ai-content-maker/.venv/Lib/site-packages/transformers/models/auto/configuration_auto.py

985 lines
38 KiB
Python
Raw Normal View History

2024-05-03 04:18:51 +03:00
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Config class."""
import importlib
import os
import re
import warnings
from collections import OrderedDict
from typing import List, Union
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...utils import CONFIG_NAME, logging
logger = logging.get_logger(__name__)
from ..deprecated._archive_maps import CONFIG_ARCHIVE_MAP_MAPPING_NAMES # noqa: F401, E402
CONFIG_MAPPING_NAMES = OrderedDict(
[
# Add configs here
("albert", "AlbertConfig"),
("align", "AlignConfig"),
("altclip", "AltCLIPConfig"),
("audio-spectrogram-transformer", "ASTConfig"),
("autoformer", "AutoformerConfig"),
("bark", "BarkConfig"),
("bart", "BartConfig"),
("beit", "BeitConfig"),
("bert", "BertConfig"),
("bert-generation", "BertGenerationConfig"),
("big_bird", "BigBirdConfig"),
("bigbird_pegasus", "BigBirdPegasusConfig"),
("biogpt", "BioGptConfig"),
("bit", "BitConfig"),
("blenderbot", "BlenderbotConfig"),
("blenderbot-small", "BlenderbotSmallConfig"),
("blip", "BlipConfig"),
("blip-2", "Blip2Config"),
("bloom", "BloomConfig"),
("bridgetower", "BridgeTowerConfig"),
("bros", "BrosConfig"),
("camembert", "CamembertConfig"),
("canine", "CanineConfig"),
("chinese_clip", "ChineseCLIPConfig"),
("chinese_clip_vision_model", "ChineseCLIPVisionConfig"),
("clap", "ClapConfig"),
("clip", "CLIPConfig"),
("clip_vision_model", "CLIPVisionConfig"),
("clipseg", "CLIPSegConfig"),
("clvp", "ClvpConfig"),
("code_llama", "LlamaConfig"),
("codegen", "CodeGenConfig"),
("cohere", "CohereConfig"),
("conditional_detr", "ConditionalDetrConfig"),
("convbert", "ConvBertConfig"),
("convnext", "ConvNextConfig"),
("convnextv2", "ConvNextV2Config"),
("cpmant", "CpmAntConfig"),
("ctrl", "CTRLConfig"),
("cvt", "CvtConfig"),
("data2vec-audio", "Data2VecAudioConfig"),
("data2vec-text", "Data2VecTextConfig"),
("data2vec-vision", "Data2VecVisionConfig"),
("dbrx", "DbrxConfig"),
("deberta", "DebertaConfig"),
("deberta-v2", "DebertaV2Config"),
("decision_transformer", "DecisionTransformerConfig"),
("deformable_detr", "DeformableDetrConfig"),
("deit", "DeiTConfig"),
("depth_anything", "DepthAnythingConfig"),
("deta", "DetaConfig"),
("detr", "DetrConfig"),
("dinat", "DinatConfig"),
("dinov2", "Dinov2Config"),
("distilbert", "DistilBertConfig"),
("donut-swin", "DonutSwinConfig"),
("dpr", "DPRConfig"),
("dpt", "DPTConfig"),
("efficientformer", "EfficientFormerConfig"),
("efficientnet", "EfficientNetConfig"),
("electra", "ElectraConfig"),
("encodec", "EncodecConfig"),
("encoder-decoder", "EncoderDecoderConfig"),
("ernie", "ErnieConfig"),
("ernie_m", "ErnieMConfig"),
("esm", "EsmConfig"),
("falcon", "FalconConfig"),
("fastspeech2_conformer", "FastSpeech2ConformerConfig"),
("flaubert", "FlaubertConfig"),
("flava", "FlavaConfig"),
("fnet", "FNetConfig"),
("focalnet", "FocalNetConfig"),
("fsmt", "FSMTConfig"),
("funnel", "FunnelConfig"),
("fuyu", "FuyuConfig"),
("gemma", "GemmaConfig"),
("git", "GitConfig"),
("glpn", "GLPNConfig"),
("gpt-sw3", "GPT2Config"),
("gpt2", "GPT2Config"),
("gpt_bigcode", "GPTBigCodeConfig"),
("gpt_neo", "GPTNeoConfig"),
("gpt_neox", "GPTNeoXConfig"),
("gpt_neox_japanese", "GPTNeoXJapaneseConfig"),
("gptj", "GPTJConfig"),
("gptsan-japanese", "GPTSanJapaneseConfig"),
("graphormer", "GraphormerConfig"),
("grounding-dino", "GroundingDinoConfig"),
("groupvit", "GroupViTConfig"),
("hubert", "HubertConfig"),
("ibert", "IBertConfig"),
("idefics", "IdeficsConfig"),
("idefics2", "Idefics2Config"),
("imagegpt", "ImageGPTConfig"),
("informer", "InformerConfig"),
("instructblip", "InstructBlipConfig"),
("jamba", "JambaConfig"),
("jukebox", "JukeboxConfig"),
("kosmos-2", "Kosmos2Config"),
("layoutlm", "LayoutLMConfig"),
("layoutlmv2", "LayoutLMv2Config"),
("layoutlmv3", "LayoutLMv3Config"),
("led", "LEDConfig"),
("levit", "LevitConfig"),
("lilt", "LiltConfig"),
("llama", "LlamaConfig"),
("llava", "LlavaConfig"),
("llava_next", "LlavaNextConfig"),
("longformer", "LongformerConfig"),
("longt5", "LongT5Config"),
("luke", "LukeConfig"),
("lxmert", "LxmertConfig"),
("m2m_100", "M2M100Config"),
("mamba", "MambaConfig"),
("marian", "MarianConfig"),
("markuplm", "MarkupLMConfig"),
("mask2former", "Mask2FormerConfig"),
("maskformer", "MaskFormerConfig"),
("maskformer-swin", "MaskFormerSwinConfig"),
("mbart", "MBartConfig"),
("mctct", "MCTCTConfig"),
("mega", "MegaConfig"),
("megatron-bert", "MegatronBertConfig"),
("mgp-str", "MgpstrConfig"),
("mistral", "MistralConfig"),
("mixtral", "MixtralConfig"),
("mobilebert", "MobileBertConfig"),
("mobilenet_v1", "MobileNetV1Config"),
("mobilenet_v2", "MobileNetV2Config"),
("mobilevit", "MobileViTConfig"),
("mobilevitv2", "MobileViTV2Config"),
("mpnet", "MPNetConfig"),
("mpt", "MptConfig"),
("mra", "MraConfig"),
("mt5", "MT5Config"),
("musicgen", "MusicgenConfig"),
("musicgen_melody", "MusicgenMelodyConfig"),
("mvp", "MvpConfig"),
("nat", "NatConfig"),
("nezha", "NezhaConfig"),
("nllb-moe", "NllbMoeConfig"),
("nougat", "VisionEncoderDecoderConfig"),
("nystromformer", "NystromformerConfig"),
("olmo", "OlmoConfig"),
("oneformer", "OneFormerConfig"),
("open-llama", "OpenLlamaConfig"),
("openai-gpt", "OpenAIGPTConfig"),
("opt", "OPTConfig"),
("owlv2", "Owlv2Config"),
("owlvit", "OwlViTConfig"),
("patchtsmixer", "PatchTSMixerConfig"),
("patchtst", "PatchTSTConfig"),
("pegasus", "PegasusConfig"),
("pegasus_x", "PegasusXConfig"),
("perceiver", "PerceiverConfig"),
("persimmon", "PersimmonConfig"),
("phi", "PhiConfig"),
("pix2struct", "Pix2StructConfig"),
("plbart", "PLBartConfig"),
("poolformer", "PoolFormerConfig"),
("pop2piano", "Pop2PianoConfig"),
("prophetnet", "ProphetNetConfig"),
("pvt", "PvtConfig"),
("pvt_v2", "PvtV2Config"),
("qdqbert", "QDQBertConfig"),
("qwen2", "Qwen2Config"),
("qwen2_moe", "Qwen2MoeConfig"),
("rag", "RagConfig"),
("realm", "RealmConfig"),
("recurrent_gemma", "RecurrentGemmaConfig"),
("reformer", "ReformerConfig"),
("regnet", "RegNetConfig"),
("rembert", "RemBertConfig"),
("resnet", "ResNetConfig"),
("retribert", "RetriBertConfig"),
("roberta", "RobertaConfig"),
("roberta-prelayernorm", "RobertaPreLayerNormConfig"),
("roc_bert", "RoCBertConfig"),
("roformer", "RoFormerConfig"),
("rwkv", "RwkvConfig"),
("sam", "SamConfig"),
("seamless_m4t", "SeamlessM4TConfig"),
("seamless_m4t_v2", "SeamlessM4Tv2Config"),
("segformer", "SegformerConfig"),
("seggpt", "SegGptConfig"),
("sew", "SEWConfig"),
("sew-d", "SEWDConfig"),
("siglip", "SiglipConfig"),
("siglip_vision_model", "SiglipVisionConfig"),
("speech-encoder-decoder", "SpeechEncoderDecoderConfig"),
("speech_to_text", "Speech2TextConfig"),
("speech_to_text_2", "Speech2Text2Config"),
("speecht5", "SpeechT5Config"),
("splinter", "SplinterConfig"),
("squeezebert", "SqueezeBertConfig"),
("stablelm", "StableLmConfig"),
("starcoder2", "Starcoder2Config"),
("superpoint", "SuperPointConfig"),
("swiftformer", "SwiftFormerConfig"),
("swin", "SwinConfig"),
("swin2sr", "Swin2SRConfig"),
("swinv2", "Swinv2Config"),
("switch_transformers", "SwitchTransformersConfig"),
("t5", "T5Config"),
("table-transformer", "TableTransformerConfig"),
("tapas", "TapasConfig"),
("time_series_transformer", "TimeSeriesTransformerConfig"),
("timesformer", "TimesformerConfig"),
("timm_backbone", "TimmBackboneConfig"),
("trajectory_transformer", "TrajectoryTransformerConfig"),
("transfo-xl", "TransfoXLConfig"),
("trocr", "TrOCRConfig"),
("tvlt", "TvltConfig"),
("tvp", "TvpConfig"),
("udop", "UdopConfig"),
("umt5", "UMT5Config"),
("unispeech", "UniSpeechConfig"),
("unispeech-sat", "UniSpeechSatConfig"),
("univnet", "UnivNetConfig"),
("upernet", "UperNetConfig"),
("van", "VanConfig"),
("videomae", "VideoMAEConfig"),
("vilt", "ViltConfig"),
("vipllava", "VipLlavaConfig"),
("vision-encoder-decoder", "VisionEncoderDecoderConfig"),
("vision-text-dual-encoder", "VisionTextDualEncoderConfig"),
("visual_bert", "VisualBertConfig"),
("vit", "ViTConfig"),
("vit_hybrid", "ViTHybridConfig"),
("vit_mae", "ViTMAEConfig"),
("vit_msn", "ViTMSNConfig"),
("vitdet", "VitDetConfig"),
("vitmatte", "VitMatteConfig"),
("vits", "VitsConfig"),
("vivit", "VivitConfig"),
("wav2vec2", "Wav2Vec2Config"),
("wav2vec2-bert", "Wav2Vec2BertConfig"),
("wav2vec2-conformer", "Wav2Vec2ConformerConfig"),
("wavlm", "WavLMConfig"),
("whisper", "WhisperConfig"),
("xclip", "XCLIPConfig"),
("xglm", "XGLMConfig"),
("xlm", "XLMConfig"),
("xlm-prophetnet", "XLMProphetNetConfig"),
("xlm-roberta", "XLMRobertaConfig"),
("xlm-roberta-xl", "XLMRobertaXLConfig"),
("xlnet", "XLNetConfig"),
("xmod", "XmodConfig"),
("yolos", "YolosConfig"),
("yoso", "YosoConfig"),
]
)
MODEL_NAMES_MAPPING = OrderedDict(
[
# Add full (and cased) model names here
("albert", "ALBERT"),
("align", "ALIGN"),
("altclip", "AltCLIP"),
("audio-spectrogram-transformer", "Audio Spectrogram Transformer"),
("autoformer", "Autoformer"),
("bark", "Bark"),
("bart", "BART"),
("barthez", "BARThez"),
("bartpho", "BARTpho"),
("beit", "BEiT"),
("bert", "BERT"),
("bert-generation", "Bert Generation"),
("bert-japanese", "BertJapanese"),
("bertweet", "BERTweet"),
("big_bird", "BigBird"),
("bigbird_pegasus", "BigBird-Pegasus"),
("biogpt", "BioGpt"),
("bit", "BiT"),
("blenderbot", "Blenderbot"),
("blenderbot-small", "BlenderbotSmall"),
("blip", "BLIP"),
("blip-2", "BLIP-2"),
("bloom", "BLOOM"),
("bort", "BORT"),
("bridgetower", "BridgeTower"),
("bros", "BROS"),
("byt5", "ByT5"),
("camembert", "CamemBERT"),
("canine", "CANINE"),
("chinese_clip", "Chinese-CLIP"),
("chinese_clip_vision_model", "ChineseCLIPVisionModel"),
("clap", "CLAP"),
("clip", "CLIP"),
("clip_vision_model", "CLIPVisionModel"),
("clipseg", "CLIPSeg"),
("clvp", "CLVP"),
("code_llama", "CodeLlama"),
("codegen", "CodeGen"),
("cohere", "Cohere"),
("conditional_detr", "Conditional DETR"),
("convbert", "ConvBERT"),
("convnext", "ConvNeXT"),
("convnextv2", "ConvNeXTV2"),
("cpm", "CPM"),
("cpmant", "CPM-Ant"),
("ctrl", "CTRL"),
("cvt", "CvT"),
("data2vec-audio", "Data2VecAudio"),
("data2vec-text", "Data2VecText"),
("data2vec-vision", "Data2VecVision"),
("dbrx", "DBRX"),
("deberta", "DeBERTa"),
("deberta-v2", "DeBERTa-v2"),
("decision_transformer", "Decision Transformer"),
("deformable_detr", "Deformable DETR"),
("deit", "DeiT"),
("deplot", "DePlot"),
("depth_anything", "Depth Anything"),
("deta", "DETA"),
("detr", "DETR"),
("dialogpt", "DialoGPT"),
("dinat", "DiNAT"),
("dinov2", "DINOv2"),
("distilbert", "DistilBERT"),
("dit", "DiT"),
("donut-swin", "DonutSwin"),
("dpr", "DPR"),
("dpt", "DPT"),
("efficientformer", "EfficientFormer"),
("efficientnet", "EfficientNet"),
("electra", "ELECTRA"),
("encodec", "EnCodec"),
("encoder-decoder", "Encoder decoder"),
("ernie", "ERNIE"),
("ernie_m", "ErnieM"),
("esm", "ESM"),
("falcon", "Falcon"),
("fastspeech2_conformer", "FastSpeech2Conformer"),
("flan-t5", "FLAN-T5"),
("flan-ul2", "FLAN-UL2"),
("flaubert", "FlauBERT"),
("flava", "FLAVA"),
("fnet", "FNet"),
("focalnet", "FocalNet"),
("fsmt", "FairSeq Machine-Translation"),
("funnel", "Funnel Transformer"),
("fuyu", "Fuyu"),
("gemma", "Gemma"),
("git", "GIT"),
("glpn", "GLPN"),
("gpt-sw3", "GPT-Sw3"),
("gpt2", "OpenAI GPT-2"),
("gpt_bigcode", "GPTBigCode"),
("gpt_neo", "GPT Neo"),
("gpt_neox", "GPT NeoX"),
("gpt_neox_japanese", "GPT NeoX Japanese"),
("gptj", "GPT-J"),
("gptsan-japanese", "GPTSAN-japanese"),
("graphormer", "Graphormer"),
("grounding-dino", "Grounding DINO"),
("groupvit", "GroupViT"),
("herbert", "HerBERT"),
("hubert", "Hubert"),
("ibert", "I-BERT"),
("idefics", "IDEFICS"),
("idefics2", "Idefics2"),
("imagegpt", "ImageGPT"),
("informer", "Informer"),
("instructblip", "InstructBLIP"),
("jamba", "Jamba"),
("jukebox", "Jukebox"),
("kosmos-2", "KOSMOS-2"),
("layoutlm", "LayoutLM"),
("layoutlmv2", "LayoutLMv2"),
("layoutlmv3", "LayoutLMv3"),
("layoutxlm", "LayoutXLM"),
("led", "LED"),
("levit", "LeViT"),
("lilt", "LiLT"),
("llama", "LLaMA"),
("llama2", "Llama2"),
("llava", "LLaVa"),
("llava_next", "LLaVA-NeXT"),
("longformer", "Longformer"),
("longt5", "LongT5"),
("luke", "LUKE"),
("lxmert", "LXMERT"),
("m2m_100", "M2M100"),
("madlad-400", "MADLAD-400"),
("mamba", "Mamba"),
("marian", "Marian"),
("markuplm", "MarkupLM"),
("mask2former", "Mask2Former"),
("maskformer", "MaskFormer"),
("maskformer-swin", "MaskFormerSwin"),
("matcha", "MatCha"),
("mbart", "mBART"),
("mbart50", "mBART-50"),
("mctct", "M-CTC-T"),
("mega", "MEGA"),
("megatron-bert", "Megatron-BERT"),
("megatron_gpt2", "Megatron-GPT2"),
("mgp-str", "MGP-STR"),
("mistral", "Mistral"),
("mixtral", "Mixtral"),
("mluke", "mLUKE"),
("mms", "MMS"),
("mobilebert", "MobileBERT"),
("mobilenet_v1", "MobileNetV1"),
("mobilenet_v2", "MobileNetV2"),
("mobilevit", "MobileViT"),
("mobilevitv2", "MobileViTV2"),
("mpnet", "MPNet"),
("mpt", "MPT"),
("mra", "MRA"),
("mt5", "MT5"),
("musicgen", "MusicGen"),
("musicgen_melody", "MusicGen Melody"),
("mvp", "MVP"),
("nat", "NAT"),
("nezha", "Nezha"),
("nllb", "NLLB"),
("nllb-moe", "NLLB-MOE"),
("nougat", "Nougat"),
("nystromformer", "Nyströmformer"),
("olmo", "OLMo"),
("oneformer", "OneFormer"),
("open-llama", "OpenLlama"),
("openai-gpt", "OpenAI GPT"),
("opt", "OPT"),
("owlv2", "OWLv2"),
("owlvit", "OWL-ViT"),
("patchtsmixer", "PatchTSMixer"),
("patchtst", "PatchTST"),
("pegasus", "Pegasus"),
("pegasus_x", "PEGASUS-X"),
("perceiver", "Perceiver"),
("persimmon", "Persimmon"),
("phi", "Phi"),
("phobert", "PhoBERT"),
("pix2struct", "Pix2Struct"),
("plbart", "PLBart"),
("poolformer", "PoolFormer"),
("pop2piano", "Pop2Piano"),
("prophetnet", "ProphetNet"),
("pvt", "PVT"),
("pvt_v2", "PVTv2"),
("qdqbert", "QDQBert"),
("qwen2", "Qwen2"),
("qwen2_moe", "Qwen2MoE"),
("rag", "RAG"),
("realm", "REALM"),
("recurrent_gemma", "RecurrentGemma"),
("reformer", "Reformer"),
("regnet", "RegNet"),
("rembert", "RemBERT"),
("resnet", "ResNet"),
("retribert", "RetriBERT"),
("roberta", "RoBERTa"),
("roberta-prelayernorm", "RoBERTa-PreLayerNorm"),
("roc_bert", "RoCBert"),
("roformer", "RoFormer"),
("rwkv", "RWKV"),
("sam", "SAM"),
("seamless_m4t", "SeamlessM4T"),
("seamless_m4t_v2", "SeamlessM4Tv2"),
("segformer", "SegFormer"),
("seggpt", "SegGPT"),
("sew", "SEW"),
("sew-d", "SEW-D"),
("siglip", "SigLIP"),
("siglip_vision_model", "SiglipVisionModel"),
("speech-encoder-decoder", "Speech Encoder decoder"),
("speech_to_text", "Speech2Text"),
("speech_to_text_2", "Speech2Text2"),
("speecht5", "SpeechT5"),
("splinter", "Splinter"),
("squeezebert", "SqueezeBERT"),
("stablelm", "StableLm"),
("starcoder2", "Starcoder2"),
("superpoint", "SuperPoint"),
("swiftformer", "SwiftFormer"),
("swin", "Swin Transformer"),
("swin2sr", "Swin2SR"),
("swinv2", "Swin Transformer V2"),
("switch_transformers", "SwitchTransformers"),
("t5", "T5"),
("t5v1.1", "T5v1.1"),
("table-transformer", "Table Transformer"),
("tapas", "TAPAS"),
("tapex", "TAPEX"),
("time_series_transformer", "Time Series Transformer"),
("timesformer", "TimeSformer"),
("timm_backbone", "TimmBackbone"),
("trajectory_transformer", "Trajectory Transformer"),
("transfo-xl", "Transformer-XL"),
("trocr", "TrOCR"),
("tvlt", "TVLT"),
("tvp", "TVP"),
("udop", "UDOP"),
("ul2", "UL2"),
("umt5", "UMT5"),
("unispeech", "UniSpeech"),
("unispeech-sat", "UniSpeechSat"),
("univnet", "UnivNet"),
("upernet", "UPerNet"),
("van", "VAN"),
("videomae", "VideoMAE"),
("vilt", "ViLT"),
("vipllava", "VipLlava"),
("vision-encoder-decoder", "Vision Encoder decoder"),
("vision-text-dual-encoder", "VisionTextDualEncoder"),
("visual_bert", "VisualBERT"),
("vit", "ViT"),
("vit_hybrid", "ViT Hybrid"),
("vit_mae", "ViTMAE"),
("vit_msn", "ViTMSN"),
("vitdet", "VitDet"),
("vitmatte", "ViTMatte"),
("vits", "VITS"),
("vivit", "ViViT"),
("wav2vec2", "Wav2Vec2"),
("wav2vec2-bert", "Wav2Vec2-BERT"),
("wav2vec2-conformer", "Wav2Vec2-Conformer"),
("wav2vec2_phoneme", "Wav2Vec2Phoneme"),
("wavlm", "WavLM"),
("whisper", "Whisper"),
("xclip", "X-CLIP"),
("xglm", "XGLM"),
("xlm", "XLM"),
("xlm-prophetnet", "XLM-ProphetNet"),
("xlm-roberta", "XLM-RoBERTa"),
("xlm-roberta-xl", "XLM-RoBERTa-XL"),
("xlm-v", "XLM-V"),
("xlnet", "XLNet"),
("xls_r", "XLS-R"),
("xlsr_wav2vec2", "XLSR-Wav2Vec2"),
("xmod", "X-MOD"),
("yolos", "YOLOS"),
("yoso", "YOSO"),
]
)
# This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting
# `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`.
DEPRECATED_MODELS = [
"bort",
"mctct",
"mmbt",
"open_llama",
"retribert",
"tapex",
"trajectory_transformer",
"transfo_xl",
"van",
]
SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict(
[
("openai-gpt", "openai"),
("data2vec-audio", "data2vec"),
("data2vec-text", "data2vec"),
("data2vec-vision", "data2vec"),
("donut-swin", "donut"),
("kosmos-2", "kosmos2"),
("maskformer-swin", "maskformer"),
("xclip", "x_clip"),
("clip_vision_model", "clip"),
("siglip_vision_model", "siglip"),
("chinese_clip_vision_model", "chinese_clip"),
]
)
def model_type_to_module_name(key):
"""Converts a config key to the corresponding module."""
# Special treatment
if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME:
return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key]
key = key.replace("-", "_")
if key in DEPRECATED_MODELS:
key = f"deprecated.{key}"
return key
def config_class_to_model_type(config):
"""Converts a config class name to the corresponding model type"""
for key, cls in CONFIG_MAPPING_NAMES.items():
if cls == config:
return key
# if key not found check in extra content
for key, cls in CONFIG_MAPPING._extra_content.items():
if cls.__name__ == config:
return key
return None
class _LazyConfigMapping(OrderedDict):
"""
A dictionary that lazily load its values when they are requested.
"""
def __init__(self, mapping):
self._mapping = mapping
self._extra_content = {}
self._modules = {}
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
if key not in self._mapping:
raise KeyError(key)
value = self._mapping[key]
module_name = model_type_to_module_name(key)
if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models")
if hasattr(self._modules[module_name], value):
return getattr(self._modules[module_name], value)
# Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the
# object at the top level.
transformers_module = importlib.import_module("transformers")
return getattr(transformers_module, value)
def keys(self):
return list(self._mapping.keys()) + list(self._extra_content.keys())
def values(self):
return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())
def items(self):
return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())
def __iter__(self):
return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))
def __contains__(self, item):
return item in self._mapping or item in self._extra_content
def register(self, key, value, exist_ok=False):
"""
Register a new configuration in this mapping.
"""
if key in self._mapping.keys() and not exist_ok:
raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
self._extra_content[key] = value
CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES)
class _LazyLoadAllMappings(OrderedDict):
"""
A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values,
etc.)
Args:
mapping: The mapping to load.
"""
def __init__(self, mapping):
self._mapping = mapping
self._initialized = False
self._data = {}
def _initialize(self):
if self._initialized:
return
for model_type, map_name in self._mapping.items():
module_name = model_type_to_module_name(model_type)
module = importlib.import_module(f".{module_name}", "transformers.models")
mapping = getattr(module, map_name)
self._data.update(mapping)
self._initialized = True
def __getitem__(self, key):
self._initialize()
return self._data[key]
def keys(self):
self._initialize()
return self._data.keys()
def values(self):
self._initialize()
return self._data.values()
def items(self):
self._initialize()
return self._data.keys()
def __iter__(self):
self._initialize()
return iter(self._data)
def __contains__(self, item):
self._initialize()
return item in self._data
def _get_class_name(model_class: Union[str, List[str]]):
if isinstance(model_class, (list, tuple)):
return " or ".join([f"[`{c}`]" for c in model_class if c is not None])
return f"[`{model_class}`]"
def _list_model_options(indent, config_to_class=None, use_model_types=True):
if config_to_class is None and not use_model_types:
raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.")
if use_model_types:
if config_to_class is None:
model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()}
else:
model_type_to_name = {
model_type: _get_class_name(model_class)
for model_type, model_class in config_to_class.items()
if model_type in MODEL_NAMES_MAPPING
}
lines = [
f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)"
for model_type in sorted(model_type_to_name.keys())
]
else:
config_to_name = {
CONFIG_MAPPING_NAMES[config]: _get_class_name(clas)
for config, clas in config_to_class.items()
if config in CONFIG_MAPPING_NAMES
}
config_to_model_name = {
config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items()
}
lines = [
f"{indent}- [`{config_name}`] configuration class:"
f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)"
for config_name in sorted(config_to_name.keys())
]
return "\n".join(lines)
def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True):
def docstring_decorator(fn):
docstrings = fn.__doc__
if docstrings is None:
# Example: -OO
return fn
lines = docstrings.split("\n")
i = 0
while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None:
i += 1
if i < len(lines):
indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0]
if use_model_types:
indent = f"{indent} "
lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types)
docstrings = "\n".join(lines)
else:
raise ValueError(
f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current"
f" docstring is:\n{docstrings}"
)
fn.__doc__ = docstrings
return fn
return docstring_decorator
class AutoConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the [`~AutoConfig.from_pretrained`] class method.
This class cannot be instantiated directly using `__init__()` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method."
)
@classmethod
def for_model(cls, model_type: str, *args, **kwargs):
if model_type in CONFIG_MAPPING:
config_class = CONFIG_MAPPING[model_type]
return config_class(*args, **kwargs)
raise ValueError(
f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}"
)
@classmethod
@replace_list_option_in_docstrings()
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a pretrained model configuration.
The configuration class to instantiate is selected based on the `model_type` property of the config object that
is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`:
List options
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
Can be either:
- A string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- A path to a *directory* containing a configuration file saved using the
[`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method,
e.g., `./my_model_directory/`.
- A path or url to a saved configuration JSON *file*, e.g.,
`./my_model_directory/configuration.json`.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (`bool`, *optional*, defaults to `False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
If `False`, then this function returns just the final configuration object.
If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
part of `kwargs` which has not been used to update `config` and is otherwise ignored.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to `True` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs(additional keyword arguments, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
Examples:
```python
>>> from transformers import AutoConfig
>>> # Download configuration from huggingface.co and cache.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased")
>>> # Download configuration from huggingface.co (user-uploaded) and cache.
>>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased")
>>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*).
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/")
>>> # Load a specific configuration file.
>>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json")
>>> # Change some config attributes when loading a pretrained config.
>>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
>>> config.output_attentions
True
>>> config, unused_kwargs = AutoConfig.from_pretrained(
... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
... )
>>> config.output_attentions
True
>>> unused_kwargs
{'foo': False}
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
kwargs["_from_auto"] = True
kwargs["name_or_path"] = pretrained_model_name_or_path
trust_remote_code = kwargs.pop("trust_remote_code", None)
code_revision = kwargs.pop("code_revision", None)
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
class_ref = config_dict["auto_map"]["AutoConfig"]
config_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
)
if os.path.isdir(pretrained_model_name_or_path):
config_class.register_for_auto_class()
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "model_type" in config_dict:
try:
config_class = CONFIG_MAPPING[config_dict["model_type"]]
except KeyError:
raise ValueError(
f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` "
"but Transformers does not recognize this architecture. This could be because of an "
"issue with the checkpoint, or because your version of Transformers is out of date."
)
return config_class.from_dict(config_dict, **unused_kwargs)
else:
# Fallback: use pattern matching on the string.
# We go from longer names to shorter names to catch roberta before bert (for instance)
for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True):
if pattern in str(pretrained_model_name_or_path):
return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs)
raise ValueError(
f"Unrecognized model in {pretrained_model_name_or_path}. "
f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings "
f"in its name: {', '.join(CONFIG_MAPPING.keys())}"
)
@staticmethod
def register(model_type, config, exist_ok=False):
"""
Register a new configuration for this class.
Args:
model_type (`str`): The model type like "bert" or "gpt".
config ([`PretrainedConfig`]): The config to register.
"""
if issubclass(config, PretrainedConfig) and config.model_type != model_type:
raise ValueError(
"The config you are passing has a `model_type` attribute that is not consistent with the model type "
f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they "
"match!"
)
CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES)