):
|
||
|
resolved_archive_file = [resolved_archive_file]
|
||
|
|
||
|
error_msgs = []
|
||
|
mismatched_keys = []
|
||
|
if not is_safetensors:
|
||
|
offload_index = {} if device_map is not None and "disk" in device_map.values() else None
|
||
|
if offload_state_dict:
|
||
|
state_dict_folder = tempfile.mkdtemp()
|
||
|
state_dict_index = {}
|
||
|
else:
|
||
|
state_dict_folder = None
|
||
|
state_dict_index = None
|
||
|
|
||
|
if is_sharded_safetensors:
|
||
|
disk_only_shard_files = get_disk_only_shard_files(
|
||
|
device_map, sharded_metadata=sharded_metadata, start_prefix=start_prefix
|
||
|
)
|
||
|
disk_only_shard_files = [os.path.join(folder, f) for f in disk_only_shard_files]
|
||
|
else:
|
||
|
disk_only_shard_files = []
|
||
|
|
||
|
if len(resolved_archive_file) > 1:
|
||
|
resolved_archive_file = logging.tqdm(resolved_archive_file, desc="Loading checkpoint shards")
|
||
|
for shard_file in resolved_archive_file:
|
||
|
# Skip the load for shards that only contain disk-offloaded weights when using safetensors for the offload.
|
||
|
if shard_file in disk_only_shard_files:
|
||
|
continue
|
||
|
state_dict = load_state_dict(shard_file, is_quantized=is_quantized)
|
||
|
|
||
|
# Mistmatched keys contains tuples key/shape1/shape2 of weights in the checkpoint that have a shape not
|
||
|
# matching the weights in the model.
|
||
|
mismatched_keys += _find_mismatched_keys(
|
||
|
state_dict,
|
||
|
model_state_dict,
|
||
|
original_loaded_keys,
|
||
|
add_prefix_to_model,
|
||
|
remove_prefix_from_model,
|
||
|
ignore_mismatched_sizes,
|
||
|
)
|
||
|
if low_cpu_mem_usage:
|
||
|
if is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized:
|
||
|
for key, param in model_to_load.state_dict().items():
|
||
|
if param.device == torch.device("meta"):
|
||
|
set_module_tensor_to_device(
|
||
|
model_to_load, key, "cpu", torch.empty(*param.size(), dtype=dtype)
|
||
|
)
|
||
|
else:
|
||
|
new_error_msgs, offload_index, state_dict_index = _load_state_dict_into_meta_model(
|
||
|
model_to_load,
|
||
|
state_dict,
|
||
|
loaded_keys,
|
||
|
start_prefix,
|
||
|
expected_keys,
|
||
|
device_map=device_map,
|
||
|
offload_folder=offload_folder,
|
||
|
offload_index=offload_index,
|
||
|
state_dict_folder=state_dict_folder,
|
||
|
state_dict_index=state_dict_index,
|
||
|
dtype=dtype,
|
||
|
hf_quantizer=hf_quantizer,
|
||
|
is_safetensors=is_safetensors,
|
||
|
keep_in_fp32_modules=keep_in_fp32_modules,
|
||
|
unexpected_keys=unexpected_keys,
|
||
|
)
|
||
|
error_msgs += new_error_msgs
|
||
|
else:
|
||
|
error_msgs += _load_state_dict_into_model(model_to_load, state_dict, start_prefix)
|
||
|
|
||
|
# force memory release
|
||
|
del state_dict
|
||
|
gc.collect()
|
||
|
|
||
|
if offload_index is not None and len(offload_index) > 0:
|
||
|
if model != model_to_load:
|
||
|
# We need to add the prefix of the base model
|
||
|
prefix = cls.base_model_prefix
|
||
|
if not is_safetensors:
|
||
|
for weight_name in offload_index:
|
||
|
shutil.move(
|
||
|
os.path.join(offload_folder, f"{weight_name}.dat"),
|
||
|
os.path.join(offload_folder, f"{prefix}.{weight_name}.dat"),
|
||
|
)
|
||
|
offload_index = {f"{prefix}.{key}": value for key, value in offload_index.items()}
|
||
|
if not is_safetensors:
|
||
|
save_offload_index(offload_index, offload_folder)
|
||
|
offload_index = None
|
||
|
|
||
|
if offload_state_dict:
|
||
|
# Load back temporarily offloaded state dict
|
||
|
load_offloaded_weights(model_to_load, state_dict_index, state_dict_folder)
|
||
|
shutil.rmtree(state_dict_folder)
|
||
|
|
||
|
if len(error_msgs) > 0:
|
||
|
error_msg = "\n\t".join(error_msgs)
|
||
|
if "size mismatch" in error_msg:
|
||
|
error_msg += (
|
||
|
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
||
|
)
|
||
|
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
||
|
|
||
|
if len(unexpected_keys) > 0:
|
||
|
archs = [] if model.config.architectures is None else model.config.architectures
|
||
|
warner = logger.warning if model.__class__.__name__ in archs else logger.info
|
||
|
warner(
|
||
|
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
||
|
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
||
|
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
|
||
|
" with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
||
|
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
||
|
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical"
|
||
|
" (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
|
||
|
)
|
||
|
else:
|
||
|
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
||
|
if len(missing_keys) > 0:
|
||
|
logger.warning(
|
||
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
||
|
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
||
|
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
||
|
)
|
||
|
elif len(mismatched_keys) == 0:
|
||
|
logger.info(
|
||
|
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
||
|
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
|
||
|
f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
|
||
|
" training."
|
||
|
)
|
||
|
if len(mismatched_keys) > 0:
|
||
|
mismatched_warning = "\n".join(
|
||
|
[
|
||
|
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
||
|
for key, shape1, shape2 in mismatched_keys
|
||
|
]
|
||
|
)
|
||
|
logger.warning(
|
||
|
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
||
|
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
||
|
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able"
|
||
|
" to use it for predictions and inference."
|
||
|
)
|
||
|
|
||
|
return model, missing_keys, unexpected_keys, mismatched_keys, offload_index, error_msgs
|
||
|
|
||
|
def retrieve_modules_from_names(self, names, add_prefix=False, remove_prefix=False):
|
||
|
module_keys = {".".join(key.split(".")[:-1]) for key in names}
|
||
|
|
||
|
# torch.nn.ParameterList is a special case where two parameter keywords
|
||
|
# are appended to the module name, *e.g.* bert.special_embeddings.0
|
||
|
module_keys = module_keys.union(
|
||
|
{".".join(key.split(".")[:-2]) for key in names if len(key) > 0 and key[-1].isdigit()}
|
||
|
)
|
||
|
|
||
|
retrieved_modules = []
|
||
|
# retrieve all modules that has at least one missing weight name
|
||
|
for name, module in self.named_modules():
|
||
|
if remove_prefix:
|
||
|
_prefix = f"{self.base_model_prefix}."
|
||
|
name = name[len(_prefix) :] if name.startswith(_prefix) else name
|
||
|
elif add_prefix:
|
||
|
name = ".".join([self.base_model_prefix, name]) if len(name) > 0 else self.base_model_prefix
|
||
|
|
||
|
if name in module_keys:
|
||
|
retrieved_modules.append(module)
|
||
|
|
||
|
return retrieved_modules
|
||
|
|
||
|
@staticmethod
|
||
|
def _load_pretrained_model_low_mem(
|
||
|
model, loaded_state_dict_keys, resolved_archive_file, start_prefix="", hf_quantizer=None
|
||
|
):
|
||
|
"""
|
||
|
This is an experimental function that loads the model using ~1.x model size CPU memory
|
||
|
|
||
|
Before you call it do:
|
||
|
|
||
|
1. save which state_dict keys are available
|
||
|
2. drop state_dict before model is created, since the latter takes 1x model size memory
|
||
|
|
||
|
Here then we continue:
|
||
|
|
||
|
3. switch to the meta device all params/buffers that are going to be replaced from the loaded state_dict
|
||
|
4. load state_dict 2nd time
|
||
|
5. replace the params/buffers from the state_dict
|
||
|
|
||
|
Currently, it doesn't handle missing_keys, unexpected_keys, mismatched_keys. It can't handle deepspeed. To
|
||
|
handle bitsandbytes, needs non-empty hf_quantizer argument.
|
||
|
"""
|
||
|
|
||
|
_move_model_to_meta(model, loaded_state_dict_keys, start_prefix)
|
||
|
state_dict = load_state_dict(resolved_archive_file)
|
||
|
expected_keys = loaded_state_dict_keys # plug for missing expected_keys. TODO: replace with proper keys
|
||
|
error_msgs = _load_state_dict_into_meta_model(
|
||
|
model,
|
||
|
state_dict,
|
||
|
loaded_state_dict_keys,
|
||
|
start_prefix,
|
||
|
expected_keys=expected_keys,
|
||
|
hf_quantizer=hf_quantizer,
|
||
|
)
|
||
|
return error_msgs
|
||
|
|
||
|
@classmethod
|
||
|
def register_for_auto_class(cls, auto_class="AutoModel"):
|
||
|
"""
|
||
|
Register this class with a given auto class. This should only be used for custom models as the ones in the
|
||
|
library are already mapped with an auto class.
|
||
|
|
||
|
<Tip warning={true}>
|
||
|
|
||
|
This API is experimental and may have some slight breaking changes in the next releases.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Args:
|
||
|
auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
|
||
|
The auto class to register this new model with.
|
||
|
"""
|
||
|
if not isinstance(auto_class, str):
|
||
|
auto_class = auto_class.__name__
|
||
|
|
||
|
import transformers.models.auto as auto_module
|
||
|
|
||
|
if not hasattr(auto_module, auto_class):
|
||
|
raise ValueError(f"{auto_class} is not a valid auto class.")
|
||
|
|
||
|
cls._auto_class = auto_class
|
||
|
|
||
|
def to_bettertransformer(self) -> "PreTrainedModel":
|
||
|
"""
|
||
|
Converts the model to use [PyTorch's native attention
|
||
|
implementation](https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html), integrated to
|
||
|
Transformers through [Optimum library](https://huggingface.co/docs/optimum/bettertransformer/overview). Only a
|
||
|
subset of all Transformers models are supported.
|
||
|
|
||
|
PyTorch's attention fastpath allows to speed up inference through kernel fusions and the use of [nested
|
||
|
tensors](https://pytorch.org/docs/stable/nested.html). Detailed benchmarks can be found in [this blog
|
||
|
post](https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2).
|
||
|
|
||
|
Returns:
|
||
|
[`PreTrainedModel`]: The model converted to BetterTransformer.
|
||
|
"""
|
||
|
if not is_optimum_available():
|
||
|
raise ImportError("The package `optimum` is required to use Better Transformer.")
|
||
|
|
||
|
from optimum.version import __version__ as optimum_version
|
||
|
|
||
|
if version.parse(optimum_version) < version.parse("1.7.0"):
|
||
|
raise ImportError(
|
||
|
f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
|
||
|
)
|
||
|
|
||
|
from optimum.bettertransformer import BetterTransformer
|
||
|
|
||
|
return BetterTransformer.transform(self)
|
||
|
|
||
|
def reverse_bettertransformer(self):
|
||
|
"""
|
||
|
Reverts the transformation from [`~PreTrainedModel.to_bettertransformer`] so that the original modeling is
|
||
|
used, for example in order to save the model.
|
||
|
|
||
|
Returns:
|
||
|
[`PreTrainedModel`]: The model converted back to the original modeling.
|
||
|
"""
|
||
|
if not is_optimum_available():
|
||
|
raise ImportError("The package `optimum` is required to use Better Transformer.")
|
||
|
|
||
|
from optimum.version import __version__ as optimum_version
|
||
|
|
||
|
if version.parse(optimum_version) < version.parse("1.7.0"):
|
||
|
raise ImportError(
|
||
|
f"Please install optimum>=1.7.0 to use Better Transformer. The version {optimum_version} was found."
|
||
|
)
|
||
|
|
||
|
from optimum.bettertransformer import BetterTransformer
|
||
|
|
||
|
return BetterTransformer.reverse(self)
|
||
|
|
||
|
def warn_if_padding_and_no_attention_mask(self, input_ids, attention_mask):
|
||
|
"""
|
||
|
Shows a one-time warning if the input_ids appear to contain padding and no attention mask was given.
|
||
|
"""
|
||
|
|
||
|
# Skip the check during tracing.
|
||
|
if is_torch_fx_proxy(input_ids) or torch.jit.is_tracing() or is_torchdynamo_compiling():
|
||
|
return
|
||
|
|
||
|
if (attention_mask is not None) or (self.config.pad_token_id is None):
|
||
|
return
|
||
|
|
||
|
# Check only the first and last input IDs to reduce overhead.
|
||
|
if self.config.pad_token_id in input_ids[:, [-1, 0]]:
|
||
|
warn_string = (
|
||
|
"We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See "
|
||
|
"https://huggingface.co/docs/transformers/troubleshooting"
|
||
|
"#incorrect-output-when-padding-tokens-arent-masked."
|
||
|
)
|
||
|
|
||
|
# If the pad token is equal to either BOS, EOS, or SEP, we do not know whether the user should use an
|
||
|
# attention_mask or not. In this case, we should still show a warning because this is a rare case.
|
||
|
if (
|
||
|
(self.config.bos_token_id is not None and self.config.bos_token_id == self.config.pad_token_id)
|
||
|
or (self.config.eos_token_id is not None and self.config.eos_token_id == self.config.pad_token_id)
|
||
|
or (self.config.sep_token_id is not None and self.config.sep_token_id == self.config.pad_token_id)
|
||
|
):
|
||
|
warn_string += (
|
||
|
f"\nYou may ignore this warning if your `pad_token_id` ({self.config.pad_token_id}) is identical "
|
||
|
f"to the `bos_token_id` ({self.config.bos_token_id}), `eos_token_id` ({self.config.eos_token_id}), "
|
||
|
f"or the `sep_token_id` ({self.config.sep_token_id}), and your input is not padded."
|
||
|
)
|
||
|
|
||
|
logger.warning_once(warn_string)
|
||
|
|
||
|
@property
|
||
|
def _is_quantized_training_enabled(self):
|
||
|
warnings.warn(
|
||
|
"`_is_quantized_training_enabled` is going to be deprecated in transformers 4.39.0. Please use `model.hf_quantizer.is_trainable` instead",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
|
||
|
if not hasattr(self, "hf_quantizer"):
|
||
|
return False
|
||
|
|
||
|
return self.hf_quantizer.is_trainable
|
||
|
|
||
|
|
||
|
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
|
||
|
if PreTrainedModel.push_to_hub.__doc__ is not None:
|
||
|
PreTrainedModel.push_to_hub.__doc__ = PreTrainedModel.push_to_hub.__doc__.format(
|
||
|
object="model", object_class="AutoModel", object_files="model file"
|
||
|
)
|
||
|
|
||
|
|
||
|
class PoolerStartLogits(nn.Module):
|
||
|
"""
|
||
|
Compute SQuAD start logits from sequence hidden states.
|
||
|
|
||
|
Args:
|
||
|
config ([`PretrainedConfig`]):
|
||
|
The config used by the model, will be used to grab the `hidden_size` of the model.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PretrainedConfig):
|
||
|
super().__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, 1)
|
||
|
|
||
|
def forward(
|
||
|
self, hidden_states: torch.FloatTensor, p_mask: Optional[torch.FloatTensor] = None
|
||
|
) -> torch.FloatTensor:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
|
||
|
The final hidden states of the model.
|
||
|
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
|
||
|
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
|
||
|
should be masked.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: The start logits for SQuAD.
|
||
|
"""
|
||
|
x = self.dense(hidden_states).squeeze(-1)
|
||
|
|
||
|
if p_mask is not None:
|
||
|
if get_parameter_dtype(self) == torch.float16:
|
||
|
x = x * (1 - p_mask) - 65500 * p_mask
|
||
|
else:
|
||
|
x = x * (1 - p_mask) - 1e30 * p_mask
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class PoolerEndLogits(nn.Module):
|
||
|
"""
|
||
|
Compute SQuAD end logits from sequence hidden states.
|
||
|
|
||
|
Args:
|
||
|
config ([`PretrainedConfig`]):
|
||
|
The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
|
||
|
to use.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PretrainedConfig):
|
||
|
super().__init__()
|
||
|
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
||
|
self.dense_1 = nn.Linear(config.hidden_size, 1)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
start_states: Optional[torch.FloatTensor] = None,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
p_mask: Optional[torch.FloatTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
|
||
|
The final hidden states of the model.
|
||
|
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
|
||
|
The hidden states of the first tokens for the labeled span.
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
The position of the first token for the labeled span.
|
||
|
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
|
||
|
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
|
||
|
should be masked.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
|
||
|
`start_states`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: The end logits for SQuAD.
|
||
|
"""
|
||
|
assert (
|
||
|
start_states is not None or start_positions is not None
|
||
|
), "One of start_states, start_positions should be not None"
|
||
|
if start_positions is not None:
|
||
|
slen, hsz = hidden_states.shape[-2:]
|
||
|
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
||
|
start_states = hidden_states.gather(-2, start_positions) # shape (bsz, 1, hsz)
|
||
|
start_states = start_states.expand(-1, slen, -1) # shape (bsz, slen, hsz)
|
||
|
|
||
|
x = self.dense_0(torch.cat([hidden_states, start_states], dim=-1))
|
||
|
x = self.activation(x)
|
||
|
x = self.LayerNorm(x)
|
||
|
x = self.dense_1(x).squeeze(-1)
|
||
|
|
||
|
if p_mask is not None:
|
||
|
if get_parameter_dtype(self) == torch.float16:
|
||
|
x = x * (1 - p_mask) - 65500 * p_mask
|
||
|
else:
|
||
|
x = x * (1 - p_mask) - 1e30 * p_mask
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
class PoolerAnswerClass(nn.Module):
|
||
|
"""
|
||
|
Compute SQuAD 2.0 answer class from classification and start tokens hidden states.
|
||
|
|
||
|
Args:
|
||
|
config ([`PretrainedConfig`]):
|
||
|
The config used by the model, will be used to grab the `hidden_size` of the model.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.dense_0 = nn.Linear(config.hidden_size * 2, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
self.dense_1 = nn.Linear(config.hidden_size, 1, bias=False)
|
||
|
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
start_states: Optional[torch.FloatTensor] = None,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
cls_index: Optional[torch.LongTensor] = None,
|
||
|
) -> torch.FloatTensor:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
|
||
|
The final hidden states of the model.
|
||
|
start_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`, *optional*):
|
||
|
The hidden states of the first tokens for the labeled span.
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
The position of the first token for the labeled span.
|
||
|
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
|
||
|
|
||
|
<Tip>
|
||
|
|
||
|
One of `start_states` or `start_positions` should be not `None`. If both are set, `start_positions` overrides
|
||
|
`start_states`.
|
||
|
|
||
|
</Tip>
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: The SQuAD 2.0 answer class.
|
||
|
"""
|
||
|
# No dependency on end_feature so that we can obtain one single `cls_logits` for each sample.
|
||
|
hsz = hidden_states.shape[-1]
|
||
|
assert (
|
||
|
start_states is not None or start_positions is not None
|
||
|
), "One of start_states, start_positions should be not None"
|
||
|
if start_positions is not None:
|
||
|
start_positions = start_positions[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
||
|
start_states = hidden_states.gather(-2, start_positions).squeeze(-2) # shape (bsz, hsz)
|
||
|
|
||
|
if cls_index is not None:
|
||
|
cls_index = cls_index[:, None, None].expand(-1, -1, hsz) # shape (bsz, 1, hsz)
|
||
|
cls_token_state = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, hsz)
|
||
|
else:
|
||
|
cls_token_state = hidden_states[:, -1, :] # shape (bsz, hsz)
|
||
|
|
||
|
x = self.dense_0(torch.cat([start_states, cls_token_state], dim=-1))
|
||
|
x = self.activation(x)
|
||
|
x = self.dense_1(x).squeeze(-1)
|
||
|
|
||
|
return x
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class SquadHeadOutput(ModelOutput):
|
||
|
"""
|
||
|
Base class for outputs of question answering models using a [`~modeling_utils.SQuADHead`].
|
||
|
|
||
|
Args:
|
||
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
|
||
|
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
|
||
|
losses.
|
||
|
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
||
|
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Indices for the top config.start_n_top start token possibilities (beam-search).
|
||
|
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
|
||
|
(beam-search).
|
||
|
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
|
||
|
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
||
|
Log probabilities for the `is_impossible` label of the answers.
|
||
|
|
||
|
"""
|
||
|
|
||
|
loss: Optional[torch.FloatTensor] = None
|
||
|
start_top_log_probs: Optional[torch.FloatTensor] = None
|
||
|
start_top_index: Optional[torch.LongTensor] = None
|
||
|
end_top_log_probs: Optional[torch.FloatTensor] = None
|
||
|
end_top_index: Optional[torch.LongTensor] = None
|
||
|
cls_logits: Optional[torch.FloatTensor] = None
|
||
|
|
||
|
|
||
|
class SQuADHead(nn.Module):
|
||
|
r"""
|
||
|
A SQuAD head inspired by XLNet.
|
||
|
|
||
|
Args:
|
||
|
config ([`PretrainedConfig`]):
|
||
|
The config used by the model, will be used to grab the `hidden_size` of the model and the `layer_norm_eps`
|
||
|
to use.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super().__init__()
|
||
|
self.start_n_top = config.start_n_top
|
||
|
self.end_n_top = config.end_n_top
|
||
|
|
||
|
self.start_logits = PoolerStartLogits(config)
|
||
|
self.end_logits = PoolerEndLogits(config)
|
||
|
self.answer_class = PoolerAnswerClass(config)
|
||
|
|
||
|
@replace_return_docstrings(output_type=SquadHeadOutput, config_class=PretrainedConfig)
|
||
|
def forward(
|
||
|
self,
|
||
|
hidden_states: torch.FloatTensor,
|
||
|
start_positions: Optional[torch.LongTensor] = None,
|
||
|
end_positions: Optional[torch.LongTensor] = None,
|
||
|
cls_index: Optional[torch.LongTensor] = None,
|
||
|
is_impossible: Optional[torch.LongTensor] = None,
|
||
|
p_mask: Optional[torch.FloatTensor] = None,
|
||
|
return_dict: bool = False,
|
||
|
) -> Union[SquadHeadOutput, Tuple[torch.FloatTensor]]:
|
||
|
"""
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, hidden_size)`):
|
||
|
Final hidden states of the model on the sequence tokens.
|
||
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Positions of the first token for the labeled span.
|
||
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Positions of the last token for the labeled span.
|
||
|
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Position of the CLS token for each sentence in the batch. If `None`, takes the last token.
|
||
|
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
||
|
Whether the question has a possible answer in the paragraph or not.
|
||
|
p_mask (`torch.FloatTensor` of shape `(batch_size, seq_len)`, *optional*):
|
||
|
Mask for tokens at invalid position, such as query and special symbols (PAD, SEP, CLS). 1.0 means token
|
||
|
should be masked.
|
||
|
return_dict (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
|
|
||
|
Returns:
|
||
|
"""
|
||
|
start_logits = self.start_logits(hidden_states, p_mask=p_mask)
|
||
|
|
||
|
if start_positions is not None and end_positions is not None:
|
||
|
# If we are on multi-GPU, let's remove the dimension added by batch splitting
|
||
|
for x in (start_positions, end_positions, cls_index, is_impossible):
|
||
|
if x is not None and x.dim() > 1:
|
||
|
x.squeeze_(-1)
|
||
|
|
||
|
# during training, compute the end logits based on the ground truth of the start position
|
||
|
end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
|
||
|
|
||
|
loss_fct = CrossEntropyLoss()
|
||
|
start_loss = loss_fct(start_logits, start_positions)
|
||
|
end_loss = loss_fct(end_logits, end_positions)
|
||
|
total_loss = (start_loss + end_loss) / 2
|
||
|
|
||
|
if cls_index is not None and is_impossible is not None:
|
||
|
# Predict answerability from the representation of CLS and START
|
||
|
cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
|
||
|
loss_fct_cls = nn.BCEWithLogitsLoss()
|
||
|
cls_loss = loss_fct_cls(cls_logits, is_impossible)
|
||
|
|
||
|
# note(zhiliny): by default multiply the loss by 0.5 so that the scale is comparable to start_loss and end_loss
|
||
|
total_loss += cls_loss * 0.5
|
||
|
|
||
|
return SquadHeadOutput(loss=total_loss) if return_dict else (total_loss,)
|
||
|
|
||
|
else:
|
||
|
# during inference, compute the end logits based on beam search
|
||
|
bsz, slen, hsz = hidden_states.size()
|
||
|
start_log_probs = nn.functional.softmax(start_logits, dim=-1) # shape (bsz, slen)
|
||
|
|
||
|
start_top_log_probs, start_top_index = torch.topk(
|
||
|
start_log_probs, self.start_n_top, dim=-1
|
||
|
) # shape (bsz, start_n_top)
|
||
|
start_top_index_exp = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
|
||
|
start_states = torch.gather(hidden_states, -2, start_top_index_exp) # shape (bsz, start_n_top, hsz)
|
||
|
start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)
|
||
|
|
||
|
hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(
|
||
|
start_states
|
||
|
) # shape (bsz, slen, start_n_top, hsz)
|
||
|
p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
|
||
|
end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
|
||
|
end_log_probs = nn.functional.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)
|
||
|
|
||
|
end_top_log_probs, end_top_index = torch.topk(
|
||
|
end_log_probs, self.end_n_top, dim=1
|
||
|
) # shape (bsz, end_n_top, start_n_top)
|
||
|
end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
|
||
|
end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)
|
||
|
|
||
|
start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
|
||
|
cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)
|
||
|
|
||
|
if not return_dict:
|
||
|
return (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits)
|
||
|
else:
|
||
|
return SquadHeadOutput(
|
||
|
start_top_log_probs=start_top_log_probs,
|
||
|
start_top_index=start_top_index,
|
||
|
end_top_log_probs=end_top_log_probs,
|
||
|
end_top_index=end_top_index,
|
||
|
cls_logits=cls_logits,
|
||
|
)
|
||
|
|
||
|
|
||
|
class SequenceSummary(nn.Module):
|
||
|
r"""
|
||
|
Compute a single vector summary of a sequence hidden states.
|
||
|
|
||
|
Args:
|
||
|
config ([`PretrainedConfig`]):
|
||
|
The config used by the model. Relevant arguments in the config class of the model are (refer to the actual
|
||
|
config class of your model for the default values it uses):
|
||
|
|
||
|
- **summary_type** (`str`) -- The method to use to make this summary. Accepted values are:
|
||
|
|
||
|
- `"last"` -- Take the last token hidden state (like XLNet)
|
||
|
- `"first"` -- Take the first token hidden state (like Bert)
|
||
|
- `"mean"` -- Take the mean of all tokens hidden states
|
||
|
- `"cls_index"` -- Supply a Tensor of classification token position (GPT/GPT-2)
|
||
|
- `"attn"` -- Not implemented now, use multi-head attention
|
||
|
|
||
|
- **summary_use_proj** (`bool`) -- Add a projection after the vector extraction.
|
||
|
- **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes
|
||
|
(otherwise to `config.hidden_size`).
|
||
|
- **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output,
|
||
|
another string or `None` will add no activation.
|
||
|
- **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation.
|
||
|
- **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, config: PretrainedConfig):
|
||
|
super().__init__()
|
||
|
|
||
|
self.summary_type = getattr(config, "summary_type", "last")
|
||
|
if self.summary_type == "attn":
|
||
|
# We should use a standard multi-head attention module with absolute positional embedding for that.
|
||
|
# Cf. https://github.com/zihangdai/xlnet/blob/master/modeling.py#L253-L276
|
||
|
# We can probably just use the multi-head attention module of PyTorch >=1.1.0
|
||
|
raise NotImplementedError
|
||
|
|
||
|
self.summary = Identity()
|
||
|
if hasattr(config, "summary_use_proj") and config.summary_use_proj:
|
||
|
if hasattr(config, "summary_proj_to_labels") and config.summary_proj_to_labels and config.num_labels > 0:
|
||
|
num_classes = config.num_labels
|
||
|
else:
|
||
|
num_classes = config.hidden_size
|
||
|
self.summary = nn.Linear(config.hidden_size, num_classes)
|
||
|
|
||
|
activation_string = getattr(config, "summary_activation", None)
|
||
|
self.activation: Callable = get_activation(activation_string) if activation_string else Identity()
|
||
|
|
||
|
self.first_dropout = Identity()
|
||
|
if hasattr(config, "summary_first_dropout") and config.summary_first_dropout > 0:
|
||
|
self.first_dropout = nn.Dropout(config.summary_first_dropout)
|
||
|
|
||
|
self.last_dropout = Identity()
|
||
|
if hasattr(config, "summary_last_dropout") and config.summary_last_dropout > 0:
|
||
|
self.last_dropout = nn.Dropout(config.summary_last_dropout)
|
||
|
|
||
|
def forward(
|
||
|
self, hidden_states: torch.FloatTensor, cls_index: Optional[torch.LongTensor] = None
|
||
|
) -> torch.FloatTensor:
|
||
|
"""
|
||
|
Compute a single vector summary of a sequence hidden states.
|
||
|
|
||
|
Args:
|
||
|
hidden_states (`torch.FloatTensor` of shape `[batch_size, seq_len, hidden_size]`):
|
||
|
The hidden states of the last layer.
|
||
|
cls_index (`torch.LongTensor` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*):
|
||
|
Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token.
|
||
|
|
||
|
Returns:
|
||
|
`torch.FloatTensor`: The summary of the sequence hidden states.
|
||
|
"""
|
||
|
if self.summary_type == "last":
|
||
|
output = hidden_states[:, -1]
|
||
|
elif self.summary_type == "first":
|
||
|
output = hidden_states[:, 0]
|
||
|
elif self.summary_type == "mean":
|
||
|
output = hidden_states.mean(dim=1)
|
||
|
elif self.summary_type == "cls_index":
|
||
|
if cls_index is None:
|
||
|
cls_index = torch.full_like(
|
||
|
hidden_states[..., :1, :],
|
||
|
hidden_states.shape[-2] - 1,
|
||
|
dtype=torch.long,
|
||
|
)
|
||
|
else:
|
||
|
cls_index = cls_index.unsqueeze(-1).unsqueeze(-1)
|
||
|
cls_index = cls_index.expand((-1,) * (cls_index.dim() - 1) + (hidden_states.size(-1),))
|
||
|
# shape of cls_index: (bsz, XX, 1, hidden_size) where XX are optional leading dim of hidden_states
|
||
|
output = hidden_states.gather(-2, cls_index).squeeze(-2) # shape (bsz, XX, hidden_size)
|
||
|
elif self.summary_type == "attn":
|
||
|
raise NotImplementedError
|
||
|
|
||
|
output = self.first_dropout(output)
|
||
|
output = self.summary(output)
|
||
|
output = self.activation(output)
|
||
|
output = self.last_dropout(output)
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def unwrap_model(model: nn.Module) -> nn.Module:
|
||
|
"""
|
||
|
Recursively unwraps a model from potential containers (as used in distributed training).
|
||
|
|
||
|
Args:
|
||
|
model (`torch.nn.Module`): The model to unwrap.
|
||
|
"""
|
||
|
# since there could be multiple levels of wrapping, unwrap recursively
|
||
|
if hasattr(model, "module"):
|
||
|
return unwrap_model(model.module)
|
||
|
else:
|
||
|
return model
|
||
|
|
||
|
|
||
|
def expand_device_map(device_map, param_names, start_prefix):
|
||
|
"""
|
||
|
Expand a device map to return the correspondance parameter name to device.
|
||
|
"""
|
||
|
new_device_map = {}
|
||
|
param_names = [p[len(start_prefix) :] for p in param_names if p.startswith(start_prefix)]
|
||
|
for module, device in device_map.items():
|
||
|
new_device_map.update(
|
||
|
{p: device for p in param_names if p == module or p.startswith(f"{module}.") or module == ""}
|
||
|
)
|
||
|
return new_device_map
|
||
|
|
||
|
|
||
|
def get_disk_only_shard_files(device_map, sharded_metadata, start_prefix):
|
||
|
"""
|
||
|
Returns the list of shard files containing only weights offloaded to disk.
|
||
|
"""
|
||
|
|
||
|
weight_map = {
|
||
|
p[len(start_prefix) :]: v for p, v in sharded_metadata["weight_map"].items() if p.startswith(start_prefix)
|
||
|
}
|
||
|
files_content = collections.defaultdict(list)
|
||
|
for weight_name, filename in weight_map.items():
|
||
|
while len(weight_name) > 0 and weight_name not in device_map:
|
||
|
weight_name = ".".join(weight_name.split(".")[:-1])
|
||
|
files_content[filename].append(device_map[weight_name])
|
||
|
|
||
|
return [fname for fname, devices in files_content.items() if set(devices) == {"disk"}]
|