985 lines
38 KiB
Python
985 lines
38 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The HuggingFace Inc. team.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" Auto Config class."""
|
||
|
import importlib
|
||
|
import os
|
||
|
import re
|
||
|
import warnings
|
||
|
from collections import OrderedDict
|
||
|
from typing import List, Union
|
||
|
|
||
|
from ...configuration_utils import PretrainedConfig
|
||
|
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
|
||
|
from ...utils import CONFIG_NAME, logging
|
||
|
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
|
||
|
from ..deprecated._archive_maps import CONFIG_ARCHIVE_MAP_MAPPING_NAMES # noqa: F401, E402
|
||
|
|
||
|
|
||
|
CONFIG_MAPPING_NAMES = OrderedDict(
|
||
|
[
|
||
|
# Add configs here
|
||
|
("albert", "AlbertConfig"),
|
||
|
("align", "AlignConfig"),
|
||
|
("altclip", "AltCLIPConfig"),
|
||
|
("audio-spectrogram-transformer", "ASTConfig"),
|
||
|
("autoformer", "AutoformerConfig"),
|
||
|
("bark", "BarkConfig"),
|
||
|
("bart", "BartConfig"),
|
||
|
("beit", "BeitConfig"),
|
||
|
("bert", "BertConfig"),
|
||
|
("bert-generation", "BertGenerationConfig"),
|
||
|
("big_bird", "BigBirdConfig"),
|
||
|
("bigbird_pegasus", "BigBirdPegasusConfig"),
|
||
|
("biogpt", "BioGptConfig"),
|
||
|
("bit", "BitConfig"),
|
||
|
("blenderbot", "BlenderbotConfig"),
|
||
|
("blenderbot-small", "BlenderbotSmallConfig"),
|
||
|
("blip", "BlipConfig"),
|
||
|
("blip-2", "Blip2Config"),
|
||
|
("bloom", "BloomConfig"),
|
||
|
("bridgetower", "BridgeTowerConfig"),
|
||
|
("bros", "BrosConfig"),
|
||
|
("camembert", "CamembertConfig"),
|
||
|
("canine", "CanineConfig"),
|
||
|
("chinese_clip", "ChineseCLIPConfig"),
|
||
|
("chinese_clip_vision_model", "ChineseCLIPVisionConfig"),
|
||
|
("clap", "ClapConfig"),
|
||
|
("clip", "CLIPConfig"),
|
||
|
("clip_vision_model", "CLIPVisionConfig"),
|
||
|
("clipseg", "CLIPSegConfig"),
|
||
|
("clvp", "ClvpConfig"),
|
||
|
("code_llama", "LlamaConfig"),
|
||
|
("codegen", "CodeGenConfig"),
|
||
|
("cohere", "CohereConfig"),
|
||
|
("conditional_detr", "ConditionalDetrConfig"),
|
||
|
("convbert", "ConvBertConfig"),
|
||
|
("convnext", "ConvNextConfig"),
|
||
|
("convnextv2", "ConvNextV2Config"),
|
||
|
("cpmant", "CpmAntConfig"),
|
||
|
("ctrl", "CTRLConfig"),
|
||
|
("cvt", "CvtConfig"),
|
||
|
("data2vec-audio", "Data2VecAudioConfig"),
|
||
|
("data2vec-text", "Data2VecTextConfig"),
|
||
|
("data2vec-vision", "Data2VecVisionConfig"),
|
||
|
("dbrx", "DbrxConfig"),
|
||
|
("deberta", "DebertaConfig"),
|
||
|
("deberta-v2", "DebertaV2Config"),
|
||
|
("decision_transformer", "DecisionTransformerConfig"),
|
||
|
("deformable_detr", "DeformableDetrConfig"),
|
||
|
("deit", "DeiTConfig"),
|
||
|
("depth_anything", "DepthAnythingConfig"),
|
||
|
("deta", "DetaConfig"),
|
||
|
("detr", "DetrConfig"),
|
||
|
("dinat", "DinatConfig"),
|
||
|
("dinov2", "Dinov2Config"),
|
||
|
("distilbert", "DistilBertConfig"),
|
||
|
("donut-swin", "DonutSwinConfig"),
|
||
|
("dpr", "DPRConfig"),
|
||
|
("dpt", "DPTConfig"),
|
||
|
("efficientformer", "EfficientFormerConfig"),
|
||
|
("efficientnet", "EfficientNetConfig"),
|
||
|
("electra", "ElectraConfig"),
|
||
|
("encodec", "EncodecConfig"),
|
||
|
("encoder-decoder", "EncoderDecoderConfig"),
|
||
|
("ernie", "ErnieConfig"),
|
||
|
("ernie_m", "ErnieMConfig"),
|
||
|
("esm", "EsmConfig"),
|
||
|
("falcon", "FalconConfig"),
|
||
|
("fastspeech2_conformer", "FastSpeech2ConformerConfig"),
|
||
|
("flaubert", "FlaubertConfig"),
|
||
|
("flava", "FlavaConfig"),
|
||
|
("fnet", "FNetConfig"),
|
||
|
("focalnet", "FocalNetConfig"),
|
||
|
("fsmt", "FSMTConfig"),
|
||
|
("funnel", "FunnelConfig"),
|
||
|
("fuyu", "FuyuConfig"),
|
||
|
("gemma", "GemmaConfig"),
|
||
|
("git", "GitConfig"),
|
||
|
("glpn", "GLPNConfig"),
|
||
|
("gpt-sw3", "GPT2Config"),
|
||
|
("gpt2", "GPT2Config"),
|
||
|
("gpt_bigcode", "GPTBigCodeConfig"),
|
||
|
("gpt_neo", "GPTNeoConfig"),
|
||
|
("gpt_neox", "GPTNeoXConfig"),
|
||
|
("gpt_neox_japanese", "GPTNeoXJapaneseConfig"),
|
||
|
("gptj", "GPTJConfig"),
|
||
|
("gptsan-japanese", "GPTSanJapaneseConfig"),
|
||
|
("graphormer", "GraphormerConfig"),
|
||
|
("grounding-dino", "GroundingDinoConfig"),
|
||
|
("groupvit", "GroupViTConfig"),
|
||
|
("hubert", "HubertConfig"),
|
||
|
("ibert", "IBertConfig"),
|
||
|
("idefics", "IdeficsConfig"),
|
||
|
("idefics2", "Idefics2Config"),
|
||
|
("imagegpt", "ImageGPTConfig"),
|
||
|
("informer", "InformerConfig"),
|
||
|
("instructblip", "InstructBlipConfig"),
|
||
|
("jamba", "JambaConfig"),
|
||
|
("jukebox", "JukeboxConfig"),
|
||
|
("kosmos-2", "Kosmos2Config"),
|
||
|
("layoutlm", "LayoutLMConfig"),
|
||
|
("layoutlmv2", "LayoutLMv2Config"),
|
||
|
("layoutlmv3", "LayoutLMv3Config"),
|
||
|
("led", "LEDConfig"),
|
||
|
("levit", "LevitConfig"),
|
||
|
("lilt", "LiltConfig"),
|
||
|
("llama", "LlamaConfig"),
|
||
|
("llava", "LlavaConfig"),
|
||
|
("llava_next", "LlavaNextConfig"),
|
||
|
("longformer", "LongformerConfig"),
|
||
|
("longt5", "LongT5Config"),
|
||
|
("luke", "LukeConfig"),
|
||
|
("lxmert", "LxmertConfig"),
|
||
|
("m2m_100", "M2M100Config"),
|
||
|
("mamba", "MambaConfig"),
|
||
|
("marian", "MarianConfig"),
|
||
|
("markuplm", "MarkupLMConfig"),
|
||
|
("mask2former", "Mask2FormerConfig"),
|
||
|
("maskformer", "MaskFormerConfig"),
|
||
|
("maskformer-swin", "MaskFormerSwinConfig"),
|
||
|
("mbart", "MBartConfig"),
|
||
|
("mctct", "MCTCTConfig"),
|
||
|
("mega", "MegaConfig"),
|
||
|
("megatron-bert", "MegatronBertConfig"),
|
||
|
("mgp-str", "MgpstrConfig"),
|
||
|
("mistral", "MistralConfig"),
|
||
|
("mixtral", "MixtralConfig"),
|
||
|
("mobilebert", "MobileBertConfig"),
|
||
|
("mobilenet_v1", "MobileNetV1Config"),
|
||
|
("mobilenet_v2", "MobileNetV2Config"),
|
||
|
("mobilevit", "MobileViTConfig"),
|
||
|
("mobilevitv2", "MobileViTV2Config"),
|
||
|
("mpnet", "MPNetConfig"),
|
||
|
("mpt", "MptConfig"),
|
||
|
("mra", "MraConfig"),
|
||
|
("mt5", "MT5Config"),
|
||
|
("musicgen", "MusicgenConfig"),
|
||
|
("musicgen_melody", "MusicgenMelodyConfig"),
|
||
|
("mvp", "MvpConfig"),
|
||
|
("nat", "NatConfig"),
|
||
|
("nezha", "NezhaConfig"),
|
||
|
("nllb-moe", "NllbMoeConfig"),
|
||
|
("nougat", "VisionEncoderDecoderConfig"),
|
||
|
("nystromformer", "NystromformerConfig"),
|
||
|
("olmo", "OlmoConfig"),
|
||
|
("oneformer", "OneFormerConfig"),
|
||
|
("open-llama", "OpenLlamaConfig"),
|
||
|
("openai-gpt", "OpenAIGPTConfig"),
|
||
|
("opt", "OPTConfig"),
|
||
|
("owlv2", "Owlv2Config"),
|
||
|
("owlvit", "OwlViTConfig"),
|
||
|
("patchtsmixer", "PatchTSMixerConfig"),
|
||
|
("patchtst", "PatchTSTConfig"),
|
||
|
("pegasus", "PegasusConfig"),
|
||
|
("pegasus_x", "PegasusXConfig"),
|
||
|
("perceiver", "PerceiverConfig"),
|
||
|
("persimmon", "PersimmonConfig"),
|
||
|
("phi", "PhiConfig"),
|
||
|
("pix2struct", "Pix2StructConfig"),
|
||
|
("plbart", "PLBartConfig"),
|
||
|
("poolformer", "PoolFormerConfig"),
|
||
|
("pop2piano", "Pop2PianoConfig"),
|
||
|
("prophetnet", "ProphetNetConfig"),
|
||
|
("pvt", "PvtConfig"),
|
||
|
("pvt_v2", "PvtV2Config"),
|
||
|
("qdqbert", "QDQBertConfig"),
|
||
|
("qwen2", "Qwen2Config"),
|
||
|
("qwen2_moe", "Qwen2MoeConfig"),
|
||
|
("rag", "RagConfig"),
|
||
|
("realm", "RealmConfig"),
|
||
|
("recurrent_gemma", "RecurrentGemmaConfig"),
|
||
|
("reformer", "ReformerConfig"),
|
||
|
("regnet", "RegNetConfig"),
|
||
|
("rembert", "RemBertConfig"),
|
||
|
("resnet", "ResNetConfig"),
|
||
|
("retribert", "RetriBertConfig"),
|
||
|
("roberta", "RobertaConfig"),
|
||
|
("roberta-prelayernorm", "RobertaPreLayerNormConfig"),
|
||
|
("roc_bert", "RoCBertConfig"),
|
||
|
("roformer", "RoFormerConfig"),
|
||
|
("rwkv", "RwkvConfig"),
|
||
|
("sam", "SamConfig"),
|
||
|
("seamless_m4t", "SeamlessM4TConfig"),
|
||
|
("seamless_m4t_v2", "SeamlessM4Tv2Config"),
|
||
|
("segformer", "SegformerConfig"),
|
||
|
("seggpt", "SegGptConfig"),
|
||
|
("sew", "SEWConfig"),
|
||
|
("sew-d", "SEWDConfig"),
|
||
|
("siglip", "SiglipConfig"),
|
||
|
("siglip_vision_model", "SiglipVisionConfig"),
|
||
|
("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
|
||
|
("speech_to_text", "Speech2TextConfig"),
|
||
|
("speech_to_text_2", "Speech2Text2Config"),
|
||
|
("speecht5", "SpeechT5Config"),
|
||
|
("splinter", "SplinterConfig"),
|
||
|
("squeezebert", "SqueezeBertConfig"),
|
||
|
("stablelm", "StableLmConfig"),
|
||
|
("starcoder2", "Starcoder2Config"),
|
||
|
("superpoint", "SuperPointConfig"),
|
||
|
("swiftformer", "SwiftFormerConfig"),
|
||
|
("swin", "SwinConfig"),
|
||
|
("swin2sr", "Swin2SRConfig"),
|
||
|
("swinv2", "Swinv2Config"),
|
||
|
("switch_transformers", "SwitchTransformersConfig"),
|
||
|
("t5", "T5Config"),
|
||
|
("table-transformer", "TableTransformerConfig"),
|
||
|
("tapas", "TapasConfig"),
|
||
|
("time_series_transformer", "TimeSeriesTransformerConfig"),
|
||
|
("timesformer", "TimesformerConfig"),
|
||
|
("timm_backbone", "TimmBackboneConfig"),
|
||
|
("trajectory_transformer", "TrajectoryTransformerConfig"),
|
||
|
("transfo-xl", "TransfoXLConfig"),
|
||
|
("trocr", "TrOCRConfig"),
|
||
|
("tvlt", "TvltConfig"),
|
||
|
("tvp", "TvpConfig"),
|
||
|
("udop", "UdopConfig"),
|
||
|
("umt5", "UMT5Config"),
|
||
|
("unispeech", "UniSpeechConfig"),
|
||
|
("unispeech-sat", "UniSpeechSatConfig"),
|
||
|
("univnet", "UnivNetConfig"),
|
||
|
("upernet", "UperNetConfig"),
|
||
|
("van", "VanConfig"),
|
||
|
("videomae", "VideoMAEConfig"),
|
||
|
("vilt", "ViltConfig"),
|
||
|
("vipllava", "VipLlavaConfig"),
|
||
|
("vision-encoder-decoder", "VisionEncoderDecoderConfig"),
|
||
|
("vision-text-dual-encoder", "VisionTextDualEncoderConfig"),
|
||
|
("visual_bert", "VisualBertConfig"),
|
||
|
("vit", "ViTConfig"),
|
||
|
("vit_hybrid", "ViTHybridConfig"),
|
||
|
("vit_mae", "ViTMAEConfig"),
|
||
|
("vit_msn", "ViTMSNConfig"),
|
||
|
("vitdet", "VitDetConfig"),
|
||
|
("vitmatte", "VitMatteConfig"),
|
||
|
("vits", "VitsConfig"),
|
||
|
("vivit", "VivitConfig"),
|
||
|
("wav2vec2", "Wav2Vec2Config"),
|
||
|
("wav2vec2-bert", "Wav2Vec2BertConfig"),
|
||
|
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
|
||
|
("wavlm", "WavLMConfig"),
|
||
|
("whisper", "WhisperConfig"),
|
||
|
("xclip", "XCLIPConfig"),
|
||
|
("xglm", "XGLMConfig"),
|
||
|
("xlm", "XLMConfig"),
|
||
|
("xlm-prophetnet", "XLMProphetNetConfig"),
|
||
|
("xlm-roberta", "XLMRobertaConfig"),
|
||
|
("xlm-roberta-xl", "XLMRobertaXLConfig"),
|
||
|
("xlnet", "XLNetConfig"),
|
||
|
("xmod", "XmodConfig"),
|
||
|
("yolos", "YolosConfig"),
|
||
|
("yoso", "YosoConfig"),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
|
||
|
MODEL_NAMES_MAPPING = OrderedDict(
|
||
|
[
|
||
|
# Add full (and cased) model names here
|
||
|
("albert", "ALBERT"),
|
||
|
("align", "ALIGN"),
|
||
|
("altclip", "AltCLIP"),
|
||
|
("audio-spectrogram-transformer", "Audio Spectrogram Transformer"),
|
||
|
("autoformer", "Autoformer"),
|
||
|
("bark", "Bark"),
|
||
|
("bart", "BART"),
|
||
|
("barthez", "BARThez"),
|
||
|
("bartpho", "BARTpho"),
|
||
|
("beit", "BEiT"),
|
||
|
("bert", "BERT"),
|
||
|
("bert-generation", "Bert Generation"),
|
||
|
("bert-japanese", "BertJapanese"),
|
||
|
("bertweet", "BERTweet"),
|
||
|
("big_bird", "BigBird"),
|
||
|
("bigbird_pegasus", "BigBird-Pegasus"),
|
||
|
("biogpt", "BioGpt"),
|
||
|
("bit", "BiT"),
|
||
|
("blenderbot", "Blenderbot"),
|
||
|
("blenderbot-small", "BlenderbotSmall"),
|
||
|
("blip", "BLIP"),
|
||
|
("blip-2", "BLIP-2"),
|
||
|
("bloom", "BLOOM"),
|
||
|
("bort", "BORT"),
|
||
|
("bridgetower", "BridgeTower"),
|
||
|
("bros", "BROS"),
|
||
|
("byt5", "ByT5"),
|
||
|
("camembert", "CamemBERT"),
|
||
|
("canine", "CANINE"),
|
||
|
("chinese_clip", "Chinese-CLIP"),
|
||
|
("chinese_clip_vision_model", "ChineseCLIPVisionModel"),
|
||
|
("clap", "CLAP"),
|
||
|
("clip", "CLIP"),
|
||
|
("clip_vision_model", "CLIPVisionModel"),
|
||
|
("clipseg", "CLIPSeg"),
|
||
|
("clvp", "CLVP"),
|
||
|
("code_llama", "CodeLlama"),
|
||
|
("codegen", "CodeGen"),
|
||
|
("cohere", "Cohere"),
|
||
|
("conditional_detr", "Conditional DETR"),
|
||
|
("convbert", "ConvBERT"),
|
||
|
("convnext", "ConvNeXT"),
|
||
|
("convnextv2", "ConvNeXTV2"),
|
||
|
("cpm", "CPM"),
|
||
|
("cpmant", "CPM-Ant"),
|
||
|
("ctrl", "CTRL"),
|
||
|
("cvt", "CvT"),
|
||
|
("data2vec-audio", "Data2VecAudio"),
|
||
|
("data2vec-text", "Data2VecText"),
|
||
|
("data2vec-vision", "Data2VecVision"),
|
||
|
("dbrx", "DBRX"),
|
||
|
("deberta", "DeBERTa"),
|
||
|
("deberta-v2", "DeBERTa-v2"),
|
||
|
("decision_transformer", "Decision Transformer"),
|
||
|
("deformable_detr", "Deformable DETR"),
|
||
|
("deit", "DeiT"),
|
||
|
("deplot", "DePlot"),
|
||
|
("depth_anything", "Depth Anything"),
|
||
|
("deta", "DETA"),
|
||
|
("detr", "DETR"),
|
||
|
("dialogpt", "DialoGPT"),
|
||
|
("dinat", "DiNAT"),
|
||
|
("dinov2", "DINOv2"),
|
||
|
("distilbert", "DistilBERT"),
|
||
|
("dit", "DiT"),
|
||
|
("donut-swin", "DonutSwin"),
|
||
|
("dpr", "DPR"),
|
||
|
("dpt", "DPT"),
|
||
|
("efficientformer", "EfficientFormer"),
|
||
|
("efficientnet", "EfficientNet"),
|
||
|
("electra", "ELECTRA"),
|
||
|
("encodec", "EnCodec"),
|
||
|
("encoder-decoder", "Encoder decoder"),
|
||
|
("ernie", "ERNIE"),
|
||
|
("ernie_m", "ErnieM"),
|
||
|
("esm", "ESM"),
|
||
|
("falcon", "Falcon"),
|
||
|
("fastspeech2_conformer", "FastSpeech2Conformer"),
|
||
|
("flan-t5", "FLAN-T5"),
|
||
|
("flan-ul2", "FLAN-UL2"),
|
||
|
("flaubert", "FlauBERT"),
|
||
|
("flava", "FLAVA"),
|
||
|
("fnet", "FNet"),
|
||
|
("focalnet", "FocalNet"),
|
||
|
("fsmt", "FairSeq Machine-Translation"),
|
||
|
("funnel", "Funnel Transformer"),
|
||
|
("fuyu", "Fuyu"),
|
||
|
("gemma", "Gemma"),
|
||
|
("git", "GIT"),
|
||
|
("glpn", "GLPN"),
|
||
|
("gpt-sw3", "GPT-Sw3"),
|
||
|
("gpt2", "OpenAI GPT-2"),
|
||
|
("gpt_bigcode", "GPTBigCode"),
|
||
|
("gpt_neo", "GPT Neo"),
|
||
|
("gpt_neox", "GPT NeoX"),
|
||
|
("gpt_neox_japanese", "GPT NeoX Japanese"),
|
||
|
("gptj", "GPT-J"),
|
||
|
("gptsan-japanese", "GPTSAN-japanese"),
|
||
|
("graphormer", "Graphormer"),
|
||
|
("grounding-dino", "Grounding DINO"),
|
||
|
("groupvit", "GroupViT"),
|
||
|
("herbert", "HerBERT"),
|
||
|
("hubert", "Hubert"),
|
||
|
("ibert", "I-BERT"),
|
||
|
("idefics", "IDEFICS"),
|
||
|
("idefics2", "Idefics2"),
|
||
|
("imagegpt", "ImageGPT"),
|
||
|
("informer", "Informer"),
|
||
|
("instructblip", "InstructBLIP"),
|
||
|
("jamba", "Jamba"),
|
||
|
("jukebox", "Jukebox"),
|
||
|
("kosmos-2", "KOSMOS-2"),
|
||
|
("layoutlm", "LayoutLM"),
|
||
|
("layoutlmv2", "LayoutLMv2"),
|
||
|
("layoutlmv3", "LayoutLMv3"),
|
||
|
("layoutxlm", "LayoutXLM"),
|
||
|
("led", "LED"),
|
||
|
("levit", "LeViT"),
|
||
|
("lilt", "LiLT"),
|
||
|
("llama", "LLaMA"),
|
||
|
("llama2", "Llama2"),
|
||
|
("llava", "LLaVa"),
|
||
|
("llava_next", "LLaVA-NeXT"),
|
||
|
("longformer", "Longformer"),
|
||
|
("longt5", "LongT5"),
|
||
|
("luke", "LUKE"),
|
||
|
("lxmert", "LXMERT"),
|
||
|
("m2m_100", "M2M100"),
|
||
|
("madlad-400", "MADLAD-400"),
|
||
|
("mamba", "Mamba"),
|
||
|
("marian", "Marian"),
|
||
|
("markuplm", "MarkupLM"),
|
||
|
("mask2former", "Mask2Former"),
|
||
|
("maskformer", "MaskFormer"),
|
||
|
("maskformer-swin", "MaskFormerSwin"),
|
||
|
("matcha", "MatCha"),
|
||
|
("mbart", "mBART"),
|
||
|
("mbart50", "mBART-50"),
|
||
|
("mctct", "M-CTC-T"),
|
||
|
("mega", "MEGA"),
|
||
|
("megatron-bert", "Megatron-BERT"),
|
||
|
("megatron_gpt2", "Megatron-GPT2"),
|
||
|
("mgp-str", "MGP-STR"),
|
||
|
("mistral", "Mistral"),
|
||
|
("mixtral", "Mixtral"),
|
||
|
("mluke", "mLUKE"),
|
||
|
("mms", "MMS"),
|
||
|
("mobilebert", "MobileBERT"),
|
||
|
("mobilenet_v1", "MobileNetV1"),
|
||
|
("mobilenet_v2", "MobileNetV2"),
|
||
|
("mobilevit", "MobileViT"),
|
||
|
("mobilevitv2", "MobileViTV2"),
|
||
|
("mpnet", "MPNet"),
|
||
|
("mpt", "MPT"),
|
||
|
("mra", "MRA"),
|
||
|
("mt5", "MT5"),
|
||
|
("musicgen", "MusicGen"),
|
||
|
("musicgen_melody", "MusicGen Melody"),
|
||
|
("mvp", "MVP"),
|
||
|
("nat", "NAT"),
|
||
|
("nezha", "Nezha"),
|
||
|
("nllb", "NLLB"),
|
||
|
("nllb-moe", "NLLB-MOE"),
|
||
|
("nougat", "Nougat"),
|
||
|
("nystromformer", "Nyströmformer"),
|
||
|
("olmo", "OLMo"),
|
||
|
("oneformer", "OneFormer"),
|
||
|
("open-llama", "OpenLlama"),
|
||
|
("openai-gpt", "OpenAI GPT"),
|
||
|
("opt", "OPT"),
|
||
|
("owlv2", "OWLv2"),
|
||
|
("owlvit", "OWL-ViT"),
|
||
|
("patchtsmixer", "PatchTSMixer"),
|
||
|
("patchtst", "PatchTST"),
|
||
|
("pegasus", "Pegasus"),
|
||
|
("pegasus_x", "PEGASUS-X"),
|
||
|
("perceiver", "Perceiver"),
|
||
|
("persimmon", "Persimmon"),
|
||
|
("phi", "Phi"),
|
||
|
("phobert", "PhoBERT"),
|
||
|
("pix2struct", "Pix2Struct"),
|
||
|
("plbart", "PLBart"),
|
||
|
("poolformer", "PoolFormer"),
|
||
|
("pop2piano", "Pop2Piano"),
|
||
|
("prophetnet", "ProphetNet"),
|
||
|
("pvt", "PVT"),
|
||
|
("pvt_v2", "PVTv2"),
|
||
|
("qdqbert", "QDQBert"),
|
||
|
("qwen2", "Qwen2"),
|
||
|
("qwen2_moe", "Qwen2MoE"),
|
||
|
("rag", "RAG"),
|
||
|
("realm", "REALM"),
|
||
|
("recurrent_gemma", "RecurrentGemma"),
|
||
|
("reformer", "Reformer"),
|
||
|
("regnet", "RegNet"),
|
||
|
("rembert", "RemBERT"),
|
||
|
("resnet", "ResNet"),
|
||
|
("retribert", "RetriBERT"),
|
||
|
("roberta", "RoBERTa"),
|
||
|
("roberta-prelayernorm", "RoBERTa-PreLayerNorm"),
|
||
|
("roc_bert", "RoCBert"),
|
||
|
("roformer", "RoFormer"),
|
||
|
("rwkv", "RWKV"),
|
||
|
("sam", "SAM"),
|
||
|
("seamless_m4t", "SeamlessM4T"),
|
||
|
("seamless_m4t_v2", "SeamlessM4Tv2"),
|
||
|
("segformer", "SegFormer"),
|
||
|
("seggpt", "SegGPT"),
|
||
|
("sew", "SEW"),
|
||
|
("sew-d", "SEW-D"),
|
||
|
("siglip", "SigLIP"),
|
||
|
("siglip_vision_model", "SiglipVisionModel"),
|
||
|
("speech-encoder-decoder", "Speech Encoder decoder"),
|
||
|
("speech_to_text", "Speech2Text"),
|
||
|
("speech_to_text_2", "Speech2Text2"),
|
||
|
("speecht5", "SpeechT5"),
|
||
|
("splinter", "Splinter"),
|
||
|
("squeezebert", "SqueezeBERT"),
|
||
|
("stablelm", "StableLm"),
|
||
|
("starcoder2", "Starcoder2"),
|
||
|
("superpoint", "SuperPoint"),
|
||
|
("swiftformer", "SwiftFormer"),
|
||
|
("swin", "Swin Transformer"),
|
||
|
("swin2sr", "Swin2SR"),
|
||
|
("swinv2", "Swin Transformer V2"),
|
||
|
("switch_transformers", "SwitchTransformers"),
|
||
|
("t5", "T5"),
|
||
|
("t5v1.1", "T5v1.1"),
|
||
|
("table-transformer", "Table Transformer"),
|
||
|
("tapas", "TAPAS"),
|
||
|
("tapex", "TAPEX"),
|
||
|
("time_series_transformer", "Time Series Transformer"),
|
||
|
("timesformer", "TimeSformer"),
|
||
|
("timm_backbone", "TimmBackbone"),
|
||
|
("trajectory_transformer", "Trajectory Transformer"),
|
||
|
("transfo-xl", "Transformer-XL"),
|
||
|
("trocr", "TrOCR"),
|
||
|
("tvlt", "TVLT"),
|
||
|
("tvp", "TVP"),
|
||
|
("udop", "UDOP"),
|
||
|
("ul2", "UL2"),
|
||
|
("umt5", "UMT5"),
|
||
|
("unispeech", "UniSpeech"),
|
||
|
("unispeech-sat", "UniSpeechSat"),
|
||
|
("univnet", "UnivNet"),
|
||
|
("upernet", "UPerNet"),
|
||
|
("van", "VAN"),
|
||
|
("videomae", "VideoMAE"),
|
||
|
("vilt", "ViLT"),
|
||
|
("vipllava", "VipLlava"),
|
||
|
("vision-encoder-decoder", "Vision Encoder decoder"),
|
||
|
("vision-text-dual-encoder", "VisionTextDualEncoder"),
|
||
|
("visual_bert", "VisualBERT"),
|
||
|
("vit", "ViT"),
|
||
|
("vit_hybrid", "ViT Hybrid"),
|
||
|
("vit_mae", "ViTMAE"),
|
||
|
("vit_msn", "ViTMSN"),
|
||
|
("vitdet", "VitDet"),
|
||
|
("vitmatte", "ViTMatte"),
|
||
|
("vits", "VITS"),
|
||
|
("vivit", "ViViT"),
|
||
|
("wav2vec2", "Wav2Vec2"),
|
||
|
("wav2vec2-bert", "Wav2Vec2-BERT"),
|
||
|
("wav2vec2-conformer", "Wav2Vec2-Conformer"),
|
||
|
("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
|
||
|
("wavlm", "WavLM"),
|
||
|
("whisper", "Whisper"),
|
||
|
("xclip", "X-CLIP"),
|
||
|
("xglm", "XGLM"),
|
||
|
("xlm", "XLM"),
|
||
|
("xlm-prophetnet", "XLM-ProphetNet"),
|
||
|
("xlm-roberta", "XLM-RoBERTa"),
|
||
|
("xlm-roberta-xl", "XLM-RoBERTa-XL"),
|
||
|
("xlm-v", "XLM-V"),
|
||
|
("xlnet", "XLNet"),
|
||
|
("xls_r", "XLS-R"),
|
||
|
("xlsr_wav2vec2", "XLSR-Wav2Vec2"),
|
||
|
("xmod", "X-MOD"),
|
||
|
("yolos", "YOLOS"),
|
||
|
("yoso", "YOSO"),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting
|
||
|
# `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`.
|
||
|
DEPRECATED_MODELS = [
|
||
|
"bort",
|
||
|
"mctct",
|
||
|
"mmbt",
|
||
|
"open_llama",
|
||
|
"retribert",
|
||
|
"tapex",
|
||
|
"trajectory_transformer",
|
||
|
"transfo_xl",
|
||
|
"van",
|
||
|
]
|
||
|
|
||
|
SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
|
||
|
[
|
||
|
("openai-gpt", "openai"),
|
||
|
("data2vec-audio", "data2vec"),
|
||
|
("data2vec-text", "data2vec"),
|
||
|
("data2vec-vision", "data2vec"),
|
||
|
("donut-swin", "donut"),
|
||
|
("kosmos-2", "kosmos2"),
|
||
|
("maskformer-swin", "maskformer"),
|
||
|
("xclip", "x_clip"),
|
||
|
("clip_vision_model", "clip"),
|
||
|
("siglip_vision_model", "siglip"),
|
||
|
("chinese_clip_vision_model", "chinese_clip"),
|
||
|
]
|
||
|
)
|
||
|
|
||
|
|
||
|
def model_type_to_module_name(key):
|
||
|
"""Converts a config key to the corresponding module."""
|
||
|
# Special treatment
|
||
|
if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
|
||
|
return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]
|
||
|
|
||
|
key = key.replace("-", "_")
|
||
|
if key in DEPRECATED_MODELS:
|
||
|
key = f"deprecated.{key}"
|
||
|
|
||
|
return key
|
||
|
|
||
|
|
||
|
def config_class_to_model_type(config):
|
||
|
"""Converts a config class name to the corresponding model type"""
|
||
|
for key, cls in CONFIG_MAPPING_NAMES.items():
|
||
|
if cls == config:
|
||
|
return key
|
||
|
# if key not found check in extra content
|
||
|
for key, cls in CONFIG_MAPPING._extra_content.items():
|
||
|
if cls.__name__ == config:
|
||
|
return key
|
||
|
return None
|
||
|
|
||
|
|
||
|
class _LazyConfigMapping(OrderedDict):
|
||
|
"""
|
||
|
A dictionary that lazily load its values when they are requested.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, mapping):
|
||
|
self._mapping = mapping
|
||
|
self._extra_content = {}
|
||
|
self._modules = {}
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
if key in self._extra_content:
|
||
|
return self._extra_content[key]
|
||
|
if key not in self._mapping:
|
||
|
raise KeyError(key)
|
||
|
value = self._mapping[key]
|
||
|
module_name = model_type_to_module_name(key)
|
||
|
if module_name not in self._modules:
|
||
|
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
|
||
|
if hasattr(self._modules[module_name], value):
|
||
|
return getattr(self._modules[module_name], value)
|
||
|
|
||
|
# Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
|
||
|
# object at the top level.
|
||
|
transformers_module = importlib.import_module("transformers")
|
||
|
return getattr(transformers_module, value)
|
||
|
|
||
|
def keys(self):
|
||
|
return list(self._mapping.keys()) + list(self._extra_content.keys())
|
||
|
|
||
|
def values(self):
|
||
|
return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())
|
||
|
|
||
|
def items(self):
|
||
|
return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
return item in self._mapping or item in self._extra_content
|
||
|
|
||
|
def register(self, key, value, exist_ok=False):
|
||
|
"""
|
||
|
Register a new configuration in this mapping.
|
||
|
"""
|
||
|
if key in self._mapping.keys() and not exist_ok:
|
||
|
raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
|
||
|
self._extra_content[key] = value
|
||
|
|
||
|
|
||
|
CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)
|
||
|
|
||
|
|
||
|
class _LazyLoadAllMappings(OrderedDict):
|
||
|
"""
|
||
|
A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
|
||
|
etc.)
|
||
|
|
||
|
Args:
|
||
|
mapping: The mapping to load.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, mapping):
|
||
|
self._mapping = mapping
|
||
|
self._initialized = False
|
||
|
self._data = {}
|
||
|
|
||
|
def _initialize(self):
|
||
|
if self._initialized:
|
||
|
return
|
||
|
|
||
|
for model_type, map_name in self._mapping.items():
|
||
|
module_name = model_type_to_module_name(model_type)
|
||
|
module = importlib.import_module(f".{module_name}", "transformers.models")
|
||
|
mapping = getattr(module, map_name)
|
||
|
self._data.update(mapping)
|
||
|
|
||
|
self._initialized = True
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
self._initialize()
|
||
|
return self._data[key]
|
||
|
|
||
|
def keys(self):
|
||
|
self._initialize()
|
||
|
return self._data.keys()
|
||
|
|
||
|
def values(self):
|
||
|
self._initialize()
|
||
|
return self._data.values()
|
||
|
|
||
|
def items(self):
|
||
|
self._initialize()
|
||
|
return self._data.keys()
|
||
|
|
||
|
def __iter__(self):
|
||
|
self._initialize()
|
||
|
return iter(self._data)
|
||
|
|
||
|
def __contains__(self, item):
|
||
|
self._initialize()
|
||
|
return item in self._data
|
||
|
|
||
|
|
||
|
def _get_class_name(model_class: Union[str, List[str]]):
|
||
|
if isinstance(model_class, (list, tuple)):
|
||
|
return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
|
||
|
return f"[`{model_class}`]"
|
||
|
|
||
|
|
||
|
def _list_model_options(indent, config_to_class=None, use_model_types=True):
|
||
|
if config_to_class is None and not use_model_types:
|
||
|
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
|
||
|
if use_model_types:
|
||
|
if config_to_class is None:
|
||
|
model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
|
||
|
else:
|
||
|
model_type_to_name = {
|
||
|
model_type: _get_class_name(model_class)
|
||
|
for model_type, model_class in config_to_class.items()
|
||
|
if model_type in MODEL_NAMES_MAPPING
|
||
|
}
|
||
|
lines = [
|
||
|
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
|
||
|
for model_type in sorted(model_type_to_name.keys())
|
||
|
]
|
||
|
else:
|
||
|
config_to_name = {
|
||
|
CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
|
||
|
for config, clas in config_to_class.items()
|
||
|
if config in CONFIG_MAPPING_NAMES
|
||
|
}
|
||
|
config_to_model_name = {
|
||
|
config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
|
||
|
}
|
||
|
lines = [
|
||
|
f"{indent}- [`{config_name}`] configuration class:"
|
||
|
f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
|
||
|
for config_name in sorted(config_to_name.keys())
|
||
|
]
|
||
|
return "\n".join(lines)
|
||
|
|
||
|
|
||
|
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
|
||
|
def docstring_decorator(fn):
|
||
|
docstrings = fn.__doc__
|
||
|
if docstrings is None:
|
||
|
# Example: -OO
|
||
|
return fn
|
||
|
lines = docstrings.split("\n")
|
||
|
i = 0
|
||
|
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
|
||
|
i += 1
|
||
|
if i < len(lines):
|
||
|
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
|
||
|
if use_model_types:
|
||
|
indent = f"{indent} "
|
||
|
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
|
||
|
docstrings = "\n".join(lines)
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
|
||
|
f" docstring is:\n{docstrings}"
|
||
|
)
|
||
|
fn.__doc__ = docstrings
|
||
|
return fn
|
||
|
|
||
|
return docstring_decorator
|
||
|
|
||
|
|
||
|
class AutoConfig:
|
||
|
r"""
|
||
|
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
|
||
|
when created with the [`~AutoConfig.from_pretrained`] class method.
|
||
|
|
||
|
This class cannot be instantiated directly using `__init__()` (throws an error).
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
raise EnvironmentError(
|
||
|
"AutoConfig is designed to be instantiated "
|
||
|
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
def for_model(cls, model_type: str, *args, **kwargs):
|
||
|
if model_type in CONFIG_MAPPING:
|
||
|
config_class = CONFIG_MAPPING[model_type]
|
||
|
return config_class(*args, **kwargs)
|
||
|
raise ValueError(
|
||
|
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
|
||
|
)
|
||
|
|
||
|
@classmethod
|
||
|
@replace_list_option_in_docstrings()
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
|
||
|
r"""
|
||
|
Instantiate one of the configuration classes of the library from a pretrained model configuration.
|
||
|
|
||
|
The configuration class to instantiate is selected based on the `model_type` property of the config object that
|
||
|
is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
|
||
|
|
||
|
List options
|
||
|
|
||
|
Args:
|
||
|
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
||
|
Can be either:
|
||
|
|
||
|
- A string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
||
|
huggingface.co.
|
||
|
- A path to a *directory* containing a configuration file saved using the
|
||
|
[`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method,
|
||
|
e.g., `./my_model_directory/`.
|
||
|
- A path or url to a saved configuration JSON *file*, e.g.,
|
||
|
`./my_model_directory/configuration.json`.
|
||
|
cache_dir (`str` or `os.PathLike`, *optional*):
|
||
|
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
||
|
standard cache should not be used.
|
||
|
force_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to force the (re-)download the model weights and configuration files and override the
|
||
|
cached versions if they exist.
|
||
|
resume_download (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
||
|
file exists.
|
||
|
proxies (`Dict[str, str]`, *optional*):
|
||
|
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
||
|
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
||
|
revision (`str`, *optional*, defaults to `"main"`):
|
||
|
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
||
|
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
||
|
identifier allowed by git.
|
||
|
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
||
|
If `False`, then this function returns just the final configuration object.
|
||
|
|
||
|
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
|
||
|
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
|
||
|
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
|
||
|
trust_remote_code (`bool`, *optional*, defaults to `False`):
|
||
|
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
|
||
|
should only be set to `True` for repositories you trust and in which you have read the code, as it will
|
||
|
execute code present on the Hub on your local machine.
|
||
|
kwargs(additional keyword arguments, *optional*):
|
||
|
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
|
||
|
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
|
||
|
by the `return_unused_kwargs` keyword parameter.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import AutoConfig
|
||
|
|
||
|
>>> # Download configuration from huggingface.co and cache.
|
||
|
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased")
|
||
|
|
||
|
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
|
||
|
>>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
|
||
|
|
||
|
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
|
||
|
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
|
||
|
|
||
|
>>> # Load a specific configuration file.
|
||
|
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
|
||
|
|
||
|
>>> # Change some config attributes when loading a pretrained config.
|
||
|
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
|
||
|
>>> config.output_attentions
|
||
|
True
|
||
|
|
||
|
>>> config, unused_kwargs = AutoConfig.from_pretrained(
|
||
|
... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
|
||
|
... )
|
||
|
>>> config.output_attentions
|
||
|
True
|
||
|
|
||
|
>>> unused_kwargs
|
||
|
{'foo': False}
|
||
|
```"""
|
||
|
use_auth_token = kwargs.pop("use_auth_token", None)
|
||
|
if use_auth_token is not None:
|
||
|
warnings.warn(
|
||
|
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
||
|
FutureWarning,
|
||
|
)
|
||
|
if kwargs.get("token", None) is not None:
|
||
|
raise ValueError(
|
||
|
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
||
|
)
|
||
|
kwargs["token"] = use_auth_token
|
||
|
|
||
|
kwargs["_from_auto"] = True
|
||
|
kwargs["name_or_path"] = pretrained_model_name_or_path
|
||
|
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||
|
code_revision = kwargs.pop("code_revision", None)
|
||
|
|
||
|
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
|
||
|
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
|
||
|
trust_remote_code = resolve_trust_remote_code(
|
||
|
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||
|
)
|
||
|
|
||
|
if has_remote_code and trust_remote_code:
|
||
|
class_ref = config_dict["auto_map"]["AutoConfig"]
|
||
|
config_class = get_class_from_dynamic_module(
|
||
|
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
|
||
|
)
|
||
|
if os.path.isdir(pretrained_model_name_or_path):
|
||
|
config_class.register_for_auto_class()
|
||
|
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
||
|
elif "model_type" in config_dict:
|
||
|
try:
|
||
|
config_class = CONFIG_MAPPING[config_dict["model_type"]]
|
||
|
except KeyError:
|
||
|
raise ValueError(
|
||
|
f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` "
|
||
|
"but Transformers does not recognize this architecture. This could be because of an "
|
||
|
"issue with the checkpoint, or because your version of Transformers is out of date."
|
||
|
)
|
||
|
return config_class.from_dict(config_dict, **unused_kwargs)
|
||
|
else:
|
||
|
# Fallback: use pattern matching on the string.
|
||
|
# We go from longer names to shorter names to catch roberta before bert (for instance)
|
||
|
for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True):
|
||
|
if pattern in str(pretrained_model_name_or_path):
|
||
|
return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs)
|
||
|
|
||
|
raise ValueError(
|
||
|
f"Unrecognized model in {pretrained_model_name_or_path}. "
|
||
|
f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
|
||
|
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def register(model_type, config, exist_ok=False):
|
||
|
"""
|
||
|
Register a new configuration for this class.
|
||
|
|
||
|
Args:
|
||
|
model_type (`str`): The model type like "bert" or "gpt".
|
||
|
config ([`PretrainedConfig`]): The config to register.
|
||
|
"""
|
||
|
if issubclass(config, PretrainedConfig) and config.model_type != model_type:
|
||
|
raise ValueError(
|
||
|
"The config you are passing has a `model_type` attribute that is not consistent with the model type "
|
||
|
f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they "
|
||
|
"match!"
|
||
|
)
|
||
|
CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
|
||
|
|
||
|
|
||
|
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES)
|